Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2019

Open Access 01-12-2019 | Parkinson's Disease | Review

Glial phagocytic clearance in Parkinson’s disease

Authors: Marie-Eve Tremblay, Mark R. Cookson, Laura Civiero

Published in: Molecular Neurodegeneration | Issue 1/2019

Login to get access

Abstract

An emerging picture suggests that glial cells’ loss of beneficial roles or gain of toxic functions can contribute to neurodegenerative conditions. Among glial cells, microglia and astrocytes have been shown to play phagocytic roles by engulfing synapses, apoptotic cells, cell debris, and released toxic proteins. As pathogenic protein accumulation is a key feature in Parkinson’s disease (PD), compromised phagocytic clearance might participate in PD pathogenesis. In contrast, enhanced, uncontrolled and potentially toxic glial clearance capacity could contribute to synaptic degeneration. Here, we summarize the current knowledge of the molecular mechanisms underlying microglial and astrocytic phagocytosis, focusing on the possible implication of phagocytic dysfunction in neuronal degeneration. Several endo-lysosomal proteins displaying genetic variants in PD are highly expressed by microglia and astrocytes. We also present the evidence that lysosomal defects can affect phagocytic clearance and discuss the therapeutic relevance of restoring or enhancing lysosomal function in PD.
Literature
70.
go back to reference Aono H, Choudhury ME, Higaki H, Miyanishi K, Kigami Y, Fujita K, et al. Microglia may compensate for dopaminergic neuron loss in experimental Parkinsonism through selective elimination of glutamatergic synapses from the subthalamic nucleus. Glia. 2017;65:1833–47 Available from: http://doi.wiley.com/10.1002/glia.23199. [cited 2018 Dec 6].PubMedCrossRef Aono H, Choudhury ME, Higaki H, Miyanishi K, Kigami Y, Fujita K, et al. Microglia may compensate for dopaminergic neuron loss in experimental Parkinsonism through selective elimination of glutamatergic synapses from the subthalamic nucleus. Glia. 2017;65:1833–47 Available from: http://​doi.​wiley.​com/​10.​1002/​glia.​23199. [cited 2018 Dec 6].PubMedCrossRef
142.
go back to reference Steger M, Diez F, Dhekne HS, Lis P, Nirujogi RS, Karayel O, et al. Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. Elife. 2017;6 Available from: https://elifesciences.org/articles/31012. [cited 2018 Dec 6]. Steger M, Diez F, Dhekne HS, Lis P, Nirujogi RS, Karayel O, et al. Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. Elife. 2017;6 Available from: https://​elifesciences.​org/​articles/​31012. [cited 2018 Dec 6].
143.
go back to reference Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MA, Fiske BK, Fell MJ, Morrow JA, Reith AD, Alessi DR, Mann M. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. Elife. 2016;29(5):e12813. https://doi.org/10.7554/eLife.12813. Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MA, Fiske BK, Fell MJ, Morrow JA, Reith AD, Alessi DR, Mann M. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. Elife. 2016;29(5):e12813. https://​doi.​org/​10.​7554/​eLife.​12813.
150.
go back to reference Sánchez-Danás A, Richaud-Patin Y, Carballo-Carbajal I, Jimánez-Delgado S, Caig C, Mora S, et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med. 2012;4:380–95 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22407749. [cited 2017 Jun 26].CrossRef Sánchez-Danás A, Richaud-Patin Y, Carballo-Carbajal I, Jimánez-Delgado S, Caig C, Mora S, et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med. 2012;4:380–95 Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22407749. [cited 2017 Jun 26].CrossRef
Metadata
Title
Glial phagocytic clearance in Parkinson’s disease
Authors
Marie-Eve Tremblay
Mark R. Cookson
Laura Civiero
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2019
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-019-0314-8

Other articles of this Issue 1/2019

Molecular Neurodegeneration 1/2019 Go to the issue