Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2020

Open Access 01-12-2020 | Review

Targeting autophagy to overcome drug resistance: further developments

Authors: Haocai Chang, Zhengzhi Zou

Published in: Journal of Hematology & Oncology | Issue 1/2020

Login to get access

Abstract

Inhibiting cell survival and inducing cell death are the main approaches of tumor therapy. Autophagy plays an important role on intracellular metabolic homeostasis by eliminating dysfunctional or unnecessary proteins and damaged or aged cellular organelles to recycle their constituent metabolites that enable the maintenance of cell survival and genetic stability and even promotes the drug resistance, which severely limits the efficacy of chemotherapeutic drugs. Currently, targeting autophagy has a seemingly contradictory effect to suppress and promote tumor survival, which makes the effect of targeting autophagy on drug resistance more confusing and fuzzier. In the review, we summarize the regulation of autophagy by emerging ways, the action of targeting autophagy on drug resistance and some of the new therapeutic approaches to treat tumor drug resistance by interfering with autophagy-related pathways. The full-scale understanding of the tumor-associated signaling pathways and physiological functions of autophagy will hopefully open new possibilities for the treatment of tumor drug resistance and the improvement in clinical outcomes.
Literature
2.
go back to reference Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 2012;69:1125–36.PubMedCrossRef Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 2012;69:1125–36.PubMedCrossRef
3.
5.
6.
go back to reference Puissant A, Robert G, Fenouille N, Luciano F, Cassuto JP, Raynaud S, Auberger P. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res. 2010;70:1042–52.PubMedCrossRef Puissant A, Robert G, Fenouille N, Luciano F, Cassuto JP, Raynaud S, Auberger P. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res. 2010;70:1042–52.PubMedCrossRef
7.
go back to reference Aryal P, Kim K, Park PH, Ham S, Cho J, Song K. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS J. 2014;281:4644–58.PubMedCrossRef Aryal P, Kim K, Park PH, Ham S, Cho J, Song K. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS J. 2014;281:4644–58.PubMedCrossRef
8.
go back to reference Russell RC, Tian Y, Yuan HX, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15:741–50.PubMedPubMedCentralCrossRef Russell RC, Tian Y, Yuan HX, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15:741–50.PubMedPubMedCentralCrossRef
9.
go back to reference Carlsson SR, Simonsen A. Membrane dynamics in autophagosome biogenesis. J Cell Sci. 2015;128:193–205.PubMedCrossRef Carlsson SR, Simonsen A. Membrane dynamics in autophagosome biogenesis. J Cell Sci. 2015;128:193–205.PubMedCrossRef
10.
go back to reference Pavlinov I, Salkovski M, Aldrich LN. Beclin 1-ATG14L protein-protein interaction inhibitor selectively inhibits autophagy through disruption of VPS34 complex I. J Am Chem Soc. 2020;142:8174–82.PubMedCrossRef Pavlinov I, Salkovski M, Aldrich LN. Beclin 1-ATG14L protein-protein interaction inhibitor selectively inhibits autophagy through disruption of VPS34 complex I. J Am Chem Soc. 2020;142:8174–82.PubMedCrossRef
11.
go back to reference Maksoud AIA, Elebeedy D, Abass NH, Awad AM, Nasr GM, Roshdy T, Khalil H. Methylomic changes of autophagy-related genes by Legionella effector Lpg2936 in infected macrophages. Front Cell Dev Biol. 2020;7:390.CrossRef Maksoud AIA, Elebeedy D, Abass NH, Awad AM, Nasr GM, Roshdy T, Khalil H. Methylomic changes of autophagy-related genes by Legionella effector Lpg2936 in infected macrophages. Front Cell Dev Biol. 2020;7:390.CrossRef
12.
go back to reference Hao J, Li SY, Shi XX, Qian ZQ, Sun YJ, Wang DJ, Zhou XY, Qu HX, Hu SH, Zuo EJ, et al. Bone marrow mesenchymal stem cells protect against n-hexane-induced neuropathy through beclin 1-independent inhibition of autophagy. Sci Rep. 2018;8:4516.PubMedPubMedCentralCrossRef Hao J, Li SY, Shi XX, Qian ZQ, Sun YJ, Wang DJ, Zhou XY, Qu HX, Hu SH, Zuo EJ, et al. Bone marrow mesenchymal stem cells protect against n-hexane-induced neuropathy through beclin 1-independent inhibition of autophagy. Sci Rep. 2018;8:4516.PubMedPubMedCentralCrossRef
13.
go back to reference Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20:1992–2003.PubMedPubMedCentralCrossRef Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20:1992–2003.PubMedPubMedCentralCrossRef
14.
15.
go back to reference Niture S, Gyamfi MA, Lin MH, Chimeh U, Dong XL, Zheng WF, Moore J, Kumar D. TNFAIP8 regulates autophagy, cell steatosis, and promotes hepatocellular carcinoma cell proliferation. Cell Death Dis. 2020;11:178.PubMedPubMedCentralCrossRef Niture S, Gyamfi MA, Lin MH, Chimeh U, Dong XL, Zheng WF, Moore J, Kumar D. TNFAIP8 regulates autophagy, cell steatosis, and promotes hepatocellular carcinoma cell proliferation. Cell Death Dis. 2020;11:178.PubMedPubMedCentralCrossRef
16.
go back to reference Jia JY, Abudu YP, Claude-Taupin A, Gu YX, Kumar S, Choi SW, Peters R, Mudd MH, Allers L, Salemi M, et al. Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy. 2019;15:169–71.PubMedCrossRef Jia JY, Abudu YP, Claude-Taupin A, Gu YX, Kumar S, Choi SW, Peters R, Mudd MH, Allers L, Salemi M, et al. Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy. 2019;15:169–71.PubMedCrossRef
17.
go back to reference Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL, Kirak O, Sabatini DD, Sabatini DM. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature. 2013;493:679–83.PubMedCrossRef Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL, Kirak O, Sabatini DD, Sabatini DM. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature. 2013;493:679–83.PubMedCrossRef
18.
go back to reference Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303.PubMedPubMedCentralCrossRef Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303.PubMedPubMedCentralCrossRef
19.
go back to reference Lacher MD, Pincheira R, Zhu Z, Camoretti-Mercado B, Matli M, Warren RS, Castro AF. Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Oncogene. 2010;29:6543–56.PubMedCrossRef Lacher MD, Pincheira R, Zhu Z, Camoretti-Mercado B, Matli M, Warren RS, Castro AF. Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Oncogene. 2010;29:6543–56.PubMedCrossRef
20.
go back to reference Choi H, Merceron C, Mangiavini L, Seifert EL, Schipani E, Shapiro IM, Risbud MV. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy. 2016;12:1631–46.PubMedPubMedCentralCrossRef Choi H, Merceron C, Mangiavini L, Seifert EL, Schipani E, Shapiro IM, Risbud MV. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy. 2016;12:1631–46.PubMedPubMedCentralCrossRef
21.
go back to reference Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, Choi KY. BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK. Autophagy. 2013;9:345–60.PubMedPubMedCentralCrossRef Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, Choi KY. BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK. Autophagy. 2013;9:345–60.PubMedPubMedCentralCrossRef
22.
go back to reference Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.PubMedCrossRef Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.PubMedCrossRef
23.
go back to reference Adi-Harel S, Erlich S, Schmukler E, Cohen-Kedar S, Segev O, Mizrachy L, Hirsch JA, Pinkas-Kramarski R. Beclin 1 self-association is independent of autophagy induction by amino acid deprivation and rapamycin treatment. J Cell Biochem. 2010;110:1262–71.PubMedCrossRef Adi-Harel S, Erlich S, Schmukler E, Cohen-Kedar S, Segev O, Mizrachy L, Hirsch JA, Pinkas-Kramarski R. Beclin 1 self-association is independent of autophagy induction by amino acid deprivation and rapamycin treatment. J Cell Biochem. 2010;110:1262–71.PubMedCrossRef
24.
go back to reference Shi CS, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal. 2010;3:ra42. Shi CS, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal. 2010;3:ra42.
25.
go back to reference Zou ZZ, Yuan ZY, Zhang QX, Long ZJ, Chen JN, Tang ZP, Zhu YL, Chen SP, Xu J, Yan M, et al. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy. 2012;8:1798–810.PubMedPubMedCentralCrossRef Zou ZZ, Yuan ZY, Zhang QX, Long ZJ, Chen JN, Tang ZP, Zhu YL, Chen SP, Xu J, Yan M, et al. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy. 2012;8:1798–810.PubMedPubMedCentralCrossRef
26.
go back to reference Wei YJ, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell. 2008;30:678–88.PubMedPubMedCentralCrossRef Wei YJ, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell. 2008;30:678–88.PubMedPubMedCentralCrossRef
27.
go back to reference Li H, Wang P, Sun QH, Ding WX, Yin XM, Sobol RW, Stolz DB, Yu J, Zhang L. Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by Caspase 8-mediated cleavage of Beclin 1. Cancer Res. 2011;71:3625–34.PubMedPubMedCentralCrossRef Li H, Wang P, Sun QH, Ding WX, Yin XM, Sobol RW, Stolz DB, Yu J, Zhang L. Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by Caspase 8-mediated cleavage of Beclin 1. Cancer Res. 2011;71:3625–34.PubMedPubMedCentralCrossRef
28.
go back to reference Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010;1:e18.PubMedPubMedCentralCrossRef Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010;1:e18.PubMedPubMedCentralCrossRef
29.
go back to reference Broz DK, Mello SS, Bieging KT, Jiang DD, Dusek RL, Brady CA, Sidow A, Attardi LD. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Gene Dev. 2013;27:1016–31.CrossRef Broz DK, Mello SS, Bieging KT, Jiang DD, Dusek RL, Brady CA, Sidow A, Attardi LD. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Gene Dev. 2013;27:1016–31.CrossRef
30.
go back to reference Feng ZH, Hu WW, de Stanchina E, Teresky AK, Jin SK, Lowe S, Levine AJ. The regulation of AMPK beta 1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007;67:3043–53.PubMedCrossRef Feng ZH, Hu WW, de Stanchina E, Teresky AK, Jin SK, Lowe S, Levine AJ. The regulation of AMPK beta 1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007;67:3043–53.PubMedCrossRef
31.
go back to reference Kim BR, Jeong YA, Kim DY, Kim JL, Jeong S, Na YJ, Yun HK, Park SH, Jo ML, Ashktorab H, et al. Genipin increases oxaliplatin-induced cell death through autophagy in gastric cancer. J Cancer. 2020;11:460–7.PubMedPubMedCentralCrossRef Kim BR, Jeong YA, Kim DY, Kim JL, Jeong S, Na YJ, Yun HK, Park SH, Jo ML, Ashktorab H, et al. Genipin increases oxaliplatin-induced cell death through autophagy in gastric cancer. J Cancer. 2020;11:460–7.PubMedPubMedCentralCrossRef
32.
33.
go back to reference Huang YP, Guerrero-Preston R, Ratovitski EA. Phospho-Delta Np63 alpha-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle. 2012;11:1247–59.PubMedPubMedCentralCrossRef Huang YP, Guerrero-Preston R, Ratovitski EA. Phospho-Delta Np63 alpha-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle. 2012;11:1247–59.PubMedPubMedCentralCrossRef
34.
go back to reference Rosenbluth JM, Mays DJ, Pino MF, Tang LJ, Pietenpol JA. A gene signature-based approach identifies mTOR as a regulator of p73. Mol Cell Biol. 2008;28:5951–64.PubMedPubMedCentralCrossRef Rosenbluth JM, Mays DJ, Pino MF, Tang LJ, Pietenpol JA. A gene signature-based approach identifies mTOR as a regulator of p73. Mol Cell Biol. 2008;28:5951–64.PubMedPubMedCentralCrossRef
35.
go back to reference He Z, Liu H, Agostini M, Yousefi S, Perren A, Tschan MP, Mak TW, Melino G, Simon HU. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death Differ. 2013;20:1415–24.PubMedPubMedCentralCrossRef He Z, Liu H, Agostini M, Yousefi S, Perren A, Tschan MP, Mak TW, Melino G, Simon HU. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death Differ. 2013;20:1415–24.PubMedPubMedCentralCrossRef
36.
go back to reference Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.PubMedPubMedCentralCrossRef Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.PubMedPubMedCentralCrossRef
37.
go back to reference Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, et al. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence. 2019;10:376–413.PubMedPubMedCentralCrossRef Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, et al. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence. 2019;10:376–413.PubMedPubMedCentralCrossRef
38.
go back to reference Kim EM, Jung CH, Kim J, Hwang SG, Park JK, Um HD. The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins. Cancer Res. 2017;77:3092–100.PubMedCrossRef Kim EM, Jung CH, Kim J, Hwang SG, Park JK, Um HD. The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins. Cancer Res. 2017;77:3092–100.PubMedCrossRef
39.
go back to reference Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T, Kroemer G. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle. 2008;7:3056–61.PubMedCrossRef Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T, Kroemer G. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle. 2008;7:3056–61.PubMedCrossRef
40.
go back to reference Cordani M, Oppici E, Dando I, Butturini E, Dalla Pozza E, Nadal-Serrano M, Oliver J, Roca P, Mariotto S, Cellini B, et al. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition. Mol Oncol. 2016;10:1008–29.PubMedPubMedCentralCrossRef Cordani M, Oppici E, Dando I, Butturini E, Dalla Pozza E, Nadal-Serrano M, Oliver J, Roca P, Mariotto S, Cellini B, et al. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition. Mol Oncol. 2016;10:1008–29.PubMedPubMedCentralCrossRef
41.
go back to reference Dando I, Cordani M, Donadelli M. Mutant p53 and mTOR/PKM2 regulation in cancer cells. IUBMB Life. 2016;68:722–6.PubMedCrossRef Dando I, Cordani M, Donadelli M. Mutant p53 and mTOR/PKM2 regulation in cancer cells. IUBMB Life. 2016;68:722–6.PubMedCrossRef
42.
go back to reference Khromova NV, Kopnin PB, Stepanova EV, Agapova LS, Kopnin BP. p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett. 2009;276:143–51.PubMedCrossRef Khromova NV, Kopnin PB, Stepanova EV, Agapova LS, Kopnin BP. p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett. 2009;276:143–51.PubMedCrossRef
43.
go back to reference Valenti F, Ganci F, Fontemaggi G, Sacconi A, Strano S, Blandino G, Di Agostino S. Gain of function mutant p53 proteins cooperate with E2F4 to transcriptionally downregulate RAD17 and BRCA1 gene expression. Oncotarget. 2015;6:5547–66.PubMedPubMedCentralCrossRef Valenti F, Ganci F, Fontemaggi G, Sacconi A, Strano S, Blandino G, Di Agostino S. Gain of function mutant p53 proteins cooperate with E2F4 to transcriptionally downregulate RAD17 and BRCA1 gene expression. Oncotarget. 2015;6:5547–66.PubMedPubMedCentralCrossRef
44.
go back to reference Rodriguez OC, Choudhury S, Kolukula V, Vietsch EE, Catania J, Preet A, Reynoso K, Bargonetti J, Wellstein A, Albanese C, et al. Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle. 2012;11:4436–46.PubMedPubMedCentralCrossRef Rodriguez OC, Choudhury S, Kolukula V, Vietsch EE, Catania J, Preet A, Reynoso K, Bargonetti J, Wellstein A, Albanese C, et al. Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle. 2012;11:4436–46.PubMedPubMedCentralCrossRef
45.
go back to reference Sun XX, Challagundla KB, Dai MS. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBO J. 2012;31:576–92.PubMedCrossRef Sun XX, Challagundla KB, Dai MS. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBO J. 2012;31:576–92.PubMedCrossRef
46.
go back to reference Cicenas J, Zalyte E, Rimkus A, Dapkus D, Noreika R, Urbonavicius S. JNK, p38, ERK, and SGK1 inhibitors in cancer. Cancers. 2018;10:1.CrossRef Cicenas J, Zalyte E, Rimkus A, Dapkus D, Noreika R, Urbonavicius S. JNK, p38, ERK, and SGK1 inhibitors in cancer. Cancers. 2018;10:1.CrossRef
47.
go back to reference Tu QQ, Zheng RY, Li J, Hu L, Chang YX, Li L, Li MH, Wang RY, Huang DD, Wu MC, et al. Palmitic acid induces autophagy in hepatocytes via JNK2 activation. Acta Pharmacol Sin. 2014;35:504–12.PubMedPubMedCentralCrossRef Tu QQ, Zheng RY, Li J, Hu L, Chang YX, Li L, Li MH, Wang RY, Huang DD, Wu MC, et al. Palmitic acid induces autophagy in hepatocytes via JNK2 activation. Acta Pharmacol Sin. 2014;35:504–12.PubMedPubMedCentralCrossRef
48.
go back to reference Zhang Q, Kuang H, Chen C, Yan J, Do-Umehara HC, Liu XY, Dada L, Ridge KM, Chandel NS, Liu J. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458–66.PubMedPubMedCentralCrossRef Zhang Q, Kuang H, Chen C, Yan J, Do-Umehara HC, Liu XY, Dada L, Ridge KM, Chandel NS, Liu J. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458–66.PubMedPubMedCentralCrossRef
51.
go back to reference Lavallard VJ, Meijer AJ, Codogno P, Gual P. Autophagy, signaling and obesity. Pharmacol Res. 2012;66:513–25.PubMedCrossRef Lavallard VJ, Meijer AJ, Codogno P, Gual P. Autophagy, signaling and obesity. Pharmacol Res. 2012;66:513–25.PubMedCrossRef
53.
go back to reference Wang N, Zimmerman K, Raab RW, McKown RL, Hutnik CML, Talla V, Tyler MF, Lee JK, Laurie GW. Lacritin rescues stressed epithelia via rapid Forkhead Box O3 (FOXO3)-associated autophagy that restores metabolism. J Biol Chem. 2013;288:18146–61.PubMedPubMedCentralCrossRef Wang N, Zimmerman K, Raab RW, McKown RL, Hutnik CML, Talla V, Tyler MF, Lee JK, Laurie GW. Lacritin rescues stressed epithelia via rapid Forkhead Box O3 (FOXO3)-associated autophagy that restores metabolism. J Biol Chem. 2013;288:18146–61.PubMedPubMedCentralCrossRef
54.
go back to reference Matsuzawa T, Kim BH, Shenoy AR, Kamitani S, Miyake M, MacMicking JD. IFN-gamma elicits macrophage autophagy via the p38 MAPK signaling pathway. J Immunol. 2012;189:813–8.PubMedCrossRef Matsuzawa T, Kim BH, Shenoy AR, Kamitani S, Miyake M, MacMicking JD. IFN-gamma elicits macrophage autophagy via the p38 MAPK signaling pathway. J Immunol. 2012;189:813–8.PubMedCrossRef
55.
go back to reference McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol. 2010;298:C542–9.PubMedCrossRef McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol. 2010;298:C542–9.PubMedCrossRef
56.
go back to reference Keil E, Hocker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K, Schmitz I. Phosphorylation of Atg5 by the Gadd45 beta-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ. 2013;20:321–32.PubMedCrossRef Keil E, Hocker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K, Schmitz I. Phosphorylation of Atg5 by the Gadd45 beta-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ. 2013;20:321–32.PubMedCrossRef
57.
go back to reference Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, Puleston DJ, Watson AS, Simon AK, Tooze SA, et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J Clin Invest. 2014;124:4004–16.PubMedPubMedCentralCrossRef Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, Puleston DJ, Watson AS, Simon AK, Tooze SA, et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J Clin Invest. 2014;124:4004–16.PubMedPubMedCentralCrossRef
58.
go back to reference Settembre C, Di Malta C, Polito VA, Garcia-Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–33.PubMedPubMedCentralCrossRef Settembre C, Di Malta C, Polito VA, Garcia-Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–33.PubMedPubMedCentralCrossRef
59.
go back to reference Colecchia D, Strambi A, Sanzone S, Iavarone C, Rossi M, Dall’Armi C, Piccioni F, di Pianella AV, Chiariello M. MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Autophagy. 2012;8:1724–40.PubMedPubMedCentralCrossRef Colecchia D, Strambi A, Sanzone S, Iavarone C, Rossi M, Dall’Armi C, Piccioni F, di Pianella AV, Chiariello M. MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Autophagy. 2012;8:1724–40.PubMedPubMedCentralCrossRef
60.
go back to reference Kinsey CG, Camolotto SA, Boespflug AM, Gullien KP, Foth M, Shea JE, Seipp MT, Yap JT, Burrell LD, Lum DH, et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25:620–7.PubMedPubMedCentralCrossRef Kinsey CG, Camolotto SA, Boespflug AM, Gullien KP, Foth M, Shea JE, Seipp MT, Yap JT, Burrell LD, Lum DH, et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25:620–7.PubMedPubMedCentralCrossRef
61.
go back to reference Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, Gunda V, Pierobon M, Waters AM, George SD, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25:628–40.PubMedPubMedCentralCrossRef Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, Gunda V, Pierobon M, Waters AM, George SD, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25:628–40.PubMedPubMedCentralCrossRef
62.
go back to reference Zhang JX, Liang Y, Lin YB, Liu YB, You Y, Yin WQ. IRE1 alpha-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells. Biomed Pharmacother. 2016;82:281–9.PubMedCrossRef Zhang JX, Liang Y, Lin YB, Liu YB, You Y, Yin WQ. IRE1 alpha-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells. Biomed Pharmacother. 2016;82:281–9.PubMedCrossRef
63.
go back to reference Kang MJ, Chung J, Ryoo HD. CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. Nat Cell Biol. 2012;4:409–15.CrossRef Kang MJ, Chung J, Ryoo HD. CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. Nat Cell Biol. 2012;4:409–15.CrossRef
64.
go back to reference Selimovic D, Porzig BBOW, El-Khattouti A, Badura HE, Ahmad M, Ghanjati F, Santourlidis S, Haikel Y, Hassan M. Bortezomib/proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells. Cell Signal. 2013;25:308–18.PubMedCrossRef Selimovic D, Porzig BBOW, El-Khattouti A, Badura HE, Ahmad M, Ghanjati F, Santourlidis S, Haikel Y, Hassan M. Bortezomib/proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells. Cell Signal. 2013;25:308–18.PubMedCrossRef
65.
go back to reference Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, Caballero B, Kiffin R, Segura-Aguilar J, Cuervo AM, et al. Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet. 2012;21:2245–62.PubMedPubMedCentralCrossRef Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, Caballero B, Kiffin R, Segura-Aguilar J, Cuervo AM, et al. Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet. 2012;21:2245–62.PubMedPubMedCentralCrossRef
66.
go back to reference Zhou YJ, Lee J, Reno CM, Sun C, Park SW, Chung J, Lee J, Fisher SJ, White MF, Biddinger SB, et al. Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nat Med. 2011;17:356–61.PubMedPubMedCentralCrossRef Zhou YJ, Lee J, Reno CM, Sun C, Park SW, Chung J, Lee J, Fisher SJ, White MF, Biddinger SB, et al. Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nat Med. 2011;17:356–61.PubMedPubMedCentralCrossRef
67.
go back to reference Gade P, Ramachandran G, Maachani UB, Rizzo MA, Okada T, Prywes R, Cross AS, Mori K, Kalvakolanu DV. An IFN-gamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of death associated protein kinase 1 and induction of autophagy. Proc Natl Acad Sci U S A. 2012;109:10316–21.PubMedPubMedCentralCrossRef Gade P, Ramachandran G, Maachani UB, Rizzo MA, Okada T, Prywes R, Cross AS, Mori K, Kalvakolanu DV. An IFN-gamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of death associated protein kinase 1 and induction of autophagy. Proc Natl Acad Sci U S A. 2012;109:10316–21.PubMedPubMedCentralCrossRef
68.
go back to reference Zhou Y, Zhang S, Dai CS, Tang SS, Yang XY, Li DW, Zhao KN, Xiao XL. Quinocetone triggered ER stress-induced autophagy via ATF6/DAPK1-modulated mAtg9a trafficking. Cell Biol Toxicol. 2016;32:141–52.PubMedCrossRef Zhou Y, Zhang S, Dai CS, Tang SS, Yang XY, Li DW, Zhao KN, Xiao XL. Quinocetone triggered ER stress-induced autophagy via ATF6/DAPK1-modulated mAtg9a trafficking. Cell Biol Toxicol. 2016;32:141–52.PubMedCrossRef
69.
go back to reference Wang J, Kang RY, Huang H, Xi XY, Wang B, Wang JW, Zhao ZD. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy. 2014;10:766–84.PubMedPubMedCentralCrossRef Wang J, Kang RY, Huang H, Xi XY, Wang B, Wang JW, Zhao ZD. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy. 2014;10:766–84.PubMedPubMedCentralCrossRef
70.
go back to reference Tian H, Li YY, Kang PP, Wang ZC, Yue F, Jiao P, Yang NN, Qin SC, Yao ST. Endoplasmic reticulum stress-dependent autophagy inhibits glycated high-density lipoprotein-induced macrophage apoptosis by inhibiting CHOP pathway. J Cell Mol Med. 2019;23:2954–69.PubMedPubMedCentralCrossRef Tian H, Li YY, Kang PP, Wang ZC, Yue F, Jiao P, Yang NN, Qin SC, Yao ST. Endoplasmic reticulum stress-dependent autophagy inhibits glycated high-density lipoprotein-induced macrophage apoptosis by inhibiting CHOP pathway. J Cell Mol Med. 2019;23:2954–69.PubMedPubMedCentralCrossRef
71.
go back to reference Bchir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A. The eIF2 alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41:7683–99.CrossRef Bchir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A. The eIF2 alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41:7683–99.CrossRef
72.
go back to reference Matsumoto H, Miyazaki S, Matsuyama S, Takeda M, Kawano M, Nakagawa H, Nishimura K, Matsuo S. Selection of autophagy or apoptosis in cells exposed to ER-stress depends on ATF4 expression pattern with or without CHOP expression. Biol Open. 2013;2:1084–90.PubMedPubMedCentralCrossRef Matsumoto H, Miyazaki S, Matsuyama S, Takeda M, Kawano M, Nakagawa H, Nishimura K, Matsuo S. Selection of autophagy or apoptosis in cells exposed to ER-stress depends on ATF4 expression pattern with or without CHOP expression. Biol Open. 2013;2:1084–90.PubMedPubMedCentralCrossRef
73.
go back to reference Zhou Y, Liang XY, Chang H, Shu FR, Wu Y, Zhang T, Fu YJ, Zhang QY, Zhu JD, Mi MT. Ampelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt-mTOR pathway via endoplasmic reticulum stress. Cancer Sci. 2014;105:1279–87.PubMedPubMedCentralCrossRef Zhou Y, Liang XY, Chang H, Shu FR, Wu Y, Zhang T, Fu YJ, Zhang QY, Zhu JD, Mi MT. Ampelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt-mTOR pathway via endoplasmic reticulum stress. Cancer Sci. 2014;105:1279–87.PubMedPubMedCentralCrossRef
74.
go back to reference Rodriguez-Hernandez MA, Gonzalez R, de la Rosa AJ, Gallego P, Ordonez R, Navarro-Villaran E, Contreras L, Rodriguez-Arribas M, Gonzalez-Gallego J, Alamo-Martinez JM, et al. Molecular characterization of autophagic and apoptotic signaling induced by sorafenib in liver cancer cells. J Cell Physiol. 2019;234:692–708.CrossRef Rodriguez-Hernandez MA, Gonzalez R, de la Rosa AJ, Gallego P, Ordonez R, Navarro-Villaran E, Contreras L, Rodriguez-Arribas M, Gonzalez-Gallego J, Alamo-Martinez JM, et al. Molecular characterization of autophagic and apoptotic signaling induced by sorafenib in liver cancer cells. J Cell Physiol. 2019;234:692–708.CrossRef
76.
go back to reference Gonnella R, Granato M, Farina A, Santarelli R, Faggioni A, Cirone M. PKC theta and p38 MAPK activate the EBV lytic cycle through autophagy induction. BBA-Mol Cell Res. 2015;1853:1586–95. Gonnella R, Granato M, Farina A, Santarelli R, Faggioni A, Cirone M. PKC theta and p38 MAPK activate the EBV lytic cycle through autophagy induction. BBA-Mol Cell Res. 2015;1853:1586–95.
77.
go back to reference Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29:2570–81.PubMedPubMedCentralCrossRef Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29:2570–81.PubMedPubMedCentralCrossRef
78.
go back to reference Sassone F, Margulets V, Maraschi A, Rodighiero S, Passafaro M, Silani V, Ciammola A, Kirshenbaum LA, Sassone J. Bcl-2/adenovirus E1B 19-kDa interacting protein (BNip3) has a key role in the mitochondrial dysfunction induced by mutant huntingtin. Hum Mol Genet. 2015;24:6530–9.PubMedCrossRef Sassone F, Margulets V, Maraschi A, Rodighiero S, Passafaro M, Silani V, Ciammola A, Kirshenbaum LA, Sassone J. Bcl-2/adenovirus E1B 19-kDa interacting protein (BNip3) has a key role in the mitochondrial dysfunction induced by mutant huntingtin. Hum Mol Genet. 2015;24:6530–9.PubMedCrossRef
79.
go back to reference Niu C, Chen ZW, Kim KT, Sun J, Xue M, Chen G, Li ST, Shen YJ, Zhu ZX, Wang X, et al. Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy. 2019;15:843–70.PubMedPubMedCentralCrossRef Niu C, Chen ZW, Kim KT, Sun J, Xue M, Chen G, Li ST, Shen YJ, Zhu ZX, Wang X, et al. Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy. 2019;15:843–70.PubMedPubMedCentralCrossRef
80.
go back to reference Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ. 2008;15:1572–81.PubMedCrossRef Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ. 2008;15:1572–81.PubMedCrossRef
81.
go back to reference Rouschop KMA, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120:127–41.PubMedCrossRef Rouschop KMA, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120:127–41.PubMedCrossRef
82.
go back to reference Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 2015;4:184–92.PubMedCrossRef Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 2015;4:184–92.PubMedCrossRef
83.
go back to reference Zhang XL, Cheng XP, Yu L, Yang JS, Calvo R, Patnaik S, Hu X, Gao Q, Yang MM, Lawas M, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016;7:12109.PubMedPubMedCentralCrossRef Zhang XL, Cheng XP, Yu L, Yang JS, Calvo R, Patnaik S, Hu X, Gao Q, Yang MM, Lawas M, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016;7:12109.PubMedPubMedCentralCrossRef
84.
go back to reference Sinha RA, Singh BK, Zhou J, Wu YJ, Farah BL, Ohba K, Lesmana R, Gooding J, Bay BH, Yen PM. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy. 2015;11:1341–57.PubMedPubMedCentralCrossRef Sinha RA, Singh BK, Zhou J, Wu YJ, Farah BL, Ohba K, Lesmana R, Gooding J, Bay BH, Yen PM. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy. 2015;11:1341–57.PubMedPubMedCentralCrossRef
85.
go back to reference Datta S, Chakraborty S, Panja C, Ghosh S. Reactive nitrogen species control apoptosis and autophagy in K562 cells: implication of TAp73 alpha, induction in controlling autophagy. Free Radical Res. 2018;52:491–506.CrossRef Datta S, Chakraborty S, Panja C, Ghosh S. Reactive nitrogen species control apoptosis and autophagy in K562 cells: implication of TAp73 alpha, induction in controlling autophagy. Free Radical Res. 2018;52:491–506.CrossRef
86.
go back to reference Kubota M, Kakimoto K, Nakagawa T, Koubayashi E, Nakazawa K, Tawa H, Hirata Y, Okada T, Kawakami K, Asai A, et al. Autophagy deficiency exacerbates colitis through excessive oxidative stress and MAPK signaling pathway activation. PLoS ONE. 2019;14:e0225066.PubMedPubMedCentralCrossRef Kubota M, Kakimoto K, Nakagawa T, Koubayashi E, Nakazawa K, Tawa H, Hirata Y, Okada T, Kawakami K, Asai A, et al. Autophagy deficiency exacerbates colitis through excessive oxidative stress and MAPK signaling pathway activation. PLoS ONE. 2019;14:e0225066.PubMedPubMedCentralCrossRef
87.
go back to reference Hu LL, Wang H, Huang L, Zhao Y, Wang JJ. Crosstalk between autophagy and intracellular radiation response. Int J Oncol. 2016;49:2217–26.PubMedCrossRef Hu LL, Wang H, Huang L, Zhao Y, Wang JJ. Crosstalk between autophagy and intracellular radiation response. Int J Oncol. 2016;49:2217–26.PubMedCrossRef
88.
go back to reference Kaminskyy VO, Zhivotovsky B. Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Sign. 2014;21:86–102.CrossRef Kaminskyy VO, Zhivotovsky B. Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Sign. 2014;21:86–102.CrossRef
89.
go back to reference Tschan MP, Jost M, Batliner J, Fey MF. The antophagy gene ULK1 plays a role in AML differentiation and is negatively regulated by the oncogenic microRNA 106a. Blood. 2010;116:223–223.CrossRef Tschan MP, Jost M, Batliner J, Fey MF. The antophagy gene ULK1 plays a role in AML differentiation and is negatively regulated by the oncogenic microRNA 106a. Blood. 2010;116:223–223.CrossRef
90.
go back to reference Huang YP, Chuang AY, Ratovitski EA. Phospho-Delta Np63 alpha/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle. 2011;10:3938–47.PubMedPubMedCentralCrossRef Huang YP, Chuang AY, Ratovitski EA. Phospho-Delta Np63 alpha/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle. 2011;10:3938–47.PubMedPubMedCentralCrossRef
91.
go back to reference Zou ZY, Wu LP, Ding HY, Wang Y, Zhang YQ, Chen XJ, Chen X, Zhang CY, Zhang QP, Zen K. MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing Beclin 1-mediated autophagy. J Biol Chem. 2012;287:4148–56.PubMedCrossRef Zou ZY, Wu LP, Ding HY, Wang Y, Zhang YQ, Chen XJ, Chen X, Zhang CY, Zhang QP, Zen K. MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing Beclin 1-mediated autophagy. J Biol Chem. 2012;287:4148–56.PubMedCrossRef
92.
go back to reference Korkmaz G, le Sage C, Tekirdag KA, Agami R, Gozuacik D. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy. 2012;8:165–76.PubMedCrossRef Korkmaz G, le Sage C, Tekirdag KA, Agami R, Gozuacik D. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy. 2012;8:165–76.PubMedCrossRef
93.
go back to reference Yu Y, Yang L, Zhao M, Zhu S, Kang R, Vernon P, Tang D, Cao L. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia. 2012;26:1752–60.PubMedCrossRef Yu Y, Yang L, Zhao M, Zhu S, Kang R, Vernon P, Tang D, Cao L. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia. 2012;26:1752–60.PubMedCrossRef
94.
go back to reference Frankel LB, Wen JY, Lees M, Hoyer-Hansen M, Farkas T, Krogh A, Jaattela M, Lund AH. microRNA-101 is a potent inhibitor of autophagy. EMBO J. 2011;30:4628–41.PubMedPubMedCentralCrossRef Frankel LB, Wen JY, Lees M, Hoyer-Hansen M, Farkas T, Krogh A, Jaattela M, Lund AH. microRNA-101 is a potent inhibitor of autophagy. EMBO J. 2011;30:4628–41.PubMedPubMedCentralCrossRef
95.
go back to reference Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, et al. VHL-regulated miR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. 2012;21:532–46.PubMedPubMedCentralCrossRef Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, et al. VHL-regulated miR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. 2012;21:532–46.PubMedPubMedCentralCrossRef
96.
go back to reference Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den Berge IJ, Sun SM, Taskesen E, Stern P, de Ru AH, van Adrichem AJ, et al. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood. 2011;118:916–25.PubMedPubMedCentralCrossRef Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den Berge IJ, Sun SM, Taskesen E, Stern P, de Ru AH, van Adrichem AJ, et al. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood. 2011;118:916–25.PubMedPubMedCentralCrossRef
97.
go back to reference Yeh LY, Liu CJ, Wong YK, Chang C, Lin SC, Chang KW. miR-372 inhibits p62 in head and neck squamous cell carcinoma in vitro and in vivo. Oncotarget. 2015;6:6062–75.PubMedPubMedCentralCrossRef Yeh LY, Liu CJ, Wong YK, Chang C, Lin SC, Chang KW. miR-372 inhibits p62 in head and neck squamous cell carcinoma in vitro and in vivo. Oncotarget. 2015;6:6062–75.PubMedPubMedCentralCrossRef
98.
go back to reference Zhang E, Wang J, Chu JJ, Yang C, Xiao H, Zhao CL, Sun ZW, Gao X, Chen GH, Han ZT, et al. MicroRNA-146a induced by hypoxia promotes chondrocyte autophagy through BcI-2. Cell Physiol Biochem. 2015;37:1442–53.PubMedCrossRef Zhang E, Wang J, Chu JJ, Yang C, Xiao H, Zhao CL, Sun ZW, Gao X, Chen GH, Han ZT, et al. MicroRNA-146a induced by hypoxia promotes chondrocyte autophagy through BcI-2. Cell Physiol Biochem. 2015;37:1442–53.PubMedCrossRef
99.
go back to reference Chen S, Wu J, Jiao K, Wu Q, Ma JJ, Chen D, Kang JQ, Zhao GD, Shi YQ, Fan DM, et al. MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer. Cell Death Dis. 2018;9:1070.PubMedPubMedCentralCrossRef Chen S, Wu J, Jiao K, Wu Q, Ma JJ, Chen D, Kang JQ, Zhao GD, Shi YQ, Fan DM, et al. MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer. Cell Death Dis. 2018;9:1070.PubMedPubMedCentralCrossRef
100.
go back to reference Han WD, Fu XH, Xie JS, Meng ZP, Gu Y, Wang XC, Li L, Pan HM, Huang WD. miR-26a enhances autophagy to protect against ethanol-induced acute liver injury. J Mol Med. 2015;93:1045–55.PubMedCrossRef Han WD, Fu XH, Xie JS, Meng ZP, Gu Y, Wang XC, Li L, Pan HM, Huang WD. miR-26a enhances autophagy to protect against ethanol-induced acute liver injury. J Mol Med. 2015;93:1045–55.PubMedCrossRef
101.
go back to reference Tazawa H, Yano S, Yoshida R, Yamasaki Y, Sasaki T, Hashimoto Y, Kuroda S, Ouchi M, Onishi T, Uno F, et al. Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1-microRNA-7-epidermal growth factor receptor axis. Int J Cancer. 2012;131:2939–50.PubMedCrossRef Tazawa H, Yano S, Yoshida R, Yamasaki Y, Sasaki T, Hashimoto Y, Kuroda S, Ouchi M, Onishi T, Uno F, et al. Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1-microRNA-7-epidermal growth factor receptor axis. Int J Cancer. 2012;131:2939–50.PubMedCrossRef
102.
go back to reference Zhai H, Song B, Xu X, Zhu W, Ju J. Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene. 2013;32:1570–9.PubMedCrossRef Zhai H, Song B, Xu X, Zhu W, Ju J. Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene. 2013;32:1570–9.PubMedCrossRef
103.
go back to reference Li GP, Qian L, Tang XQ, Chen Y, Zhao ZY, Zhang CW. Long non-coding RNA growth arrest-specific 5 (GAS5) acts as a tumor suppressor by promoting autophagy in breast cancer. Mol Med Rep. 2020;22:2460–8.PubMedPubMedCentralCrossRef Li GP, Qian L, Tang XQ, Chen Y, Zhao ZY, Zhang CW. Long non-coding RNA growth arrest-specific 5 (GAS5) acts as a tumor suppressor by promoting autophagy in breast cancer. Mol Med Rep. 2020;22:2460–8.PubMedPubMedCentralCrossRef
104.
go back to reference Li P, He J, Yang Z, Ge SF, Zhang H, Zhong Q, Fan XQ. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy. 2020;16:1186–99.PubMedCrossRef Li P, He J, Yang Z, Ge SF, Zhang H, Zhong Q, Fan XQ. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy. 2020;16:1186–99.PubMedCrossRef
105.
go back to reference Li XY, Zhou Y, Yang L, Ma YB, Peng XQ, Yang S, Li HY, Liu JG. LncRNA NEAT1 promotes autophagy via regulating miR-204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma. J Cell Physiol. 2020;235:3402–13.PubMedCrossRef Li XY, Zhou Y, Yang L, Ma YB, Peng XQ, Yang S, Li HY, Liu JG. LncRNA NEAT1 promotes autophagy via regulating miR-204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma. J Cell Physiol. 2020;235:3402–13.PubMedCrossRef
106.
go back to reference Liu F, Ai FY, Zhang DC, Tian L, Yang ZY, Liu SJ. LncRNA NEAT1 knockdown attenuates autophagy to elevate 5-FU sensitivity in colorectal cancer via targeting miR-34a. Cancer Med. 2020;9:1079–91.PubMedCrossRef Liu F, Ai FY, Zhang DC, Tian L, Yang ZY, Liu SJ. LncRNA NEAT1 knockdown attenuates autophagy to elevate 5-FU sensitivity in colorectal cancer via targeting miR-34a. Cancer Med. 2020;9:1079–91.PubMedCrossRef
107.
go back to reference Wang J, Xie SD, Yang JJ, Xiong HC, Jia YL, Zhou YL, Chen YX, Ying XG, Chen C, Ye CY, et al. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 2019;12:81.PubMedPubMedCentralCrossRef Wang J, Xie SD, Yang JJ, Xiong HC, Jia YL, Zhou YL, Chen YX, Ying XG, Chen C, Ye CY, et al. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 2019;12:81.PubMedPubMedCentralCrossRef
108.
go back to reference Zhou CF, Yi CH, Yi YX, Qin WY, Yan YN, Dong XY, Zhang XW, Huang Y, Zhang R, Wei J, et al. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/beta-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer. 2020;19:118.PubMedPubMedCentralCrossRef Zhou CF, Yi CH, Yi YX, Qin WY, Yan YN, Dong XY, Zhang XW, Huang Y, Zhang R, Wei J, et al. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/beta-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer. 2020;19:118.PubMedPubMedCentralCrossRef
109.
go back to reference Yang YX, Chen D, Liu H, Yang K. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma. Cell Death Dis. 2019;10:41.PubMedPubMedCentralCrossRef Yang YX, Chen D, Liu H, Yang K. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma. Cell Death Dis. 2019;10:41.PubMedPubMedCentralCrossRef
110.
go back to reference Su YY, Yao SW, Zhao S, Li JC, Li HY. LncRNA CCAT1 functions as apoptosis inhibitor in podocytes via autophagy inhibition. J Cell Biochem. 2020;121:621–31.PubMedCrossRef Su YY, Yao SW, Zhao S, Li JC, Li HY. LncRNA CCAT1 functions as apoptosis inhibitor in podocytes via autophagy inhibition. J Cell Biochem. 2020;121:621–31.PubMedCrossRef
111.
go back to reference Liu CH, Zhang Y, She XL, Fan L, Li PY, Feng JB, Fu HJ, Liu Q, Liu Q, Zhao CH, et al. A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol. 2018;11:77.PubMedPubMedCentralCrossRef Liu CH, Zhang Y, She XL, Fan L, Li PY, Feng JB, Fu HJ, Liu Q, Liu Q, Zhao CH, et al. A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol. 2018;11:77.PubMedPubMedCentralCrossRef
112.
go back to reference Wang C, Tan CL, Wen Y, Zhang DZ, Li GF, Chang L, Su J, Wang X. FOXP1-induced lncRNA CLRN1-AS1 acts as a tumor suppressor in pituitary prolactinoma by repressing the autophagy via inactivating Wnt/beta-catenin signaling pathway. Cell Death Dis. 2019;10:499.PubMedPubMedCentralCrossRef Wang C, Tan CL, Wen Y, Zhang DZ, Li GF, Chang L, Su J, Wang X. FOXP1-induced lncRNA CLRN1-AS1 acts as a tumor suppressor in pituitary prolactinoma by repressing the autophagy via inactivating Wnt/beta-catenin signaling pathway. Cell Death Dis. 2019;10:499.PubMedPubMedCentralCrossRef
113.
go back to reference Pu ZJ, Wu LF, Guo YT, Li GP, Xiang MQ, Liu LX, Zhan HL, Zhou XT, Tan H. LncRNA MEG3 contributes to adenosine-induced cytotoxicity in hepatoma HepG2 cells by downregulated ILF3 and autophagy inhibition via regulation PI3K-AKT-mTOR and beclin-1 signaling pathway. J Cell Biochem. 2019;120:18172–85.PubMedCrossRef Pu ZJ, Wu LF, Guo YT, Li GP, Xiang MQ, Liu LX, Zhan HL, Zhou XT, Tan H. LncRNA MEG3 contributes to adenosine-induced cytotoxicity in hepatoma HepG2 cells by downregulated ILF3 and autophagy inhibition via regulation PI3K-AKT-mTOR and beclin-1 signaling pathway. J Cell Biochem. 2019;120:18172–85.PubMedCrossRef
115.
go back to reference Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH. Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol. 2012;83:747–57.PubMedCrossRef Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH. Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol. 2012;83:747–57.PubMedCrossRef
116.
go back to reference Anand SK, Sharma A, Singh N, Kakkar P. Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair. 2020;86:102748.PubMedCrossRef Anand SK, Sharma A, Singh N, Kakkar P. Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair. 2020;86:102748.PubMedCrossRef
117.
go back to reference Zhang LH, Yang AJ, Wang M, Liu W, Wang CY, Xie XF, Chen X, Dong JF, Li M. Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells. Apoptosis. 2016;21:473–88.PubMedPubMedCentralCrossRef Zhang LH, Yang AJ, Wang M, Liu W, Wang CY, Xie XF, Chen X, Dong JF, Li M. Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells. Apoptosis. 2016;21:473–88.PubMedPubMedCentralCrossRef
118.
go back to reference Lim SC, Hahm KS, Lee SH, Oh SH. Autophagy involvement in cadmium resistance through induction of multidrug resistance-associated protein and counterbalance of endoplasmic reticulum stress WI38 lung epithelial fibroblast cells. Toxicology. 2010;276:18–26.PubMedCrossRef Lim SC, Hahm KS, Lee SH, Oh SH. Autophagy involvement in cadmium resistance through induction of multidrug resistance-associated protein and counterbalance of endoplasmic reticulum stress WI38 lung epithelial fibroblast cells. Toxicology. 2010;276:18–26.PubMedCrossRef
119.
go back to reference Wu W, Schecker J, Wurstle S, Schneider F, Schonfelder M, Schlegel J. Aldehyde dehydrogenase 1A3 (ALDH1A3) is regulated by autophagy in human glioblastoma cells. Cancer Lett. 2018;417:112–23.PubMedCrossRef Wu W, Schecker J, Wurstle S, Schneider F, Schonfelder M, Schlegel J. Aldehyde dehydrogenase 1A3 (ALDH1A3) is regulated by autophagy in human glioblastoma cells. Cancer Lett. 2018;417:112–23.PubMedCrossRef
120.
go back to reference Zhang CY, Hu JW, Wang WS, Sun Y, Sun K. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J. 2020;34:9563–74.PubMedCrossRef Zhang CY, Hu JW, Wang WS, Sun Y, Sun K. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J. 2020;34:9563–74.PubMedCrossRef
121.
go back to reference Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): two potential targets for COVID-19 treatment. Mediators Inflamm. 2020;2020:7527953.PubMedPubMedCentralCrossRef Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): two potential targets for COVID-19 treatment. Mediators Inflamm. 2020;2020:7527953.PubMedPubMedCentralCrossRef
122.
go back to reference Li SY, Wei YL. Association of HMGB1, BRCA1 and P62 expression in ovarian cancer and chemotherapy sensitivity. Oncol Lett. 2018;15:9572–6.PubMedPubMedCentral Li SY, Wei YL. Association of HMGB1, BRCA1 and P62 expression in ovarian cancer and chemotherapy sensitivity. Oncol Lett. 2018;15:9572–6.PubMedPubMedCentral
123.
go back to reference Huang CY, Chiang SF, Chen WTL, Ke TW, Chen TW, You YS, Lin CY, Chao KSC. HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer. Cell Death Dis. 2018;9:1004.PubMedPubMedCentralCrossRef Huang CY, Chiang SF, Chen WTL, Ke TW, Chen TW, You YS, Lin CY, Chao KSC. HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer. Cell Death Dis. 2018;9:1004.PubMedPubMedCentralCrossRef
124.
go back to reference Zheng H, Chen JN, Yu X, Jiang P, Yuan L, Shen HS, Zhao LH, Chen PF, Yang M. HMGB1 enhances drug resistance and promotes in vivo tumor growth of lung cancer cells. DNA Cell Biol. 2016;35:622–7.PubMedCrossRef Zheng H, Chen JN, Yu X, Jiang P, Yuan L, Shen HS, Zhao LH, Chen PF, Yang M. HMGB1 enhances drug resistance and promotes in vivo tumor growth of lung cancer cells. DNA Cell Biol. 2016;35:622–7.PubMedCrossRef
125.
go back to reference Hou W, Han J, Lu CS, Goldstein LA, Rabinowich H. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy. 2010;6:891–900.PubMedPubMedCentralCrossRef Hou W, Han J, Lu CS, Goldstein LA, Rabinowich H. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy. 2010;6:891–900.PubMedPubMedCentralCrossRef
126.
go back to reference Yang P, Song RR, Li N, Sun K, Shi F, Liu HL, Shen FH, Jiang SF, Zhang L, Jin YL. Silica dust exposure induces autophagy in alveolar macrophages through switching Beclin1 affinity from Bcl-2 to PIK3C3. Environ Toxicol. 2020;35:758–67.PubMedCrossRef Yang P, Song RR, Li N, Sun K, Shi F, Liu HL, Shen FH, Jiang SF, Zhang L, Jin YL. Silica dust exposure induces autophagy in alveolar macrophages through switching Beclin1 affinity from Bcl-2 to PIK3C3. Environ Toxicol. 2020;35:758–67.PubMedCrossRef
127.
go back to reference Zhu JL, Cai YS, Xu K, Ren XY, Sun J, Lu SM, Chen JH, Xu P. Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy-dependent pathway in human synovial sarcoma cells. Oncol Rep. 2018;40:1927–36.PubMedPubMedCentral Zhu JL, Cai YS, Xu K, Ren XY, Sun J, Lu SM, Chen JH, Xu P. Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy-dependent pathway in human synovial sarcoma cells. Oncol Rep. 2018;40:1927–36.PubMedPubMedCentral
128.
go back to reference Moon HS, Kim B, Gwak H, Suh DH, Song YS. Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2 alpha) pathway protect ovarian cancer cells from metformin-induced apoptosis. Mol Carcinog. 2016;55:346–56.PubMedCrossRef Moon HS, Kim B, Gwak H, Suh DH, Song YS. Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2 alpha) pathway protect ovarian cancer cells from metformin-induced apoptosis. Mol Carcinog. 2016;55:346–56.PubMedCrossRef
129.
go back to reference Elgendy M, Sheridan C, Brumatti G, Martin SJ. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell. 2011;42:23–35.PubMedCrossRef Elgendy M, Sheridan C, Brumatti G, Martin SJ. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell. 2011;42:23–35.PubMedCrossRef
130.
go back to reference Zareba I, Huynh TYL, Kazberuk A, Teu J, Klupczynska A, Matysiak J, Surazynski A, Palkaa J. Overexpression of prolidase induces autophagic death in MCF-7 breast cancer cells. Cell Physiol Biochem. 2020;54:875–87.PubMedCrossRef Zareba I, Huynh TYL, Kazberuk A, Teu J, Klupczynska A, Matysiak J, Surazynski A, Palkaa J. Overexpression of prolidase induces autophagic death in MCF-7 breast cancer cells. Cell Physiol Biochem. 2020;54:875–87.PubMedCrossRef
131.
go back to reference Lamy L, Ngo VN, Emre NCT, Shaffer AL, Yang YD, Tian EM, Nair V, Kruhlak MJ, Zingone A, Landgren O, et al. Control of autophagic cell death by Caspase-10 in multiple myeloma. Cancer Cell. 2013;23:435–49.PubMedPubMedCentralCrossRef Lamy L, Ngo VN, Emre NCT, Shaffer AL, Yang YD, Tian EM, Nair V, Kruhlak MJ, Zingone A, Landgren O, et al. Control of autophagic cell death by Caspase-10 in multiple myeloma. Cancer Cell. 2013;23:435–49.PubMedPubMedCentralCrossRef
132.
go back to reference Zeng X, Zhao H, Li YB, Fan JJ, Sun Y, Wang SF, Wang ZY, Song P, Ju DW. Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia. Autophagy. 2015;11:355–72.PubMedPubMedCentralCrossRef Zeng X, Zhao H, Li YB, Fan JJ, Sun Y, Wang SF, Wang ZY, Song P, Ju DW. Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia. Autophagy. 2015;11:355–72.PubMedPubMedCentralCrossRef
133.
go back to reference Fan QW, Cheng C, Hackett C, Feldman M, Houseman BT, Nicolaides T, Haas-Kogan D, James CD, Oakes SA, Debnath J, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal. 2010;3:ra81.PubMedPubMedCentralCrossRef Fan QW, Cheng C, Hackett C, Feldman M, Houseman BT, Nicolaides T, Haas-Kogan D, James CD, Oakes SA, Debnath J, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal. 2010;3:ra81.PubMedPubMedCentralCrossRef
134.
go back to reference Chang ZX, Shi G, Jin JQ, Guo HT, Guo XF, Luo FY, Song YG, Jia XJ. Dual PI3K/mTOR inhibitor NVP-BEZ235-induced apoptosis of hepatocellular carcinoma cell lines is enhanced by inhibitors of autophagy. Int J Mol Med. 2013;31:1449–56.PubMedCrossRef Chang ZX, Shi G, Jin JQ, Guo HT, Guo XF, Luo FY, Song YG, Jia XJ. Dual PI3K/mTOR inhibitor NVP-BEZ235-induced apoptosis of hepatocellular carcinoma cell lines is enhanced by inhibitors of autophagy. Int J Mol Med. 2013;31:1449–56.PubMedCrossRef
135.
go back to reference Janku F, McConkey DJ, Hong DS, Kurzrock R. Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol. 2011;8:528–39.PubMedCrossRef Janku F, McConkey DJ, Hong DS, Kurzrock R. Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol. 2011;8:528–39.PubMedCrossRef
136.
go back to reference Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 2009;119:1109–23.PubMedPubMedCentralCrossRef Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 2009;119:1109–23.PubMedPubMedCentralCrossRef
137.
go back to reference Sun SY. Enhancing perifosine’s anticancer efficacy by preventing autophagy. Autophagy. 2010;6:184–5.PubMedCrossRef Sun SY. Enhancing perifosine’s anticancer efficacy by preventing autophagy. Autophagy. 2010;6:184–5.PubMedCrossRef
138.
go back to reference Rangwala R, Chang YYC, Hu J, Algazy K, Evans T, Fecher L, Schuchter L, Torigian DA, Panosian J, Troxel A, et al. Combined mTOR and autophagy inhibition Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 2014;10:1391–402.PubMedPubMedCentralCrossRef Rangwala R, Chang YYC, Hu J, Algazy K, Evans T, Fecher L, Schuchter L, Torigian DA, Panosian J, Troxel A, et al. Combined mTOR and autophagy inhibition Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 2014;10:1391–402.PubMedPubMedCentralCrossRef
139.
go back to reference Zhu K, Dunner K, McConkey DJ. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene. 2010;29:451–62.PubMedCrossRef Zhu K, Dunner K, McConkey DJ. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene. 2010;29:451–62.PubMedCrossRef
140.
go back to reference Zang Y, Thomas SM, Chan ET, Kirk CJ, Freilino ML, DeLancey HM, Grandis JR, Li CY, Johnson DE. The next generation proteasome inhibitors carfilzomib and oprozomib activate prosurvival autophagy via induction of the unfolded protein response and ATF4. Autophagy. 2012;8:1873–4.PubMedPubMedCentralCrossRef Zang Y, Thomas SM, Chan ET, Kirk CJ, Freilino ML, DeLancey HM, Grandis JR, Li CY, Johnson DE. The next generation proteasome inhibitors carfilzomib and oprozomib activate prosurvival autophagy via induction of the unfolded protein response and ATF4. Autophagy. 2012;8:1873–4.PubMedPubMedCentralCrossRef
141.
go back to reference Carew JS, Medina EC, Esquivel JA, Mahalingam D, Swords R, Kelly K, Zhang H, Huang P, Mita AC, Mita MM, et al. Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med. 2010;14:2448–59.PubMedCrossRef Carew JS, Medina EC, Esquivel JA, Mahalingam D, Swords R, Kelly K, Zhang H, Huang P, Mita AC, Mita MM, et al. Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med. 2010;14:2448–59.PubMedCrossRef
142.
go back to reference Srivastav AK, Dubey D, Chopra D, Singh J, Negi S, Mujtaba SF, Dwivedi A, Ray RS. Oxidative stress-mediated photoactivation of carbazole inhibits human skin cell physiology. J Cell Biochem. 2020;121:1273–82.PubMedCrossRef Srivastav AK, Dubey D, Chopra D, Singh J, Negi S, Mujtaba SF, Dwivedi A, Ray RS. Oxidative stress-mediated photoactivation of carbazole inhibits human skin cell physiology. J Cell Biochem. 2020;121:1273–82.PubMedCrossRef
143.
go back to reference Chen HY, Huang TC, Shieh TM, Wu CH, Lin LC, Hsia SM. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth. Int J Mol Sci. 2017;18:2025.PubMedCentralCrossRef Chen HY, Huang TC, Shieh TM, Wu CH, Lin LC, Hsia SM. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth. Int J Mol Sci. 2017;18:2025.PubMedCentralCrossRef
144.
go back to reference Jahanafrooz Z, Motamed N, Rinner B, Mokhtarzadeh A, Baradaran B. Silibinin to improve cancer therapeutic, as an apoptotic inducer, autophagy modulator, cell cycle inhibitor, and microRNAs regulator. Life Sci. 2018;213:236–47.PubMedCrossRef Jahanafrooz Z, Motamed N, Rinner B, Mokhtarzadeh A, Baradaran B. Silibinin to improve cancer therapeutic, as an apoptotic inducer, autophagy modulator, cell cycle inhibitor, and microRNAs regulator. Life Sci. 2018;213:236–47.PubMedCrossRef
145.
go back to reference Kauntz H, Bousserouel S, Gosse F, Raul F. Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells. Apoptosis. 2011;16:1042–53.PubMedCrossRef Kauntz H, Bousserouel S, Gosse F, Raul F. Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells. Apoptosis. 2011;16:1042–53.PubMedCrossRef
146.
go back to reference Zhan ZZ, Li Q, Wu P, Ye Y, Tseng HY, Zhang LJ, Zhang XD. Autophagy-mediated HMGB1 release antagonizes apoptosis of gastric cancer cells induced by vincristine via transcriptional regulation of Mcl-1. Autophagy. 2012;8:109–21.PubMedCrossRef Zhan ZZ, Li Q, Wu P, Ye Y, Tseng HY, Zhang LJ, Zhang XD. Autophagy-mediated HMGB1 release antagonizes apoptosis of gastric cancer cells induced by vincristine via transcriptional regulation of Mcl-1. Autophagy. 2012;8:109–21.PubMedCrossRef
147.
go back to reference Li XQ, Fan Z. The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1 alpha and Bcl-2 and activating the Beclin 1/hVps34 complex. Cancer Res. 2010;70:5942–52.PubMedPubMedCentralCrossRef Li XQ, Fan Z. The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1 alpha and Bcl-2 and activating the Beclin 1/hVps34 complex. Cancer Res. 2010;70:5942–52.PubMedPubMedCentralCrossRef
148.
go back to reference Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyas E, Lopez-Bonet E, Martin-Castillo B, Joven J, Menendez JA. The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to Trastuzumab in HER2-positive breast cancer. Sci Rep. 2013;3:2469.PubMedPubMedCentralCrossRef Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyas E, Lopez-Bonet E, Martin-Castillo B, Joven J, Menendez JA. The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to Trastuzumab in HER2-positive breast cancer. Sci Rep. 2013;3:2469.PubMedPubMedCentralCrossRef
149.
go back to reference Luca T, Barresi V, Privitera G, Musso N, Caruso M, Condorelli DF, Castorina S. In vitro combined treatment with cetuximab and trastuzumab inhibits growth of colon cancer cells. Cell Prolif. 2014;47:435–47.PubMedPubMedCentralCrossRef Luca T, Barresi V, Privitera G, Musso N, Caruso M, Condorelli DF, Castorina S. In vitro combined treatment with cetuximab and trastuzumab inhibits growth of colon cancer cells. Cell Prolif. 2014;47:435–47.PubMedPubMedCentralCrossRef
150.
go back to reference Al-Batran SE, Moorahrend E, Maintz C, Goetze TO, Hempel D, Thuss-Patience P, Gaillard VE, Hegewisch-Becker S. Clinical practice observation of Trastuzumab in patients with human epidermal growth receptor 2-positive metastatic adenocarcinoma of the stomach or gastroesophageal junction. Oncologist. 2020;25:e1181–7.PubMedPubMedCentralCrossRef Al-Batran SE, Moorahrend E, Maintz C, Goetze TO, Hempel D, Thuss-Patience P, Gaillard VE, Hegewisch-Becker S. Clinical practice observation of Trastuzumab in patients with human epidermal growth receptor 2-positive metastatic adenocarcinoma of the stomach or gastroesophageal junction. Oncologist. 2020;25:e1181–7.PubMedPubMedCentralCrossRef
151.
go back to reference Wang YC, Zhang XY, Fan JJ, Chen W, Luan JY, Nan YY, Wang SF, Chen QC, Zhang YJ, Wu YL, et al. Activating autophagy enhanced the antitumor effect of antibody drug conjugates Rituximab-monomethyl auristatin E. Front Immunol. 2018;9:1799.PubMedPubMedCentralCrossRef Wang YC, Zhang XY, Fan JJ, Chen W, Luan JY, Nan YY, Wang SF, Chen QC, Zhang YJ, Wu YL, et al. Activating autophagy enhanced the antitumor effect of antibody drug conjugates Rituximab-monomethyl auristatin E. Front Immunol. 2018;9:1799.PubMedPubMedCentralCrossRef
152.
go back to reference Guo XL, Li D, Sun K, Wang J, Liu Y, Song JR, Zhao QD, Zhang SS, Deng WJ, Zhao X, et al. Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J Mol Med. 2013;91:473–83.PubMedCrossRef Guo XL, Li D, Sun K, Wang J, Liu Y, Song JR, Zhao QD, Zhang SS, Deng WJ, Zhao X, et al. Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J Mol Med. 2013;91:473–83.PubMedCrossRef
153.
go back to reference Maimaitili Y, Inase A, Miyata Y, Kitao A, Mizutani Y, Kakiuchi S, Shimono Y, Saito Y, Sonoki T, Minami H, et al. An mTORC1/2 kinase inhibitor enhances the cytotoxicity of gemtuzumab ozogamicin by activation of lysosomal function. Leukemia Res. 2018;74:68–74.CrossRef Maimaitili Y, Inase A, Miyata Y, Kitao A, Mizutani Y, Kakiuchi S, Shimono Y, Saito Y, Sonoki T, Minami H, et al. An mTORC1/2 kinase inhibitor enhances the cytotoxicity of gemtuzumab ozogamicin by activation of lysosomal function. Leukemia Res. 2018;74:68–74.CrossRef
154.
go back to reference Mizutani Y, Inase A, Maimaitili Y, Miyata Y, Kitao A, Matsumoto H, Kawaguchi K, Higashime A, Goto H, Kurata K, et al. An mTORC1/2 dual inhibitor, AZD2014, acts as a lysosomal function activator and enhances gemtuzumab ozogamicin-induced apoptosis in primary human leukemia cells. Int J Hematol. 2019;110:490–9.PubMedCrossRef Mizutani Y, Inase A, Maimaitili Y, Miyata Y, Kitao A, Matsumoto H, Kawaguchi K, Higashime A, Goto H, Kurata K, et al. An mTORC1/2 dual inhibitor, AZD2014, acts as a lysosomal function activator and enhances gemtuzumab ozogamicin-induced apoptosis in primary human leukemia cells. Int J Hematol. 2019;110:490–9.PubMedCrossRef
155.
go back to reference Gallo S, Gatti S, Sala V, Albano R, Costelli P, Casanova E, Comoglio PM, Crepaldi T. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy. Cell Death Dis. 2014;5:e1185.PubMedPubMedCentralCrossRef Gallo S, Gatti S, Sala V, Albano R, Costelli P, Casanova E, Comoglio PM, Crepaldi T. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy. Cell Death Dis. 2014;5:e1185.PubMedPubMedCentralCrossRef
156.
go back to reference Alinari L, Baiocchi RA, Praetorius-Ibba M. FTY720-induced blockage of autophagy enhances anticancer efficacy of milatuzumab in mantle cell lymphoma: Is FTY720 the next autophagy-blocking agent in lymphoma treatment? Autophagy. 2012;8:416–7.PubMedPubMedCentralCrossRef Alinari L, Baiocchi RA, Praetorius-Ibba M. FTY720-induced blockage of autophagy enhances anticancer efficacy of milatuzumab in mantle cell lymphoma: Is FTY720 the next autophagy-blocking agent in lymphoma treatment? Autophagy. 2012;8:416–7.PubMedPubMedCentralCrossRef
157.
go back to reference Illidge T, Ivanov A, Beers SA, Walshe C, Chan C, Alduaij W, Glennie MJ, Cragg MS. Novel mechanisms of non-apoptotic cell death evoked by type II anti-CD20 (Tositumomab) and HLA-DR monoclonal antibodies. Blood. 2008;112:326–326.CrossRef Illidge T, Ivanov A, Beers SA, Walshe C, Chan C, Alduaij W, Glennie MJ, Cragg MS. Novel mechanisms of non-apoptotic cell death evoked by type II anti-CD20 (Tositumomab) and HLA-DR monoclonal antibodies. Blood. 2008;112:326–326.CrossRef
158.
go back to reference Xu W, Song F, Wang B, Li KS, Tian M, Yu M, Pan XR, Shi BZ, Liu JW, Gu JR, et al. The effect of and mechanism underlying autophagy in hepatocellular carcinoma induced by CH12, a monoclonal antibody directed against epidermal growth factor receptor variant III. Cell Physiol Biochem. 2018;46:226–37.PubMedCrossRef Xu W, Song F, Wang B, Li KS, Tian M, Yu M, Pan XR, Shi BZ, Liu JW, Gu JR, et al. The effect of and mechanism underlying autophagy in hepatocellular carcinoma induced by CH12, a monoclonal antibody directed against epidermal growth factor receptor variant III. Cell Physiol Biochem. 2018;46:226–37.PubMedCrossRef
159.
go back to reference Zhang MJ, He J, Liu ZQ, Lu Y, Zheng YH, Li HY, Xu JD, Liu H, Qian JF, Orlowski RZ, et al. Anti-beta(2)-microglobulin monoclonal antibodies overcome bortezomib resistance in multiple myeloma by inhibiting autophagy. Oncotarget. 2015;6:8567–78.PubMedPubMedCentralCrossRef Zhang MJ, He J, Liu ZQ, Lu Y, Zheng YH, Li HY, Xu JD, Liu H, Qian JF, Orlowski RZ, et al. Anti-beta(2)-microglobulin monoclonal antibodies overcome bortezomib resistance in multiple myeloma by inhibiting autophagy. Oncotarget. 2015;6:8567–78.PubMedPubMedCentralCrossRef
160.
go back to reference Booth L, Roberts JL, Poklepovic A, Dent P. [pemetrexed plus sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells. Cancer Biol Ther. 2017;18:705–14.PubMedPubMedCentralCrossRef Booth L, Roberts JL, Poklepovic A, Dent P. [pemetrexed plus sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells. Cancer Biol Ther. 2017;18:705–14.PubMedPubMedCentralCrossRef
161.
go back to reference Hu YR, Yu YC, You SW, Li KQ, Tong XC, Chen SR, Chen ED, Lin XZ, Chen YF. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol cancer. 2017;16:174.CrossRef Hu YR, Yu YC, You SW, Li KQ, Tong XC, Chen SR, Chen ED, Lin XZ, Chen YF. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol cancer. 2017;16:174.CrossRef
162.
go back to reference Huang LM, Hu CQ, Cao H, Wu XL, Wang RP, Lu H, Li H, Chen H. MicroRNA-29c increases the chemosensitivity of pancreatic cancer cells by inhibiting USP22 mediated autophagy. Cell Physiol Biochem. 2018;47:747–58.PubMedCrossRef Huang LM, Hu CQ, Cao H, Wu XL, Wang RP, Lu H, Li H, Chen H. MicroRNA-29c increases the chemosensitivity of pancreatic cancer cells by inhibiting USP22 mediated autophagy. Cell Physiol Biochem. 2018;47:747–58.PubMedCrossRef
164.
go back to reference Chen G, Hu X, Zhang W, Xu N, Wang FQ, Jia J, Zhang WF, Sun ZJ, Zhao YF. Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis. 2012;17:90–101.PubMedCrossRef Chen G, Hu X, Zhang W, Xu N, Wang FQ, Jia J, Zhang WF, Sun ZJ, Zhao YF. Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis. 2012;17:90–101.PubMedCrossRef
165.
go back to reference Driscoll J, Anaissie EJ, Jagannathan S. Autophagy is uncoupled from ATG5-dependent apoptosis in cells resistant to proteasome inhibition. Blood. 2013;122:4448.CrossRef Driscoll J, Anaissie EJ, Jagannathan S. Autophagy is uncoupled from ATG5-dependent apoptosis in cells resistant to proteasome inhibition. Blood. 2013;122:4448.CrossRef
166.
go back to reference Preiss R, Tyrawa C, van der Merwe G. Autophagy gene overexpression in Saccharomyces cerevisiae perturbs subcellular organellar function and accumulates ROS to accelerate cell death with relevance to sparkling wine production. Appl Microbiol Biotechnol. 2018;102:8447–64.PubMedCrossRef Preiss R, Tyrawa C, van der Merwe G. Autophagy gene overexpression in Saccharomyces cerevisiae perturbs subcellular organellar function and accumulates ROS to accelerate cell death with relevance to sparkling wine production. Appl Microbiol Biotechnol. 2018;102:8447–64.PubMedCrossRef
167.
go back to reference Wang P, Nolan TM, Yin YH, Bassham DC. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy. 2020;16:123–39.PubMedCrossRef Wang P, Nolan TM, Yin YH, Bassham DC. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy. 2020;16:123–39.PubMedCrossRef
168.
go back to reference Tai S, Sun Y, Liu N, Ding BX, Hsia E, Bhuta S, Thor RK, Damoiseaux R, Liang CZ, Huang JT. Combination of Rad001 (Everolimus) and Propachlor synergistically induces apoptosis through enhanced autophagy in prostate cancer cells. Mol Cancer Ther. 2012;11:1320–31.PubMedPubMedCentralCrossRef Tai S, Sun Y, Liu N, Ding BX, Hsia E, Bhuta S, Thor RK, Damoiseaux R, Liang CZ, Huang JT. Combination of Rad001 (Everolimus) and Propachlor synergistically induces apoptosis through enhanced autophagy in prostate cancer cells. Mol Cancer Ther. 2012;11:1320–31.PubMedPubMedCentralCrossRef
169.
go back to reference Li B, Zhou C, Yi L, Xu LS, Xu MH. Effect and molecular mechanism of mTOR inhibitor rapamycin on temozolomide-induced autophagic death of U251 glioma cells. Oncol Lett. 2018;15:2477–84.PubMed Li B, Zhou C, Yi L, Xu LS, Xu MH. Effect and molecular mechanism of mTOR inhibitor rapamycin on temozolomide-induced autophagic death of U251 glioma cells. Oncol Lett. 2018;15:2477–84.PubMed
170.
go back to reference Jiang H, Sun J, Xu Q, Liu Y, Wei J, Young CYF, Yuan H, Lou H. Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells. Cell Death Dis. 2013;4:e761.PubMedPubMedCentralCrossRef Jiang H, Sun J, Xu Q, Liu Y, Wei J, Young CYF, Yuan H, Lou H. Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells. Cell Death Dis. 2013;4:e761.PubMedPubMedCentralCrossRef
171.
go back to reference Kozako T, Mellini P, Ohsugi T, Aikawa A, Uchida YI, Honda SI, Suzuki T. Novel small molecule SIRT2 inhibitors induce cell death in leukemic cell lines. BMC Cancer. 2018;18:791.PubMedPubMedCentralCrossRef Kozako T, Mellini P, Ohsugi T, Aikawa A, Uchida YI, Honda SI, Suzuki T. Novel small molecule SIRT2 inhibitors induce cell death in leukemic cell lines. BMC Cancer. 2018;18:791.PubMedPubMedCentralCrossRef
172.
go back to reference Mrakovcic M, Kleinheinz J, Frohlich LF. Histone deacetylase inhibitor-induced autophagy in tumor cells: implications for p53. Int J Mol Sci. 2017;18:1883.PubMedCentralCrossRef Mrakovcic M, Kleinheinz J, Frohlich LF. Histone deacetylase inhibitor-induced autophagy in tumor cells: implications for p53. Int J Mol Sci. 2017;18:1883.PubMedCentralCrossRef
173.
go back to reference Lee TG, Jeong EH, Kim SY, Kim HR, Kim CH. The combination of irreversible EGFR TKIs and SAHA induces apoptosis and autophagy-mediated cell death to overcome acquired resistance in EGFR T790M-mutated lung cancer. Int J Cancer. 2015;136:2717–29.PubMedCrossRef Lee TG, Jeong EH, Kim SY, Kim HR, Kim CH. The combination of irreversible EGFR TKIs and SAHA induces apoptosis and autophagy-mediated cell death to overcome acquired resistance in EGFR T790M-mutated lung cancer. Int J Cancer. 2015;136:2717–29.PubMedCrossRef
174.
go back to reference Balvers RK, Lamfers MLM, Kloezeman JJ, Kleijn A, Pont LMEB, Dirven CMF, Leenstra S. ABT-888 enhances cytotoxic effects of temozolomide independent of MGMT status in serum free cultured glioma cells. J Transl Med. 2015;13:74.PubMedPubMedCentralCrossRef Balvers RK, Lamfers MLM, Kloezeman JJ, Kleijn A, Pont LMEB, Dirven CMF, Leenstra S. ABT-888 enhances cytotoxic effects of temozolomide independent of MGMT status in serum free cultured glioma cells. J Transl Med. 2015;13:74.PubMedPubMedCentralCrossRef
175.
go back to reference Lian J, Wu X, He F, Karnak D, Tang W, Meng Y, Xiang D, Ji M, Lawrence TS, Xu L. A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Differ. 2011;18:60–71.PubMedCrossRef Lian J, Wu X, He F, Karnak D, Tang W, Meng Y, Xiang D, Ji M, Lawrence TS, Xu L. A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Differ. 2011;18:60–71.PubMedCrossRef
Metadata
Title
Targeting autophagy to overcome drug resistance: further developments
Authors
Haocai Chang
Zhengzhi Zou
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2020
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-020-01000-2

Other articles of this Issue 1/2020

Journal of Hematology & Oncology 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine