Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2017

Open Access 01-12-2017 | Research article

Presenilins regulate synaptic plasticity and mitochondrial calcium homeostasis in the hippocampal mossy fiber pathway

Authors: Sang Hun Lee, David Lutz, Mohanad Mossalam, Vadim Y. Bolshakov, Michael Frotscher, Jie Shen

Published in: Molecular Neurodegeneration | Issue 1/2017

Login to get access

Abstract

Background

Presenilins play a major role in the pathogenesis of Alzheimer’s disease, in which the hippocampus is particularly vulnerable. Previous studies of Presenilin function in the synapse, however, focused exclusively on the hippocampal Schaffer collateral (SC) pathway. Whether Presenilins play similar or distinct roles in other hippocampal synapses is unknown.

Methods

To investigate the role of Presenilins at mossy fiber (MF) synapses we performed field and whole-cell electrophysiological recordings and Ca2+ imaging using acute hippocampal slices of postnatal forebrain-restricted Presenilin conditional double knockout (PS cDKO) and control mice at 2 months of age. We also performed quantitative electron microscopy (EM) analysis to determine whether mitochondrial content is affected at presynaptic MF boutons of PS cDKO mice. We further conducted behavioral analysis to assess spatial learning and memory of PS cDKO and control mice at 2 months in the Morris water maze.

Results

We found that long-term potentiation and short-term plasticity, such as paired-pulse and frequency facilitation, are impaired at MF synapses of PS cDKO mice. Moreover, post-tetanic potentiation (PTP), another form of short-term plasticity, is also impaired at MF synapses of PS cDKO mice. Furthermore, blockade of mitochondrial Ca2+ efflux mimics and occludes the PTP deficits at MF synapses of PS cDKO mice, suggesting that mitochondrial Ca2+ homeostasis is impaired in the absence of PS. Quantitative EM analysis showed normal number and area of mitochondria at presynaptic MF boutons of PS cDKO mice, indicating unchanged mitochondrial content. Ca2+ imaging of dentate gyrus granule neurons further revealed that cytosolic Ca2+ increases induced by tetanic stimulation are reduced in PS cDKO granule neurons in acute hippocampal slices, and that inhibition of mitochondrial Ca2+ release during high frequency stimulation mimics and occludes the Ca2+ defects observed in PS cDKO neurons. Consistent with synaptic plasticity impairment observed at MF and SC synapses in acute PS cDKO hippocampal slices, PS cDKO mice exhibit profound spatial learning and memory deficits in the Morris water maze.

Conclusions

Our findings demonstrate the importance of PS in the regulation of synaptic plasticity and mitochondrial Ca2+ homeostasis in the hippocampal MF pathway.
Literature
1.
go back to reference Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron. 2004;42:23–36.CrossRefPubMed Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron. 2004;42:23–36.CrossRefPubMed
2.
go back to reference Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, et al. Presenilins are essential for regulating neurotransmitter release. Nature. 2009;460:632–6.CrossRefPubMedPubMedCentral Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, et al. Presenilins are essential for regulating neurotransmitter release. Nature. 2009;460:632–6.CrossRefPubMedPubMedCentral
3.
go back to reference Wines-Samuelson M, Schulte EC, Smith MJ, Aoki C, Liu X, Kelleher RJ 3rd, et al. Characterization of age-dependent and progressive cortical neuronal degeneration in presenilin conditional mutant mice. PLoS One. 2010;5:e10195.CrossRefPubMedPubMedCentral Wines-Samuelson M, Schulte EC, Smith MJ, Aoki C, Liu X, Kelleher RJ 3rd, et al. Characterization of age-dependent and progressive cortical neuronal degeneration in presenilin conditional mutant mice. PLoS One. 2010;5:e10195.CrossRefPubMedPubMedCentral
4.
go back to reference Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A. 1999;96:3228–33.CrossRefPubMedPubMedCentral Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A. 1999;96:3228–33.CrossRefPubMedPubMedCentral
5.
go back to reference Cotman CW, Anderson KJ. Synaptic plasticity and functional stabilization in the hippocampal formation: possible role in Alzheimer's disease. Adv Neurol. 1988;47:313–35.PubMed Cotman CW, Anderson KJ. Synaptic plasticity and functional stabilization in the hippocampal formation: possible role in Alzheimer's disease. Adv Neurol. 1988;47:313–35.PubMed
6.
go back to reference Santos SF, Pierrot N, Octave JN. Network excitability dysfunction in Alzheimer's disease: insights from in vitro and in vivo models. Rev Neurosci. 2010;21:153–71.PubMed Santos SF, Pierrot N, Octave JN. Network excitability dysfunction in Alzheimer's disease: insights from in vitro and in vivo models. Rev Neurosci. 2010;21:153–71.PubMed
7.
go back to reference Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70:960–9.CrossRefPubMed Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70:960–9.CrossRefPubMed
8.
go back to reference Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. The Journal of neuroscience: the official journal of the Society for Neuroscience. 1996;16:4491–500. Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. The Journal of neuroscience: the official journal of the Society for Neuroscience. 1996;16:4491–500.
9.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.CrossRefPubMed Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.CrossRefPubMed
10.
go back to reference Ally BA, Hussey EP, Ko PC, Molitor RJ. Pattern separation and pattern completion in Alzheimer's disease: evidence of rapid forgetting in amnestic mild cognitive impairment. Hippocampus. 2013;23:1246–58.CrossRefPubMedPubMedCentral Ally BA, Hussey EP, Ko PC, Molitor RJ. Pattern separation and pattern completion in Alzheimer's disease: evidence of rapid forgetting in amnestic mild cognitive impairment. Hippocampus. 2013;23:1246–58.CrossRefPubMedPubMedCentral
11.
go back to reference Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science. 2004;305:1258–64.CrossRefPubMed Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science. 2004;305:1258–64.CrossRefPubMed
12.
go back to reference Lavenex P, Banta Lavenex P, Amaral DG. Postnatal development of the primate hippocampal formation. Dev Neurosci. 2007;29:179–92.CrossRefPubMed Lavenex P, Banta Lavenex P, Amaral DG. Postnatal development of the primate hippocampal formation. Dev Neurosci. 2007;29:179–92.CrossRefPubMed
13.
go back to reference Andersen P, Bliss TV, Lomo T, Olsen LI, Skrede KK. Lamellar organization of hippocampal excitatory pathways. Acta Physiol Scand. 1969;76:4A–5A.CrossRefPubMed Andersen P, Bliss TV, Lomo T, Olsen LI, Skrede KK. Lamellar organization of hippocampal excitatory pathways. Acta Physiol Scand. 1969;76:4A–5A.CrossRefPubMed
14.
go back to reference Kesner RP, Lee I, Gilbert P. A behavioral assessment of hippocampal function based on a subregional analysis. Rev Neurosci. 2004;15:333–51.CrossRefPubMed Kesner RP, Lee I, Gilbert P. A behavioral assessment of hippocampal function based on a subregional analysis. Rev Neurosci. 2004;15:333–51.CrossRefPubMed
15.
go back to reference Okada K, Okaichi H. Functional differentiation and cooperation among the hippocampal subregions in rats to effect spatial memory processes. Behav Brain Res. 2009;200:181–91.CrossRefPubMed Okada K, Okaichi H. Functional differentiation and cooperation among the hippocampal subregions in rats to effect spatial memory processes. Behav Brain Res. 2009;200:181–91.CrossRefPubMed
16.
go back to reference Rolls ET, Kesner RP. A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol. 2006;79:1–48.CrossRefPubMed Rolls ET, Kesner RP. A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol. 2006;79:1–48.CrossRefPubMed
17.
go back to reference Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CE. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. NeuroImage. 2010;51:1242–52.CrossRefPubMedPubMedCentral Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CE. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. NeuroImage. 2010;51:1242–52.CrossRefPubMedPubMedCentral
18.
go back to reference Yassa MA, Lacy JW, Stark SM, Albert MS, Gallagher M, Stark CE. Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus. 2011;21:968–79.PubMed Yassa MA, Lacy JW, Stark SM, Albert MS, Gallagher M, Stark CE. Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus. 2011;21:968–79.PubMed
19.
go back to reference Zhang D, Zhang C, Ho A, Kirkwood A, Sudhof TC, Shen J. Inactivation of presenilins causes pre-synaptic impairment prior to post-synaptic dysfunction. J Neurochem. 2010;115:1215–21.CrossRefPubMedPubMedCentral Zhang D, Zhang C, Ho A, Kirkwood A, Sudhof TC, Shen J. Inactivation of presenilins causes pre-synaptic impairment prior to post-synaptic dysfunction. J Neurochem. 2010;115:1215–21.CrossRefPubMedPubMedCentral
20.
go back to reference Yu H, Saura CA, Choi SY, Sun LD, Yang X, Handler M, et al. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron. 2001;31:713–26.CrossRefPubMed Yu H, Saura CA, Choi SY, Sun LD, Yang X, Handler M, et al. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron. 2001;31:713–26.CrossRefPubMed
21.
go back to reference Tang Y, Zucker RS. Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron. 1997;18:483–91.CrossRefPubMed Tang Y, Zucker RS. Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron. 1997;18:483–91.CrossRefPubMed
22.
go back to reference Lee D, Lee KH, Ho WK, Lee SH. Target cell-specific involvement of presynaptic mitochondria in post-tetanic potentiation at hippocampal mossy fiber synapses. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2007;27:13603–13.CrossRef Lee D, Lee KH, Ho WK, Lee SH. Target cell-specific involvement of presynaptic mitochondria in post-tetanic potentiation at hippocampal mossy fiber synapses. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2007;27:13603–13.CrossRef
23.
go back to reference Steiner H, Duff K, Capell A, Romig H, Grim MG, Lincoln S, et al. A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. J Biol Chem. 1999;274:28669–73.CrossRefPubMed Steiner H, Duff K, Capell A, Romig H, Grim MG, Lincoln S, et al. A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. J Biol Chem. 1999;274:28669–73.CrossRefPubMed
24.
go back to reference Kamiya H, Shinozaki H, Yamamoto C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J Physiol. 1996;493(Pt 2):447–55.CrossRefPubMedPubMedCentral Kamiya H, Shinozaki H, Yamamoto C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J Physiol. 1996;493(Pt 2):447–55.CrossRefPubMedPubMedCentral
25.
26.
go back to reference Regehr WG, Delaney KR, Tank DW. The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. The Journal of neuroscience: the official journal of the Society for Neuroscience. 1994;14:523–37. Regehr WG, Delaney KR, Tank DW. The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. The Journal of neuroscience: the official journal of the Society for Neuroscience. 1994;14:523–37.
27.
go back to reference Claiborne BJ, Xiang Z, Brown TH. Hippocampal circuitry complicates analysis of long-term potentiation in mossy fiber synapses. Hippocampus. 1993;3:115–21.CrossRefPubMed Claiborne BJ, Xiang Z, Brown TH. Hippocampal circuitry complicates analysis of long-term potentiation in mossy fiber synapses. Hippocampus. 1993;3:115–21.CrossRefPubMed
28.
go back to reference Toth K, Suares G, Lawrence JJ, Philips-Tansey E, McBain CJ. Differential mechanisms of transmission at three types of mossy fiber synapse. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2000;20:8279–89. Toth K, Suares G, Lawrence JJ, Philips-Tansey E, McBain CJ. Differential mechanisms of transmission at three types of mossy fiber synapse. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2000;20:8279–89.
29.
go back to reference Blackstad TW, Kjaerheim A. Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J Comp Neurol. 1961;117:133–59.CrossRefPubMed Blackstad TW, Kjaerheim A. Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J Comp Neurol. 1961;117:133–59.CrossRefPubMed
30.
31.
go back to reference Rollenhagen A, Satzler K, Rodriguez EP, Jonas P, Frotscher M, Lubke JH. Structural determinants of transmission at large hippocampal mossy fiber synapses. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2007;27:10434–44.CrossRef Rollenhagen A, Satzler K, Rodriguez EP, Jonas P, Frotscher M, Lubke JH. Structural determinants of transmission at large hippocampal mossy fiber synapses. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2007;27:10434–44.CrossRef
32.
go back to reference Lee SH, Ho WK, Lee SH. Characterization of somatic Ca2+ clearance mechanisms in young and mature hippocampal granule cells. Cell Calcium. 2009;45:465–73.CrossRefPubMed Lee SH, Ho WK, Lee SH. Characterization of somatic Ca2+ clearance mechanisms in young and mature hippocampal granule cells. Cell Calcium. 2009;45:465–73.CrossRefPubMed
33.
go back to reference Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429:184–7.CrossRefPubMed Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429:184–7.CrossRefPubMed
35.
go back to reference Gruart A, Munoz MD, Delgado-Garcia JM. Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2006;26:1077–87.CrossRef Gruart A, Munoz MD, Delgado-Garcia JM. Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2006;26:1077–87.CrossRef
36.
go back to reference Mitsuno K, Sasa M, Ishihara K, Ishikawa M, Kikuchi H. LTP of mossy fiber-stimulated potentials in CA3 during learning in rats. Physiol Behav. 1994;55:633–8.CrossRefPubMed Mitsuno K, Sasa M, Ishihara K, Ishikawa M, Kikuchi H. LTP of mossy fiber-stimulated potentials in CA3 during learning in rats. Physiol Behav. 1994;55:633–8.CrossRefPubMed
37.
go back to reference Otto C, Kovalchuk Y, Wolfer DP, Gass P, Martin M, Zuschratter W, et al. Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2001;21:5520–7. Otto C, Kovalchuk Y, Wolfer DP, Gass P, Martin M, Zuschratter W, et al. Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2001;21:5520–7.
38.
go back to reference Wu ZL, Thomas SA, Villacres EC, Xia Z, Simmons ML, Chavkin C, et al. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Natl Acad Sci U S A. 1995;92:220–4.CrossRefPubMedPubMedCentral Wu ZL, Thomas SA, Villacres EC, Xia Z, Simmons ML, Chavkin C, et al. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Natl Acad Sci U S A. 1995;92:220–4.CrossRefPubMedPubMedCentral
39.
go back to reference Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell. 1997;89:629–39.CrossRefPubMed Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell. 1997;89:629–39.CrossRefPubMed
40.
go back to reference Handler M, Yang X, Shen J. Presenilin-1 regulates neuronal differentiation during neurogenesis. Development. 2000;127:2593–606.PubMed Handler M, Yang X, Shen J. Presenilin-1 regulates neuronal differentiation during neurogenesis. Development. 2000;127:2593–606.PubMed
41.
go back to reference Wines-Samuelson M, Handler M, Shen J. Role of presenilin-1 in cortical lamination and survival of Cajal-Retzius neurons. Dev Biol. 2005;277:332–46.CrossRefPubMed Wines-Samuelson M, Handler M, Shen J. Role of presenilin-1 in cortical lamination and survival of Cajal-Retzius neurons. Dev Biol. 2005;277:332–46.CrossRefPubMed
43.
go back to reference Saura CA, Chen G, Malkani S, Choi SY, Takahashi RH, Zhang D, et al. Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2005;25:6755–64.CrossRef Saura CA, Chen G, Malkani S, Choi SY, Takahashi RH, Zhang D, et al. Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2005;25:6755–64.CrossRef
45.
go back to reference Zalutsky RA, Nicoll RA. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science. 1990;248:1619–24.CrossRefPubMed Zalutsky RA, Nicoll RA. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science. 1990;248:1619–24.CrossRefPubMed
46.
go back to reference Harris EW, Cotman CW. Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci Lett. 1986;70:132–7.CrossRefPubMed Harris EW, Cotman CW. Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci Lett. 1986;70:132–7.CrossRefPubMed
47.
go back to reference Nicoll RA, Malenka RC. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature. 1995;377:115–8.CrossRefPubMed Nicoll RA, Malenka RC. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature. 1995;377:115–8.CrossRefPubMed
48.
go back to reference Huang YY, Li XC, Kandel ER. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell. 1994;79:69–79.CrossRefPubMed Huang YY, Li XC, Kandel ER. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell. 1994;79:69–79.CrossRefPubMed
49.
go back to reference Nicoll RA, Schmitz D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci. 2005;6:863–76.CrossRefPubMed Nicoll RA, Schmitz D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci. 2005;6:863–76.CrossRefPubMed
50.
go back to reference Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science. 1994;265:1878–82.CrossRefPubMed Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science. 1994;265:1878–82.CrossRefPubMed
51.
go back to reference Berzhanskaya J, Urban NN, Barrionuevo G. Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. J Neurophysiol. 1998;79:2111–8.PubMed Berzhanskaya J, Urban NN, Barrionuevo G. Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. J Neurophysiol. 1998;79:2111–8.PubMed
52.
go back to reference Yeckel MF, Berger TW. Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci U S A. 1990;87:5832–6.CrossRefPubMedPubMedCentral Yeckel MF, Berger TW. Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci U S A. 1990;87:5832–6.CrossRefPubMedPubMedCentral
53.
go back to reference Li XG, Somogyi P, Ylinen A, Buzsaki G. The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol. 1994;339:181–208.CrossRefPubMed Li XG, Somogyi P, Ylinen A, Buzsaki G. The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol. 1994;339:181–208.CrossRefPubMed
54.
go back to reference Lee JS, Kim MH, Ho WK, Lee SH. Presynaptic release probability and readily releasable pool size are regulated by two independent mechanisms during posttetanic potentiation at the calyx of held synapse. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2008;28:7945–53.CrossRef Lee JS, Kim MH, Ho WK, Lee SH. Presynaptic release probability and readily releasable pool size are regulated by two independent mechanisms during posttetanic potentiation at the calyx of held synapse. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2008;28:7945–53.CrossRef
56.
go back to reference Reuter H, Porzig H. Localization and functional significance of the Na+/Ca2+ exchanger in presynaptic boutons of hippocampal cells in culture. Neuron. 1995;15:1077–84.CrossRefPubMed Reuter H, Porzig H. Localization and functional significance of the Na+/Ca2+ exchanger in presynaptic boutons of hippocampal cells in culture. Neuron. 1995;15:1077–84.CrossRefPubMed
57.
go back to reference Usachev YM, DeMarco SJ, Campbell C, Strehler EE, Thayer SA. Bradykinin and ATP accelerate ca(2+) efflux from rat sensory neurons via protein kinase C and the plasma membrane ca(2+) pump isoform 4. Neuron. 2002;33:113–22.CrossRefPubMed Usachev YM, DeMarco SJ, Campbell C, Strehler EE, Thayer SA. Bradykinin and ATP accelerate ca(2+) efflux from rat sensory neurons via protein kinase C and the plasma membrane ca(2+) pump isoform 4. Neuron. 2002;33:113–22.CrossRefPubMed
58.
59.
go back to reference Kim MH, Lee SH, Park KH, Ho WK, Lee SH. Distribution of K+-dependent Na+/Ca2+ exchangers in the rat supraoptic magnocellular neuron is polarized to axon terminals. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2003;23:11673–80. Kim MH, Lee SH, Park KH, Ho WK, Lee SH. Distribution of K+-dependent Na+/Ca2+ exchangers in the rat supraoptic magnocellular neuron is polarized to axon terminals. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2003;23:11673–80.
60.
go back to reference Suzuki S, Osanai M, Mitsumoto N, Akita T, Narita K, Kijima H, et al. Ca(2+)-dependent ca(2+) clearance via mitochondrial uptake and plasmalemmal extrusion in frog motor nerve terminals. J Neurophysiol. 2002;87:1816–23.CrossRefPubMed Suzuki S, Osanai M, Mitsumoto N, Akita T, Narita K, Kijima H, et al. Ca(2+)-dependent ca(2+) clearance via mitochondrial uptake and plasmalemmal extrusion in frog motor nerve terminals. J Neurophysiol. 2002;87:1816–23.CrossRefPubMed
61.
go back to reference Wu B, Yamaguchi H, Lai FA, Shen J. Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc Natl Acad Sci U S A. 2013;110:15091–6.CrossRefPubMedPubMedCentral Wu B, Yamaguchi H, Lai FA, Shen J. Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc Natl Acad Sci U S A. 2013;110:15091–6.CrossRefPubMedPubMedCentral
62.
go back to reference Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998;280:1763–6.CrossRefPubMed Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998;280:1763–6.CrossRefPubMed
63.
go back to reference Pivovarova NB, Pozzo-Miller LD, Hongpaisan J, Andrews SB. Correlated calcium uptake and release by mitochondria and endoplasmic reticulum of CA3 hippocampal dendrites after afferent synaptic stimulation. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2002;22:10653–61. Pivovarova NB, Pozzo-Miller LD, Hongpaisan J, Andrews SB. Correlated calcium uptake and release by mitochondria and endoplasmic reticulum of CA3 hippocampal dendrites after afferent synaptic stimulation. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2002;22:10653–61.
64.
go back to reference Giorgi C, De Stefani D, Bononi A, Rizzuto R, Pinton P. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol. 2009;41:1817–27.CrossRefPubMedPubMedCentral Giorgi C, De Stefani D, Bononi A, Rizzuto R, Pinton P. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol. 2009;41:1817–27.CrossRefPubMedPubMedCentral
Metadata
Title
Presenilins regulate synaptic plasticity and mitochondrial calcium homeostasis in the hippocampal mossy fiber pathway
Authors
Sang Hun Lee
David Lutz
Mohanad Mossalam
Vadim Y. Bolshakov
Michael Frotscher
Jie Shen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2017
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-017-0189-5

Other articles of this Issue 1/2017

Molecular Neurodegeneration 1/2017 Go to the issue