Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2018

Open Access 01-12-2018 | Research article

Large-scale transcriptomic analysis reveals that pridopidine reverses aberrant gene expression and activates neuroprotective pathways in the YAC128 HD mouse

Authors: Rebecca Kusko, Jennifer Dreymann, Jermaine Ross, Yoonjeong Cha, Renan Escalante-Chong, Marta Garcia-Miralles, Liang Juin Tan, Michael E. Burczynski, Ben Zeskind, Daphna Laifenfeld, Mahmoud Pouladi, Michal Geva, Iris Grossman, Michael R. Hayden

Published in: Molecular Neurodegeneration | Issue 1/2018

Login to get access

Abstract

Background

Huntington Disease (HD) is an incurable autosomal dominant neurodegenerative disorder driven by an expansion repeat giving rise to the mutant huntingtin protein (mHtt), which is known to disrupt a multitude of transcriptional pathways. Pridopidine, a small molecule in development for treatment of HD, has been shown to improve motor symptoms in HD patients. In HD animal models, pridopidine exerts neuroprotective effects and improves behavioral and motor functions. Pridopidine binds primarily to the sigma-1 receptor, (IC50 ~ 100 nM), which mediates its neuroprotective properties, such as rescue of spine density and aberrant calcium signaling in HD neuronal cultures. Pridopidine enhances brain-derived neurotrophic factor (BDNF) secretion, which is blocked by putative sigma-1 receptor antagonist NE-100, and was shown to upregulate transcription of genes in the BDNF, glucocorticoid receptor (GR), and dopamine D1 receptor (D1R) pathways in the rat striatum. The impact of different doses of pridopidine on gene expression and transcript splicing in HD across relevant brain regions was explored, utilizing the YAC128 HD mouse model, which carries the entire human mHtt gene containing 128 CAG repeats.

Methods

RNAseq was analyzed from striatum, cortex, and hippocampus of wild-type and YAC128 mice treated with vehicle, 10 mg/kg or 30 mg/kg pridopidine from the presymptomatic stage (1.5 months of age) until 11.5 months of age in which mice exhibit progressive disease phenotypes.

Results

The most pronounced transcriptional effect of pridopidine at both doses was observed in the striatum with minimal effects in other regions. In addition, for the first time pridopidine was found to have a dose-dependent impact on alternative exon and junction usage, a regulatory mechanism known to be impaired in HD. In the striatum of YAC128 HD mice, pridopidine treatment initiation prior to symptomatic manifestation rescues the impaired expression of the BDNF, GR, D1R and cAMP pathways.

Conclusions

Pridopidine has broad effects on restoring transcriptomic disturbances in the striatum, particularly involving synaptic transmission and activating neuroprotective pathways that are disturbed in HD. Benefits of treatment initiation at early disease stages track with trends observed in the clinic.
Appendix
Available only for authorised users
Literature
1.
go back to reference Macdonald M. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–83.CrossRef Macdonald M. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–83.CrossRef
2.
go back to reference Foroud T, Gray J, Ivashina J, Conneally PM. Differences in duration of Huntington’s disease based on age at onset. J Neurol Neurosurg Psychiatry. 1999;66:52–6.CrossRefPubMedPubMedCentral Foroud T, Gray J, Ivashina J, Conneally PM. Differences in duration of Huntington’s disease based on age at onset. J Neurol Neurosurg Psychiatry. 1999;66:52–6.CrossRefPubMedPubMedCentral
3.
go back to reference Colin E, Zala D, Liot G, Rangone H, Borrell-Pagès M, Li X-J, et al. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J. 2008;27:2124–34.CrossRefPubMedPubMedCentral Colin E, Zala D, Liot G, Rangone H, Borrell-Pagès M, Li X-J, et al. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J. 2008;27:2124–34.CrossRefPubMedPubMedCentral
4.
go back to reference Miller BR, Bezprozvanny I. Corticostriatal circuit dysfunction in Huntington’s disease: intersection of glutamate, dopamine and calcium. Future Neurol. 2010;5:735–56.CrossRefPubMedPubMedCentral Miller BR, Bezprozvanny I. Corticostriatal circuit dysfunction in Huntington’s disease: intersection of glutamate, dopamine and calcium. Future Neurol. 2010;5:735–56.CrossRefPubMedPubMedCentral
5.
go back to reference Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 2004;118:127–38.CrossRefPubMed Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 2004;118:127–38.CrossRefPubMed
6.
go back to reference André VM, Fisher YE, Levine MS. Altered balance of activity in the striatal direct and indirect pathways in mouse models of Huntington’s disease. Front Syst Neurosci. 2011;5:46.CrossRefPubMedPubMedCentral André VM, Fisher YE, Levine MS. Altered balance of activity in the striatal direct and indirect pathways in mouse models of Huntington’s disease. Front Syst Neurosci. 2011;5:46.CrossRefPubMedPubMedCentral
7.
go back to reference Plotkin JL, Day M, Peterson JD, Xie Z, Kress GJ, Rafalovich I, et al. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron. 2014;83:178–88.CrossRefPubMedPubMedCentral Plotkin JL, Day M, Peterson JD, Xie Z, Kress GJ, Rafalovich I, et al. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron. 2014;83:178–88.CrossRefPubMedPubMedCentral
8.
go back to reference Nguyen KQ, Rymar VV, Sadikot AF. Impaired TrkB signaling underlies reduced BDNF-mediated trophic support of striatal neurons in the R6/2 mouse model of Huntington’s disease. Front Cell Neurosci. 2016;10:37.CrossRefPubMedPubMedCentral Nguyen KQ, Rymar VV, Sadikot AF. Impaired TrkB signaling underlies reduced BDNF-mediated trophic support of striatal neurons in the R6/2 mouse model of Huntington’s disease. Front Cell Neurosci. 2016;10:37.CrossRefPubMedPubMedCentral
9.
go back to reference Bibb JA, Yan Z, Svenningsson P, Snyder GL, Pieribone VA, Horiuchi A, et al. Severe deficiencies in dopamine signaling in presymptomatic Huntington’s disease mice. Proc Natl Acad Sci U S A. 2000;97:6809–14.CrossRefPubMedPubMedCentral Bibb JA, Yan Z, Svenningsson P, Snyder GL, Pieribone VA, Horiuchi A, et al. Severe deficiencies in dopamine signaling in presymptomatic Huntington’s disease mice. Proc Natl Acad Sci U S A. 2000;97:6809–14.CrossRefPubMedPubMedCentral
10.
go back to reference de Yebenes JG, Landwehrmeyer B, Squitieri F, Reilmann R, Rosser A, Barker RA, et al. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2011;10:1049–57.CrossRefPubMed de Yebenes JG, Landwehrmeyer B, Squitieri F, Reilmann R, Rosser A, Barker RA, et al. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2011;10:1049–57.CrossRefPubMed
11.
go back to reference The Huntington Study Group HART Investigators. A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord. 2013;28:1407–15.CrossRef The Huntington Study Group HART Investigators. A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord. 2013;28:1407–15.CrossRef
12.
go back to reference Sahlholm K, Sijbesma JWA, Maas B, Kwizera C, Marcellino D, Ramakrishnan NK, et al. Pridopidine selectively occupies sigma-1 rather than dopamine D2 receptors at behaviorally active doses. Psychopharmacology. 2015;232:3443–53.CrossRefPubMedPubMedCentral Sahlholm K, Sijbesma JWA, Maas B, Kwizera C, Marcellino D, Ramakrishnan NK, et al. Pridopidine selectively occupies sigma-1 rather than dopamine D2 receptors at behaviorally active doses. Psychopharmacology. 2015;232:3443–53.CrossRefPubMedPubMedCentral
13.
go back to reference Ponten H, Kullingsjö J, Sonesson C, Waters S, Waters N, Tedroff J. The dopaminergic stabilizer pridopidine decreases expression of L-DOPA-induced locomotor sensitisation in the rat unilateral 6-OHDA model. Eur J Pharmacol. 2013;698:278–85.CrossRefPubMed Ponten H, Kullingsjö J, Sonesson C, Waters S, Waters N, Tedroff J. The dopaminergic stabilizer pridopidine decreases expression of L-DOPA-induced locomotor sensitisation in the rat unilateral 6-OHDA model. Eur J Pharmacol. 2013;698:278–85.CrossRefPubMed
14.
go back to reference Dyhring T, Nielsen EØ, Sonesson C, Pettersson F, Karlsson J, Svensson P, et al. The dopaminergic stabilizers pridopidine (ACR16) and (−)-OSU6162 display dopamine D2 receptor antagonism and fast receptor dissociation properties. Eur J Pharmacol. 2010;628:19–26.CrossRefPubMed Dyhring T, Nielsen EØ, Sonesson C, Pettersson F, Karlsson J, Svensson P, et al. The dopaminergic stabilizers pridopidine (ACR16) and (−)-OSU6162 display dopamine D2 receptor antagonism and fast receptor dissociation properties. Eur J Pharmacol. 2010;628:19–26.CrossRefPubMed
15.
go back to reference Ryskamp D, Wu J, Geva M, Kusko R, Grossman I, Hayden M, et al. The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiol Dis. 2017;97:46–59.CrossRefPubMed Ryskamp D, Wu J, Geva M, Kusko R, Grossman I, Hayden M, et al. The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiol Dis. 2017;97:46–59.CrossRefPubMed
16.
go back to reference Squitieri F, Di Pardo A, Favellato M, Amico E, Maglione V, Frati L. Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. J Cell Mol Med. 2015;19(11):2540–548. Squitieri F, Di Pardo A, Favellato M, Amico E, Maglione V, Frati L. Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. J Cell Mol Med. 2015;19(11):2540–548.
17.
go back to reference Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature. 1997;389:856–60.CrossRefPubMed Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature. 1997;389:856–60.CrossRefPubMed
18.
go back to reference Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003;12:1555–67.CrossRefPubMed Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003;12:1555–67.CrossRefPubMed
20.
go back to reference Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.CrossRefPubMed Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.CrossRefPubMed
21.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CrossRefPubMed Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CrossRefPubMed
22.
go back to reference Su Z, Łabaj PP, Li S, Thierry-Mieg J, Thierry-Mieg D, et al. Seqc/Maqc-Iii Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium. Nat Biotechnol 2014;32:903–914. Su Z, Łabaj PP, Li S, Thierry-Mieg J, Thierry-Mieg D, et al. Seqc/Maqc-Iii Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium. Nat Biotechnol 2014;32:903–914.
23.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.CrossRefPubMedPubMedCentral Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.CrossRefPubMedPubMedCentral
24.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545–50.CrossRefPubMedPubMedCentral Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545–50.CrossRefPubMedPubMedCentral
25.
go back to reference Sato H, Horikawa Y, Iizuka K, Sakurai N, Tanaka T, Shihara N, et al. Large-scale analysis of glucocorticoid target genes in rat hypothalamus. J Neurochem. 2008;106:805–14.CrossRefPubMed Sato H, Horikawa Y, Iizuka K, Sakurai N, Tanaka T, Shihara N, et al. Large-scale analysis of glucocorticoid target genes in rat hypothalamus. J Neurochem. 2008;106:805–14.CrossRefPubMed
26.
go back to reference Gokce O, Runne H, Kuhn A, Luthi-Carter R. Short-term striatal gene expression responses to brain-derived neurotrophic factor are dependent on MEK and ERK activation. PLoS One. 2009;4:e5292.CrossRefPubMedPubMedCentral Gokce O, Runne H, Kuhn A, Luthi-Carter R. Short-term striatal gene expression responses to brain-derived neurotrophic factor are dependent on MEK and ERK activation. PLoS One. 2009;4:e5292.CrossRefPubMedPubMedCentral
27.
go back to reference Cadet JL, Jayanthi S, McCoy MT, Beauvais G, Cai NS. Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration. CNS Neurol Disord Drug Targets. 2010;9:526–38.CrossRefPubMedPubMedCentral Cadet JL, Jayanthi S, McCoy MT, Beauvais G, Cai NS. Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration. CNS Neurol Disord Drug Targets. 2010;9:526–38.CrossRefPubMedPubMedCentral
28.
go back to reference Maqc Consortium SL, Shi L, Reid LH, Jones WD, Shippy R, et al. The MicroArray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24:1151–61.CrossRefPubMedCentral Maqc Consortium SL, Shi L, Reid LH, Jones WD, Shippy R, et al. The MicroArray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24:1151–61.CrossRefPubMedCentral
29.
go back to reference Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:1–14.CrossRef Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:1–14.CrossRef
30.
go back to reference Geva M, Kusko R, Soares H, Fowler KD, Birnberg T, Barash S, et al. Pridopidine activates neuroprotective pathways impaired in Huntington disease. Hum Mol Genet. 2016;25(18):3975–987. Geva M, Kusko R, Soares H, Fowler KD, Birnberg T, Barash S, et al. Pridopidine activates neuroprotective pathways impaired in Huntington disease. Hum Mol Genet. 2016;25(18):3975–987.
31.
go back to reference Aziz NA, Pijl H, Frölich M, van der Graaf AWM, Roelfsema F, Roos RAC. Increased hypothalamic-pituitary-adrenal axis activity in Huntington’s disease. J Clin Endocrinol Metab. 2009;94:1223–8.CrossRefPubMed Aziz NA, Pijl H, Frölich M, van der Graaf AWM, Roelfsema F, Roos RAC. Increased hypothalamic-pituitary-adrenal axis activity in Huntington’s disease. J Clin Endocrinol Metab. 2009;94:1223–8.CrossRefPubMed
32.
go back to reference Dong X, Tsuji J, Labadorf A, Roussos P, Chen J-F, Myers RH, et al. The role of H3K4me3 in transcriptional regulation is altered in Huntington’s disease. PLoS One. 2015;10:e0144398.CrossRefPubMedPubMedCentral Dong X, Tsuji J, Labadorf A, Roussos P, Chen J-F, Myers RH, et al. The role of H3K4me3 in transcriptional regulation is altered in Huntington’s disease. PLoS One. 2015;10:e0144398.CrossRefPubMedPubMedCentral
33.
go back to reference Choi Y-S, Lee B, Cho H-Y, Reyes IB, Pu X-A, Saido TC, et al. CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis. 2009;36:259–68.CrossRefPubMedPubMedCentral Choi Y-S, Lee B, Cho H-Y, Reyes IB, Pu X-A, Saido TC, et al. CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis. 2009;36:259–68.CrossRefPubMedPubMedCentral
34.
go back to reference Taymans J-M, Leysen JE, Langlois X. Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: clues for RGS2 and RGS4 functions. J Neurochem. 2003;84:1118–27.CrossRefPubMed Taymans J-M, Leysen JE, Langlois X. Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: clues for RGS2 and RGS4 functions. J Neurochem. 2003;84:1118–27.CrossRefPubMed
35.
36.
go back to reference Maheshwari M, Bhutani S, Das A, Mukherjee R, Sharma A, Kino Y, et al. Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington’s disease. Hum Mol Genet. 2014;23:2737–51.CrossRefPubMed Maheshwari M, Bhutani S, Das A, Mukherjee R, Sharma A, Kino Y, et al. Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington’s disease. Hum Mol Genet. 2014;23:2737–51.CrossRefPubMed
37.
go back to reference Ponten H, Kullingsjö J, Lagerkvist S, Martin P, Pettersson F, Sonesson C, et al. In vivo pharmacology of the dopaminergic stabilizer pridopidine. Eur J Pharmacol. 2010;644:88–95.CrossRefPubMed Ponten H, Kullingsjö J, Lagerkvist S, Martin P, Pettersson F, Sonesson C, et al. In vivo pharmacology of the dopaminergic stabilizer pridopidine. Eur J Pharmacol. 2010;644:88–95.CrossRefPubMed
38.
go back to reference Nagai T, Yoshimoto J, Kannon T, Kuroda K, Kaibuchi K. Phosphorylation signals in striatal medium spiny neurons. Trends Pharmacol Sci. 2016;37:858–71.CrossRefPubMed Nagai T, Yoshimoto J, Kannon T, Kuroda K, Kaibuchi K. Phosphorylation signals in striatal medium spiny neurons. Trends Pharmacol Sci. 2016;37:858–71.CrossRefPubMed
39.
go back to reference Gines S, Seong IS, Fossale E, Ivanova E, Trettel F, Gusella JF, et al. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum Mol Genet. 2003;12:497–508.CrossRefPubMed Gines S, Seong IS, Fossale E, Ivanova E, Trettel F, Gusella JF, et al. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum Mol Genet. 2003;12:497–508.CrossRefPubMed
40.
go back to reference Lin J-T, Chang W-C, Chen H-M, Lai H-L, Chen C-Y, Tao M-H, et al. Regulation of feedback between protein kinase a and the proteasome system worsens Huntington’s disease. Mol Cell Biol. 2013;33:1073–84.CrossRefPubMedPubMedCentral Lin J-T, Chang W-C, Chen H-M, Lai H-L, Chen C-Y, Tao M-H, et al. Regulation of feedback between protein kinase a and the proteasome system worsens Huntington’s disease. Mol Cell Biol. 2013;33:1073–84.CrossRefPubMedPubMedCentral
41.
go back to reference Porras G, Berthet A, Dehay B, Li Q, Ladepeche L, Normand E, et al. PSD-95 expression controls l-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest. 2012;122:3977–89.CrossRefPubMedPubMedCentral Porras G, Berthet A, Dehay B, Li Q, Ladepeche L, Normand E, et al. PSD-95 expression controls l-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest. 2012;122:3977–89.CrossRefPubMedPubMedCentral
42.
go back to reference Parsons MP, Kang R, Buren C, Dau A, Southwell AL, Doty CN, et al. Bidirectional control of postsynaptic density-95 (PSD-95) clustering by huntingtin. J Biol Chem. 2014;289:3518–28.CrossRefPubMed Parsons MP, Kang R, Buren C, Dau A, Southwell AL, Doty CN, et al. Bidirectional control of postsynaptic density-95 (PSD-95) clustering by huntingtin. J Biol Chem. 2014;289:3518–28.CrossRefPubMed
43.
go back to reference Zhang J, Vinuela A, Neely MH, Hallett PJ, Grant SGN, Miller GM, et al. Inhibition of the dopamine D1 receptor signaling by PSD-95. J Biol Chem. 2007;282:15778–89.CrossRefPubMed Zhang J, Vinuela A, Neely MH, Hallett PJ, Grant SGN, Miller GM, et al. Inhibition of the dopamine D1 receptor signaling by PSD-95. J Biol Chem. 2007;282:15778–89.CrossRefPubMed
44.
go back to reference Sun Y, Savanenin A, Reddy PH, Liu YF. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem. 2001;276:24713–8.CrossRefPubMed Sun Y, Savanenin A, Reddy PH, Liu YF. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem. 2001;276:24713–8.CrossRefPubMed
45.
go back to reference Spiegel I, Mardinly A, Gabel H, Bazinet J, Couch C, Tzeng C, et al. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell type-specific gene programs. Cell. 2014;157:1216–29.CrossRefPubMedPubMedCentral Spiegel I, Mardinly A, Gabel H, Bazinet J, Couch C, Tzeng C, et al. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell type-specific gene programs. Cell. 2014;157:1216–29.CrossRefPubMedPubMedCentral
46.
go back to reference Eggerickx D, Denef JF, Labbe O, Hayashi Y, Refetoff S, Vassart G, et al. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase. Biochem J. 1995;309(Pt 3):837–43.CrossRefPubMedPubMedCentral Eggerickx D, Denef JF, Labbe O, Hayashi Y, Refetoff S, Vassart G, et al. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase. Biochem J. 1995;309(Pt 3):837–43.CrossRefPubMedPubMedCentral
47.
go back to reference Valverde O, Célérier E, Baranyi M, Vanderhaeghen P, Maldonado R, Sperlagh B, et al. GPR3 receptor, a novel actor in the emotional-like responses. PLoS One. 2009;4:e4704.CrossRefPubMedPubMedCentral Valverde O, Célérier E, Baranyi M, Vanderhaeghen P, Maldonado R, Sperlagh B, et al. GPR3 receptor, a novel actor in the emotional-like responses. PLoS One. 2009;4:e4704.CrossRefPubMedPubMedCentral
Metadata
Title
Large-scale transcriptomic analysis reveals that pridopidine reverses aberrant gene expression and activates neuroprotective pathways in the YAC128 HD mouse
Authors
Rebecca Kusko
Jennifer Dreymann
Jermaine Ross
Yoonjeong Cha
Renan Escalante-Chong
Marta Garcia-Miralles
Liang Juin Tan
Michael E. Burczynski
Ben Zeskind
Daphna Laifenfeld
Mahmoud Pouladi
Michal Geva
Iris Grossman
Michael R. Hayden
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2018
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-018-0259-3

Other articles of this Issue 1/2018

Molecular Neurodegeneration 1/2018 Go to the issue