Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2018

Open Access 01-12-2018 | Research article

PU.1 regulates Alzheimer’s disease-associated genes in primary human microglia

Authors: Justin Rustenhoven, Amy M. Smith, Leon C. Smyth, Deidre Jansson, Emma L. Scotter, Molly E. V. Swanson, Miranda Aalderink, Natacha Coppieters, Pritika Narayan, Renee Handley, Chris Overall, Thomas I. H. Park, Patrick Schweder, Peter Heppner, Maurice A. Curtis, Richard L. M. Faull, Mike Dragunow

Published in: Molecular Neurodegeneration | Issue 1/2018

Login to get access

Abstract

Background

Microglia play critical roles in the brain during homeostasis and pathological conditions. Understanding the molecular events underpinning microglial functions and activation states will further enable us to target these cells for the treatment of neurological disorders. The transcription factor PU.1 is critical in the development of myeloid cells and a major regulator of microglial gene expression. In the brain, PU.1 is specifically expressed in microglia and recent evidence from genome-wide association studies suggests that reductions in PU.1 contribute to a delayed onset of Alzheimer’s disease (AD), possibly through limiting neuroinflammatory responses.

Methods

To investigate how PU.1 contributes to immune activation in human microglia, microarray analysis was performed on primary human mixed glial cultures subjected to siRNA-mediated knockdown of PU.1. Microarray hits were confirmed by qRT-PCR and immunocytochemistry in both mixed glial cultures and isolated microglia following PU.1 knockdown. To identify attenuators of PU.1 expression in microglia, high throughput drug screening was undertaken using a compound library containing FDA-approved drugs. NanoString and immunohistochemistry was utilised to investigate the expression of PU.1 itself and PU.1-regulated mediators in primary human brain tissue derived from neurologically normal and clinically and pathologically confirmed cases of AD.

Results

Bioinformatic analysis of gene expression upon PU.1 silencing in mixed glial cultures revealed a network of modified AD-associated microglial genes involved in the innate and adaptive immune systems, particularly those involved in antigen presentation and phagocytosis. These gene changes were confirmed using isolated microglial cultures. Utilising high throughput screening of FDA-approved compounds in mixed glial cultures we identified the histone deacetylase inhibitor vorinostat as an effective attenuator of PU.1 expression in human microglia. Further characterisation of vorinostat in isolated microglial cultures revealed gene and protein changes partially recapitulating those seen following siRNA-mediated PU.1 knockdown. Lastly, we demonstrate that several of these PU.1-regulated genes are expressed by microglia in the human AD brain in situ.

Conclusions

Collectively, these results suggest that attenuating PU.1 may be a valid therapeutic approach to limit microglial-mediated inflammatory responses in AD and demonstrate utility of vorinostat for this purpose.
Appendix
Available only for authorised users
Literature
1.
go back to reference Paolicelli RC, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.CrossRefPubMed Paolicelli RC, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.CrossRefPubMed
3.
go back to reference Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4):193–201.CrossRefPubMed Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4):193–201.CrossRefPubMed
5.
go back to reference Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci. 2014;15(4):209–16.CrossRefPubMed Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci. 2014;15(4):209–16.CrossRefPubMed
6.
go back to reference Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol. 2010;120(3):277–86.CrossRefPubMed Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol. 2010;120(3):277–86.CrossRefPubMed
7.
go back to reference McKhann G, et al. Clinical diagnosis of Alzheimer's disease report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939–44.CrossRefPubMed McKhann G, et al. Clinical diagnosis of Alzheimer's disease report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939–44.CrossRefPubMed
8.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRefPubMed Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRefPubMed
9.
go back to reference Mandrekar-Colucci S, Landreth GE. Microglia and inflammation in Alzheimer's disease. CNS Neurol Disord Drug Targets. 2010;9(2):156–67.CrossRefPubMed Mandrekar-Colucci S, Landreth GE. Microglia and inflammation in Alzheimer's disease. CNS Neurol Disord Drug Targets. 2010;9(2):156–67.CrossRefPubMed
10.
12.
go back to reference Henkel JS, et al. Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol. 2009;4(4):389–98.CrossRefPubMed Henkel JS, et al. Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol. 2009;4(4):389–98.CrossRefPubMed
14.
go back to reference Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trens Neurosci. 2015;38(10):637–58.CrossRef Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trens Neurosci. 2015;38(10):637–58.CrossRef
15.
go back to reference Rodriguez JI, Kern JK. Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol. 2011;7(2–4):205–13.CrossRefPubMedPubMedCentral Rodriguez JI, Kern JK. Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol. 2011;7(2–4):205–13.CrossRefPubMedPubMedCentral
16.
go back to reference Patel AR, et al. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013;5(2):73.PubMedPubMedCentral Patel AR, et al. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013;5(2):73.PubMedPubMedCentral
17.
go back to reference Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016;173(4):692–702.CrossRefPubMed Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016;173(4):692–702.CrossRefPubMed
19.
go back to reference Corder E, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.CrossRefPubMed Corder E, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.CrossRefPubMed
21.
go back to reference Lambert J, et al. European Alzheimer’s disease initiative investigators. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.CrossRefPubMed Lambert J, et al. European Alzheimer’s disease initiative investigators. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.CrossRefPubMed
22.
go back to reference Harold D, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet. 2009;41(10):1088–93.CrossRefPubMedPubMedCentral Harold D, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet. 2009;41(10):1088–93.CrossRefPubMedPubMedCentral
24.
go back to reference Hollingworth P, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet. 2011;43(5):429–35.CrossRefPubMedPubMedCentral Hollingworth P, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet. 2011;43(5):429–35.CrossRefPubMedPubMedCentral
25.
go back to reference Naj AC, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet. 2011;43(5):436–41.CrossRefPubMedPubMedCentral Naj AC, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet. 2011;43(5):436–41.CrossRefPubMedPubMedCentral
27.
go back to reference Jonsson T, et al. Variant of TREM2 associated with the risk of Alzheimer's disease. NEJM. 2013;368(2):107–16.CrossRefPubMed Jonsson T, et al. Variant of TREM2 associated with the risk of Alzheimer's disease. NEJM. 2013;368(2):107–16.CrossRefPubMed
28.
go back to reference Sims R, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat Genet. 2017;49(9):1373–84.CrossRefPubMedPubMedCentral Sims R, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat Genet. 2017;49(9):1373–84.CrossRefPubMedPubMedCentral
29.
go back to reference Lambert J-C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45(12):1452–8.CrossRefPubMedPubMedCentral Lambert J-C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45(12):1452–8.CrossRefPubMedPubMedCentral
31.
32.
go back to reference Huang K, et al. A common haplotype lowers PU. 1 expression in myeloid cells and delays onset of Alzheimer's disease. Nat Neurosci. 2017;20(8):1052–61.CrossRefPubMedPubMedCentral Huang K, et al. A common haplotype lowers PU. 1 expression in myeloid cells and delays onset of Alzheimer's disease. Nat Neurosci. 2017;20(8):1052–61.CrossRefPubMedPubMedCentral
33.
go back to reference Smith AM, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61(6):929–42.CrossRefPubMed Smith AM, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61(6):929–42.CrossRefPubMed
34.
go back to reference Kierdorf K, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16(3):273–80.CrossRefPubMed Kierdorf K, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16(3):273–80.CrossRefPubMed
35.
go back to reference Crotti A, et al. Mutant huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci. 2014;17(4):513–21.CrossRefPubMedPubMedCentral Crotti A, et al. Mutant huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci. 2014;17(4):513–21.CrossRefPubMedPubMedCentral
38.
go back to reference Ponomarev ED, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med. 2011;17(1):64–70.CrossRefPubMed Ponomarev ED, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med. 2011;17(1):64–70.CrossRefPubMed
39.
go back to reference Brennan GP, et al. Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-dependent gene networks. Cell Rep. 2016;14(10):2402–12.CrossRefPubMedPubMedCentral Brennan GP, et al. Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-dependent gene networks. Cell Rep. 2016;14(10):2402–12.CrossRefPubMedPubMedCentral
40.
41.
go back to reference Gross TJ, et al. Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J Immunol. 2014;192(5):2326–38.CrossRefPubMedPubMedCentral Gross TJ, et al. Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J Immunol. 2014;192(5):2326–38.CrossRefPubMedPubMedCentral
43.
go back to reference Zarruk JG, Greenhalgh AD, David S. Microglia and macrophages differ in their inflammatory profile after permanent brain ischemia. Exp Neurol. 2018;301:120–32.CrossRefPubMed Zarruk JG, Greenhalgh AD, David S. Microglia and macrophages differ in their inflammatory profile after permanent brain ischemia. Exp Neurol. 2018;301:120–32.CrossRefPubMed
44.
go back to reference Smith AM, Gibbons HM, Dragunow M. Valproic acid enhances microglial phagocytosis of amyloid-beta(1-42). Neuroscience. 2010;169(1):505–15.CrossRefPubMed Smith AM, Gibbons HM, Dragunow M. Valproic acid enhances microglial phagocytosis of amyloid-beta(1-42). Neuroscience. 2010;169(1):505–15.CrossRefPubMed
45.
go back to reference Dragunow M. The adult human brain in preclinical drug development. Nat Rev Drug Discov. 2008;7(8):659.CrossRefPubMed Dragunow M. The adult human brain in preclinical drug development. Nat Rev Drug Discov. 2008;7(8):659.CrossRefPubMed
46.
go back to reference Waldvogel HJ, et al. Immunohistochemical staining of post-mortem adult human brain sections. Nat Protoc. 2006;1(6):2719–32.CrossRefPubMed Waldvogel HJ, et al. Immunohistochemical staining of post-mortem adult human brain sections. Nat Protoc. 2006;1(6):2719–32.CrossRefPubMed
47.
go back to reference Gibbons HM, et al. Cellular composition of human glial cultures from adult biopsy brain tissue. J Neurosci Methods. 2007;166(1):89–98.CrossRefPubMed Gibbons HM, et al. Cellular composition of human glial cultures from adult biopsy brain tissue. J Neurosci Methods. 2007;166(1):89–98.CrossRefPubMed
51.
go back to reference Rustenhoven J, et al. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation. 2016;13(1):1–15.CrossRef Rustenhoven J, et al. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation. 2016;13(1):1–15.CrossRef
52.
go back to reference Satoh J, et al. A Comprehensive Profile of ChIP-Seq-Based PU. 1/Spi1 Target Genes in Microglia. Gene Regul Syst Biol. 2014;8:127. Satoh J, et al. A Comprehensive Profile of ChIP-Seq-Based PU. 1/Spi1 Target Genes in Microglia. Gene Regul Syst Biol. 2014;8:127.
53.
go back to reference Holmes C, et al. Long-term effects of Aβ 42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372(9634):216–23.CrossRefPubMed Holmes C, et al. Long-term effects of Aβ 42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372(9634):216–23.CrossRefPubMed
54.
go back to reference Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201(4):647–57.CrossRefPubMedPubMedCentral Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201(4):647–57.CrossRefPubMedPubMedCentral
55.
56.
go back to reference Fricker M, Oliva-Martin MJ, Brown GC. Primary phagocytosis of viable neurons by microglia activated with LPS or Abeta is dependent on calreticulin/LRP phagocytic signalling. J Neuroinflammation. 2012;9:196.CrossRefPubMedPubMedCentral Fricker M, Oliva-Martin MJ, Brown GC. Primary phagocytosis of viable neurons by microglia activated with LPS or Abeta is dependent on calreticulin/LRP phagocytic signalling. J Neuroinflammation. 2012;9:196.CrossRefPubMedPubMedCentral
57.
go back to reference Neher JJ, Neniskyte U, Brown GC. Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front Pharmacol. 2012;3 Neher JJ, Neniskyte U, Brown GC. Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front Pharmacol. 2012;3
58.
go back to reference Neher JJ, et al. Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol. 2011;186(8):4973–83.CrossRefPubMed Neher JJ, et al. Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol. 2011;186(8):4973–83.CrossRefPubMed
59.
go back to reference Brown GC, Neher JJ. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurbiol. 2010;41(2–3):242–7.CrossRef Brown GC, Neher JJ. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurbiol. 2010;41(2–3):242–7.CrossRef
60.
62.
63.
go back to reference Benveniste EN, Nguyen VT, O'Keefe GM. Immunological aspects of microglia: relevance to Alzheimer's disease. Neurochem Int. 2001;39(5):381–91.CrossRefPubMed Benveniste EN, Nguyen VT, O'Keefe GM. Immunological aspects of microglia: relevance to Alzheimer's disease. Neurochem Int. 2001;39(5):381–91.CrossRefPubMed
64.
go back to reference Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–8.CrossRefPubMed Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–8.CrossRefPubMed
65.
go back to reference Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today. 2000;21(3):141–7.CrossRefPubMed Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today. 2000;21(3):141–7.CrossRefPubMed
66.
go back to reference Gibbons HM, et al. Valproic acid induces microglial dysfunction, not apoptosis, in human glial cultures. Neurobiol Dis. 2011;41(1):96–103.CrossRefPubMed Gibbons HM, et al. Valproic acid induces microglial dysfunction, not apoptosis, in human glial cultures. Neurobiol Dis. 2011;41(1):96–103.CrossRefPubMed
67.
go back to reference Zhang X-Z, Li X-J, Zhang H-Y. Valproic acid as a promising agent to combat Alzheimer's disease. Brain Red Bull. 2010;81(1):3–6.CrossRef Zhang X-Z, Li X-J, Zhang H-Y. Valproic acid as a promising agent to combat Alzheimer's disease. Brain Red Bull. 2010;81(1):3–6.CrossRef
69.
go back to reference Narayan PJ, et al. Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiol Dis. 2015;74:281–94.CrossRefPubMed Narayan PJ, et al. Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiol Dis. 2015;74:281–94.CrossRefPubMed
72.
go back to reference Hockly E, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. PNAS. 2003;100(4):2041–6.CrossRefPubMed Hockly E, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. PNAS. 2003;100(4):2041–6.CrossRefPubMed
73.
go back to reference Palmieri D, et al. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res. 2009;15(19):6148–57.CrossRefPubMed Palmieri D, et al. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res. 2009;15(19):6148–57.CrossRefPubMed
75.
go back to reference Lloberas J, Soler C, Celada A. The key role of PU. 1/SPI-1 in B cells, myeloid cells and macrophages. Immunol Today. 1999;20(4):184–9.CrossRefPubMed Lloberas J, Soler C, Celada A. The key role of PU. 1/SPI-1 in B cells, myeloid cells and macrophages. Immunol Today. 1999;20(4):184–9.CrossRefPubMed
76.
go back to reference Metcalf D, et al. Inactivation of PU. 1 in adult mice leads to the development of myeloid leukemia. PNAS. 2006;103(5):1486–91.CrossRefPubMed Metcalf D, et al. Inactivation of PU. 1 in adult mice leads to the development of myeloid leukemia. PNAS. 2006;103(5):1486–91.CrossRefPubMed
77.
go back to reference Rosenbauer F, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific geneion factor, PU. 1. Nat Genet. 2004;36(6):624.CrossRefPubMed Rosenbauer F, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific geneion factor, PU. 1. Nat Genet. 2004;36(6):624.CrossRefPubMed
78.
go back to reference Mootha VK, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267.CrossRefPubMed Mootha VK, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267.CrossRefPubMed
79.
go back to reference Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS. 2005;102(43):15545–50.CrossRefPubMed Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS. 2005;102(43):15545–50.CrossRefPubMed
80.
go back to reference Zhang B, Kirov SA, Snoddy JR. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33(Web Server issue):W741–8.CrossRefPubMedPubMedCentral Zhang B, Kirov SA, Snoddy JR. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33(Web Server issue):W741–8.CrossRefPubMedPubMedCentral
81.
go back to reference Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41(Web Server issue):W77–83.CrossRefPubMedPubMedCentral Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41(Web Server issue):W77–83.CrossRefPubMedPubMedCentral
82.
go back to reference Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45(W1):W130–7.CrossRefPubMedPubMedCentral Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45(W1):W130–7.CrossRefPubMedPubMedCentral
Metadata
Title
PU.1 regulates Alzheimer’s disease-associated genes in primary human microglia
Authors
Justin Rustenhoven
Amy M. Smith
Leon C. Smyth
Deidre Jansson
Emma L. Scotter
Molly E. V. Swanson
Miranda Aalderink
Natacha Coppieters
Pritika Narayan
Renee Handley
Chris Overall
Thomas I. H. Park
Patrick Schweder
Peter Heppner
Maurice A. Curtis
Richard L. M. Faull
Mike Dragunow
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2018
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-018-0277-1

Other articles of this Issue 1/2018

Molecular Neurodegeneration 1/2018 Go to the issue