Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2016

Open Access 01-12-2016 | Research article

Pioglitazone ameliorates the phenotype of a novel Parkinson’s disease mouse model by reducing neuroinflammation

Authors: Milena Pinto, Nadee Nissanka, Susana Peralta, Roberta Brambilla, Francisca Diaz, Carlos T. Moraes

Published in: Molecular Neurodegeneration | Issue 1/2016

Login to get access

Abstract

Background

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. The cause of the motor symptoms is the loss of dopaminergic neurons in the substantia nigra with consequent depletion of dopamine in the striatum. Although the etiology of PD is unknown, mitochondrial dysfunctions, including cytochrome c oxidase (Complex IV) impairment in dopaminergic neurons, have been associated with the disease’s pathophysiology. In order to analyze the role of Complex IV in PD, we knocked out Cox10 (essential for the maturation of COXI, a catalytic subunit of Complex IV) in dopaminergic neurons. We also tested whether the resulting phenotype was improved by stimulating the PPAR-γ pathway.

Results

Cox10/DAT-cre mice showed decreased numbers of TH+ and DAT+ cells in the substantia nigra, early striatal dopamine depletion, motor defects reversible with L-DOPA treatment and hypersensitivity to L-DOPA with hyperkinetic behavior. We found that chronic pioglitazone (PPAR-γ agonist) treatment ameliorated the motor phenotype in Cox10/DAT-cre mice. Although neither mitochondrial function nor the number of dopaminergic neurons was improved, neuroinflammation in the midbrain and the striatum was decreased.

Conclusions

By triggering a mitochondrial Complex IV defect in dopaminergic neurons, we created a new mouse model resembling the late stages of PD with massive degeneration of dopaminergic neurons and striatal dopamine depletion. The motor phenotypes were improved by Pioglitazone treatment, suggesting that targetable secondary pathways can influence the development of certain forms of PD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.CrossRefPubMed Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.CrossRefPubMed
2.
go back to reference Navarro A, Boveris A. Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson's disease. Front Aging Neurosci. 2010;2. Pubmed Central PMCID: 2947925. Navarro A, Boveris A. Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson's disease. Front Aging Neurosci. 2010;2. Pubmed Central PMCID: 2947925.
3.
go back to reference Banerjee R, Starkov AA, Beal MF, Thomas B. Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis. Biochim Biophys Acta. 2009;1792(7):651–63. Pubmed Central PMCID: 2867353.CrossRefPubMed Banerjee R, Starkov AA, Beal MF, Thomas B. Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis. Biochim Biophys Acta. 2009;1792(7):651–63. Pubmed Central PMCID: 2867353.CrossRefPubMed
4.
go back to reference Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515–7.CrossRefPubMed Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515–7.CrossRefPubMed
5.
go back to reference Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38(5):518–20.CrossRefPubMed Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38(5):518–20.CrossRefPubMed
6.
go back to reference Benecke R, Strumper P, Weiss H. Electron transfer complexes I and IV of platelets are abnormal in Parkinson's disease but normal in Parkinson-plus syndromes. Brain. 1993;116(Pt 6):1451–63.CrossRefPubMed Benecke R, Strumper P, Weiss H. Electron transfer complexes I and IV of platelets are abnormal in Parkinson's disease but normal in Parkinson-plus syndromes. Brain. 1993;116(Pt 6):1451–63.CrossRefPubMed
7.
go back to reference Cardellach F, Marti MJ, Fernandez-Sola J, Marin C, Hoek JB, Tolosa E, et al. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson's disease. Neurology. 1993;43(11):2258–62.CrossRefPubMed Cardellach F, Marti MJ, Fernandez-Sola J, Marin C, Hoek JB, Tolosa E, et al. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson's disease. Neurology. 1993;43(11):2258–62.CrossRefPubMed
8.
go back to reference Blin O, Desnuelle C, Rascol O, Borg M, Peyro Saint Paul H, Azulay JP, et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson's disease and multiple system atrophy. J Neurol Sci. 1994;125(1):95–101.CrossRefPubMed Blin O, Desnuelle C, Rascol O, Borg M, Peyro Saint Paul H, Azulay JP, et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson's disease and multiple system atrophy. J Neurol Sci. 1994;125(1):95–101.CrossRefPubMed
9.
go back to reference Bindoff LA, Birch-Machin MA, Cartlidge NE, Parker Jr WD, Turnbull DM. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson's disease. J Neurol Sci. 1991;104(2):203–8.CrossRefPubMed Bindoff LA, Birch-Machin MA, Cartlidge NE, Parker Jr WD, Turnbull DM. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson's disease. J Neurol Sci. 1991;104(2):203–8.CrossRefPubMed
10.
go back to reference Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803. Pubmed Central PMCID: 2592826, Epub 2008/11/26. eng.CrossRefPubMedPubMedCentral Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803. Pubmed Central PMCID: 2592826, Epub 2008/11/26. eng.CrossRefPubMedPubMedCentral
11.
go back to reference Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol. 2015;33:95–101.CrossRefPubMed Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol. 2015;33:95–101.CrossRefPubMed
12.
go back to reference Aviles-Olmos I, Limousin P, Lees A, Foltynie T. Parkinson's disease, insulin resistance and novel agents of neuroprotection. Brain. 2013;136(Pt 2):374–84.CrossRefPubMed Aviles-Olmos I, Limousin P, Lees A, Foltynie T. Parkinson's disease, insulin resistance and novel agents of neuroprotection. Brain. 2013;136(Pt 2):374–84.CrossRefPubMed
13.
go back to reference Schapira AH, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet. 2014;384(9942):545–55.CrossRefPubMed Schapira AH, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet. 2014;384(9942):545–55.CrossRefPubMed
14.
go back to reference Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int J Obes. 2005;29 Suppl 1:S5–9.CrossRef Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int J Obes. 2005;29 Suppl 1:S5–9.CrossRef
15.
go back to reference Morato L, Galino J, Ruiz M, Calingasan NY, Starkov AA, Dumont M, et al. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain. 2013;136(Pt 8):2432–43.CrossRefPubMedPubMedCentral Morato L, Galino J, Ruiz M, Calingasan NY, Starkov AA, Dumont M, et al. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain. 2013;136(Pt 8):2432–43.CrossRefPubMedPubMedCentral
16.
go back to reference Yu Y, Li X, Blanchard J, Li Y, Iqbal K, Liu F, et al. Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice. J Neural Transm. 2014;13. Epub 2014/08/13. Eng. Yu Y, Li X, Blanchard J, Li Y, Iqbal K, Liu F, et al. Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice. J Neural Transm. 2014;13. Epub 2014/08/13. Eng.
17.
go back to reference Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT. PPARgamma/RXRalpha-induced and CD36-mediated microglial amyloid-beta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci. 2012;32(48):17321–31.CrossRefPubMed Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT. PPARgamma/RXRalpha-induced and CD36-mediated microglial amyloid-beta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci. 2012;32(48):17321–31.CrossRefPubMed
18.
go back to reference Mandrekar-Colucci S, Karlo JC, Landreth GE. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease. J Neurosci. 2012;32(30):10117–28. Pubmed Central PMCID: 3433721.CrossRefPubMedPubMedCentral Mandrekar-Colucci S, Karlo JC, Landreth GE. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease. J Neurosci. 2012;32(30):10117–28. Pubmed Central PMCID: 3433721.CrossRefPubMedPubMedCentral
19.
go back to reference Napolitano M, Costa L, Palermo R, Giovenco A, Vacca A, Gulino A. Protective effect of pioglitazone, a PPARgamma ligand, in a 3 nitropropionic acid model of Huntington's disease. Brain Res Bull. 2011;85(3–4):231–7.CrossRefPubMed Napolitano M, Costa L, Palermo R, Giovenco A, Vacca A, Gulino A. Protective effect of pioglitazone, a PPARgamma ligand, in a 3 nitropropionic acid model of Huntington's disease. Brain Res Bull. 2011;85(3–4):231–7.CrossRefPubMed
20.
go back to reference Barbieroa JK, Santiagoa RM, Persikeb DS, da Silva Fernandesb MJ, Tonina FS, da Cunhaa C, et al. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav Brain Res. 2014;274:390–9.CrossRef Barbieroa JK, Santiagoa RM, Persikeb DS, da Silva Fernandesb MJ, Tonina FS, da Cunhaa C, et al. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav Brain Res. 2014;274:390–9.CrossRef
21.
go back to reference Quinn LP, Crook B, Hows ME, Vidgeon-Hart M, Chapman H, Upton N, et al. The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of Parkinson's disease through inhibition of monoamine oxidase B. Br J Pharmacol. 2008;154(1):226–33. Pubmed Central PMCID: 2438969, Epub 2008/03/12. eng.CrossRefPubMedPubMedCentral Quinn LP, Crook B, Hows ME, Vidgeon-Hart M, Chapman H, Upton N, et al. The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of Parkinson's disease through inhibition of monoamine oxidase B. Br J Pharmacol. 2008;154(1):226–33. Pubmed Central PMCID: 2438969, Epub 2008/03/12. eng.CrossRefPubMedPubMedCentral
22.
go back to reference Swanson CR, Joers V, Bondarenko V, Brunner K, Simmons HA, Ziegler TE, et al. The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflammation. 2011;8:91. Pubmed Central PMCID: 3166925.CrossRefPubMedPubMedCentral Swanson CR, Joers V, Bondarenko V, Brunner K, Simmons HA, Ziegler TE, et al. The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflammation. 2011;8:91. Pubmed Central PMCID: 3166925.CrossRefPubMedPubMedCentral
23.
go back to reference Ulusoy GK, Celik T, Kayir H, Gursoy M, Isik AT, Uzbay TI. Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson's disease. Brain Res Bull. 2011;85(6):380–4.CrossRefPubMed Ulusoy GK, Celik T, Kayir H, Gursoy M, Isik AT, Uzbay TI. Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson's disease. Brain Res Bull. 2011;85(6):380–4.CrossRefPubMed
24.
go back to reference Mogi T, Saiki K, Anraku Y. Biosynthesis and functional role of haem O and haem A. Mol Microbiol. 1994;14(3):391–8. Epub 1994/11/01. eng.CrossRefPubMed Mogi T, Saiki K, Anraku Y. Biosynthesis and functional role of haem O and haem A. Mol Microbiol. 1994;14(3):391–8. Epub 1994/11/01. eng.CrossRefPubMed
25.
go back to reference Diaz F, Thomas CK, Garcia S, Hernandez D, Moraes CT. Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum Mol Genet. 2005;14(18):2737–48. Pubmed Central PMCID: 2778476.CrossRefPubMedPubMedCentral Diaz F, Thomas CK, Garcia S, Hernandez D, Moraes CT. Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum Mol Genet. 2005;14(18):2737–48. Pubmed Central PMCID: 2778476.CrossRefPubMedPubMedCentral
26.
go back to reference Backman CM, Malik N, Zhang Y, Shan L, Grinberg A, Hoffer BJ, et al. Characterization of a mouse strain expressing Cre recombinase from the 3' untranslated region of the dopamine transporter locus. Genesis. 2006;44(8):383–90.CrossRefPubMed Backman CM, Malik N, Zhang Y, Shan L, Grinberg A, Hoffer BJ, et al. Characterization of a mouse strain expressing Cre recombinase from the 3' untranslated region of the dopamine transporter locus. Genesis. 2006;44(8):383–90.CrossRefPubMed
27.
28.
go back to reference Pickrell AM, Pinto M, Hida A, Moraes CT. Striatal dysfunctions associated with mitochondrial DNA damage in dopaminergic neurons in a mouse model of Parkinson's disease. J Neurosci. 2011;31(48):17649–58. Pubmed Central PMCID: 3361134.CrossRefPubMedPubMedCentral Pickrell AM, Pinto M, Hida A, Moraes CT. Striatal dysfunctions associated with mitochondrial DNA damage in dopaminergic neurons in a mouse model of Parkinson's disease. J Neurosci. 2011;31(48):17649–58. Pubmed Central PMCID: 3361134.CrossRefPubMedPubMedCentral
29.
go back to reference Noe N, Dillon L, Lellek V, Diaz F, Hida A, Moraes CT, et al. Bezafibrate improves mitochondrial function in the CNS of a mouse model of mitochondrial encephalopathy. Mitochondrion. 2013;13(5):417–26. Pubmed Central PMCID: 3755107, Epub 2012/12/25. eng.CrossRefPubMed Noe N, Dillon L, Lellek V, Diaz F, Hida A, Moraes CT, et al. Bezafibrate improves mitochondrial function in the CNS of a mouse model of mitochondrial encephalopathy. Mitochondrion. 2013;13(5):417–26. Pubmed Central PMCID: 3755107, Epub 2012/12/25. eng.CrossRefPubMed
30.
go back to reference Peralta S, Torraco A, Iommarini L, Diaz F. Mitochondrial Diseases Part III: Therapeutic interventions in mouse models of OXPHOS deficiencies. Mitochondrion. 2015;23:71–80.CrossRefPubMed Peralta S, Torraco A, Iommarini L, Diaz F. Mitochondrial Diseases Part III: Therapeutic interventions in mouse models of OXPHOS deficiencies. Mitochondrion. 2015;23:71–80.CrossRefPubMed
31.
go back to reference Maeshiba Y, Kiyota Y, Yamashita K, Yoshimura Y, Motohashi M, Tanayama S. Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung. 1997;47(1):29–35.PubMed Maeshiba Y, Kiyota Y, Yamashita K, Yoshimura Y, Motohashi M, Tanayama S. Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung. 1997;47(1):29–35.PubMed
32.
go back to reference Lee S, Sterky FH, Mourier A, Terzioglu M, Cullheim S, Olson L, et al. Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum Mol Genet. 2012;21(22):4827–35. Epub 2012/08/24. eng.CrossRefPubMed Lee S, Sterky FH, Mourier A, Terzioglu M, Cullheim S, Olson L, et al. Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum Mol Genet. 2012;21(22):4827–35. Epub 2012/08/24. eng.CrossRefPubMed
33.
go back to reference Kim DS, Szczypka MS, Palmiter RD. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists. J Neurosci. 2000;20(12):4405–13.PubMed Kim DS, Szczypka MS, Palmiter RD. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists. J Neurosci. 2000;20(12):4405–13.PubMed
34.
go back to reference Carta AR, Pisanu A. Modulating microglia activity with PPAR-gamma agonists: a promising therapy for Parkinson's disease? Neurotox Res. 2013;23(2):112–23.CrossRefPubMed Carta AR, Pisanu A. Modulating microglia activity with PPAR-gamma agonists: a promising therapy for Parkinson's disease? Neurotox Res. 2013;23(2):112–23.CrossRefPubMed
35.
go back to reference Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, et al. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem. 2001;76(5):1265–74. Epub 2001/03/10. eng.CrossRefPubMed Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, et al. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem. 2001;76(5):1265–74. Epub 2001/03/10. eng.CrossRefPubMed
36.
go back to reference Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc. 2007;2(1):141–51. Epub 2007/04/03. eng.CrossRefPubMed Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc. 2007;2(1):141–51. Epub 2007/04/03. eng.CrossRefPubMed
37.
go back to reference Duty S, Jenner P. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–91. Pubmed Central PMCID: 3229766, Epub 2011/04/14. eng.CrossRefPubMedPubMedCentral Duty S, Jenner P. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–91. Pubmed Central PMCID: 3229766, Epub 2011/04/14. eng.CrossRefPubMedPubMedCentral
38.
go back to reference Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson's disease. Neuron. 2010;66(5):646–61. Pubmed Central PMCID: 2917798, Epub 2010/06/16. eng.CrossRefPubMedPubMedCentral Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson's disease. Neuron. 2010;66(5):646–61. Pubmed Central PMCID: 2917798, Epub 2010/06/16. eng.CrossRefPubMedPubMedCentral
39.
go back to reference Hatami A, Chesselet MF. Transgenic rodent models to study alpha-synuclein pathogenesis, with a focus on cognitive deficits. Curr Top Behav Neurosci. 2015;22:303–30.CrossRefPubMed Hatami A, Chesselet MF. Transgenic rodent models to study alpha-synuclein pathogenesis, with a focus on cognitive deficits. Curr Top Behav Neurosci. 2015;22:303–30.CrossRefPubMed
40.
go back to reference Pickrell AM, Pinto M, Moraes CT. Mouse models of Parkinson's disease associated with mitochondrial dysfunction. Mol Cell Neurosci. 2013;55:87–94. Pubmed Central PMCID: 3997253, Epub 2012/09/08. eng.CrossRefPubMed Pickrell AM, Pinto M, Moraes CT. Mouse models of Parkinson's disease associated with mitochondrial dysfunction. Mol Cell Neurosci. 2013;55:87–94. Pubmed Central PMCID: 3997253, Epub 2012/09/08. eng.CrossRefPubMed
41.
go back to reference Ekstrand MI, Galter D. The MitoPark Mouse - an animal model of Parkinson's disease with impaired respiratory chain function in dopamine neurons. Parkinsonism Relat Disord. 2009;15 Suppl 3:S185–8. Epub 2010/01/30. eng.CrossRefPubMed Ekstrand MI, Galter D. The MitoPark Mouse - an animal model of Parkinson's disease with impaired respiratory chain function in dopamine neurons. Parkinsonism Relat Disord. 2009;15 Suppl 3:S185–8. Epub 2010/01/30. eng.CrossRefPubMed
42.
go back to reference Kim HW, Choi WS, Sorscher N, Park HJ, Tronche F, Palmiter RD, et al. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo. Neurobiol Aging. 2015;36(9):2617–27.CrossRefPubMed Kim HW, Choi WS, Sorscher N, Park HJ, Tronche F, Palmiter RD, et al. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo. Neurobiol Aging. 2015;36(9):2617–27.CrossRefPubMed
43.
go back to reference Bargiotas P, Konitsiotis S. Levodopa-induced dyskinesias in Parkinson's disease: emerging treatments. Neuropsychiatr Dis Treat. 2013;9:1605–17. Pubmed Central PMCID: 3808152.PubMedPubMedCentral Bargiotas P, Konitsiotis S. Levodopa-induced dyskinesias in Parkinson's disease: emerging treatments. Neuropsychiatr Dis Treat. 2013;9:1605–17. Pubmed Central PMCID: 3808152.PubMedPubMedCentral
44.
go back to reference Swanson C, Emborg M. Expression of peroxisome proliferator-activated receptor-gamma in the substantia nigra of hemiparkinsonian nonhuman primates. Neurol Res. 2014;36(7):634–46.CrossRefPubMed Swanson C, Emborg M. Expression of peroxisome proliferator-activated receptor-gamma in the substantia nigra of hemiparkinsonian nonhuman primates. Neurol Res. 2014;36(7):634–46.CrossRefPubMed
45.
go back to reference Wenz T, Diaz F, Spiegelman BM, Moraes CT. Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab. 2008;8(3):249–56. Pubmed Central PMCID: 2613643, Epub 2008/09/03. eng.CrossRefPubMedPubMedCentral Wenz T, Diaz F, Spiegelman BM, Moraes CT. Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab. 2008;8(3):249–56. Pubmed Central PMCID: 2613643, Epub 2008/09/03. eng.CrossRefPubMedPubMedCentral
46.
go back to reference Heneka MT, Landreth GE, Hull M. Drug insight: effects mediated by peroxisome proliferator-activated receptor-gamma in CNS disorders. Nat Clin Pract Neurol. 2007;3(9):496–504. Epub 2007/09/07. eng.CrossRefPubMed Heneka MT, Landreth GE, Hull M. Drug insight: effects mediated by peroxisome proliferator-activated receptor-gamma in CNS disorders. Nat Clin Pract Neurol. 2007;3(9):496–504. Epub 2007/09/07. eng.CrossRefPubMed
47.
go back to reference Investigators NETiPDF-Z. Pioglitazone in early Parkinson's disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol. 2015;14(8):795–803.CrossRef Investigators NETiPDF-Z. Pioglitazone in early Parkinson's disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol. 2015;14(8):795–803.CrossRef
48.
go back to reference Barbiero JK, Santiago RM, Persike DS, da Silva Fernandes MJ, Tonin FS, da Cunha C, et al. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav Brain Res. 2014;274:390–9.CrossRefPubMed Barbiero JK, Santiago RM, Persike DS, da Silva Fernandes MJ, Tonin FS, da Cunha C, et al. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav Brain Res. 2014;274:390–9.CrossRefPubMed
49.
go back to reference Rocha NP, de Miranda AS, Teixeira AL. Insights into Neuroinflammation in Parkinson's Disease: From Biomarkers to Anti-Inflammatory Based Therapies. BioMed Res Int. 2015;2015:628192. Pubmed Central PMCID: 4532803.PubMedPubMedCentral Rocha NP, de Miranda AS, Teixeira AL. Insights into Neuroinflammation in Parkinson's Disease: From Biomarkers to Anti-Inflammatory Based Therapies. BioMed Res Int. 2015;2015:628192. Pubmed Central PMCID: 4532803.PubMedPubMedCentral
50.
go back to reference Cenci MA. L-DOPA-induced dyskinesia: cellular mechanisms and approaches to treatment. Parkinsonism Relat Disord. 2007;13 Suppl 3:S263–7.CrossRefPubMed Cenci MA. L-DOPA-induced dyskinesia: cellular mechanisms and approaches to treatment. Parkinsonism Relat Disord. 2007;13 Suppl 3:S263–7.CrossRefPubMed
51.
go back to reference Barrientos A. In vivo and in organello assessment of OXPHOS activities. Methods. 2002;26(4):307–16.CrossRefPubMed Barrientos A. In vivo and in organello assessment of OXPHOS activities. Methods. 2002;26(4):307–16.CrossRefPubMed
52.
go back to reference Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci. 2009;10(7):519–29.CrossRefPubMed Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci. 2009;10(7):519–29.CrossRefPubMed
Metadata
Title
Pioglitazone ameliorates the phenotype of a novel Parkinson’s disease mouse model by reducing neuroinflammation
Authors
Milena Pinto
Nadee Nissanka
Susana Peralta
Roberta Brambilla
Francisca Diaz
Carlos T. Moraes
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2016
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-016-0090-7

Other articles of this Issue 1/2016

Molecular Neurodegeneration 1/2016 Go to the issue