Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2015

Open Access 01-12-2015 | Research article

Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation

Authors: Aoife P. Kiely, Helen Ling, Yasmine T. Asi, Eleanna Kara, Christos Proukakis, Anthony H. Schapira, Huw R. Morris, Helen C. Roberts, Steven Lubbe, Patricia Limousin, Patrick A. Lewis, Andrew J. Lees, Niall Quinn, John Hardy, Seth Love, Tamas Revesz, Henry Houlden, Janice L. Holton

Published in: Molecular Neurodegeneration | Issue 1/2015

Login to get access

Abstract

Background

We and others have described the neurodegenerative disorder caused by G51D SNCA mutation which shares characteristics of Parkinson’s disease (PD) and multiple system atrophy (MSA). The objective of this investigation was to extend the description of the clinical and neuropathological hallmarks of G51D mutant SNCA-associated disease by the study of two additional cases from a further G51D SNCA kindred and to compare the features of this group with a SNCA duplication case and a H50Q SNCA mutation case.

Results

All three G51D patients were clinically characterised by parkinsonism, dementia, visual hallucinations, autonomic dysfunction and pyramidal signs with variable age at disease onset and levodopa response. The H50Q SNCA mutation case had a clinical picture that mimicked late-onset idiopathic PD with a good and sustained levodopa response. The SNCA duplication case presented with a clinical phenotype of frontotemporal dementia with marked behavioural changes, pyramidal signs, postural hypotension and transiently levodopa responsive parkinsonism. Detailed post-mortem neuropathological analysis was performed in all cases. All three G51D cases had abundant α-synuclein pathology with characteristics of both PD and MSA. These included widespread cortical and subcortical neuronal α-synuclein inclusions together with small numbers of inclusions resembling glial cytoplasmic inclusions (GCIs) in oligodendrocytes. In contrast the H50Q and SNCA duplication cases, had α-synuclein pathology resembling idiopathic PD without GCIs. Phosphorylated α-synuclein was present in all inclusions types in G51D cases but was more restricted in SNCA duplication and H50Q mutation. Inclusions were also immunoreactive for the 5G4 antibody indicating their highly aggregated and likely fibrillar state.

Conclusions

Our characterisation of the clinical and neuropathological features of the present small series of G51D SNCA mutation cases should aid the recognition of this clinico-pathological entity. The neuropathological features of these cases consistently share characteristics of PD and MSA and are distinct from PD patients carrying the H50Q or SNCA duplication.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of [alpha]-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14(1):38–48.PubMedCentralCrossRefPubMed Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of [alpha]-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14(1):38–48.PubMedCentralCrossRefPubMed
2.
go back to reference Polymeropoulos M, Lavedan C, Leroy E, Ide S, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.CrossRefPubMed Polymeropoulos M, Lavedan C, Leroy E, Ide S, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.CrossRefPubMed
3.
go back to reference Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of α-synuclein causes parkinson and Lewy body dementia. Ann Neurol. 2004;55(2):164–73.CrossRefPubMed Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of α-synuclein causes parkinson and Lewy body dementia. Ann Neurol. 2004;55(2):164–73.CrossRefPubMed
4.
go back to reference Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18:106–8.CrossRefPubMed Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18:106–8.CrossRefPubMed
5.
go back to reference Proukakis C, Dudzik CG, Breier T, MacKay DS, Cooper JM, Millhauser GL, et al. A novel alpha-synuclein missense mutation in Parkinson’s disease. Neurology. 2012;80(11):1062–4.CrossRef Proukakis C, Dudzik CG, Breier T, MacKay DS, Cooper JM, Millhauser GL, et al. A novel alpha-synuclein missense mutation in Parkinson’s disease. Neurology. 2012;80(11):1062–4.CrossRef
6.
go back to reference Kiely AP, Asi Y, Kara E, Limousin P, Ling H, Lewis P, et al. α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 2013;125(5):753–69.PubMedCentralCrossRefPubMed Kiely AP, Asi Y, Kara E, Limousin P, Ling H, Lewis P, et al. α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 2013;125(5):753–69.PubMedCentralCrossRefPubMed
7.
go back to reference Pasanen P, Myllykangas L, Siitonen M, Raunio A, Kaakkola S, Lyytinen J, et al. A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging. 2014. Pasanen P, Myllykangas L, Siitonen M, Raunio A, Kaakkola S, Lyytinen J, et al. A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging. 2014.
8.
go back to reference Kara E, Lewis PA, Ling H, Proukakis C, Houlden H, Hardy J. α-Synuclein mutations cluster around a putative protein loop. Neurosci Lett. 2013;546:67–70.PubMedCentralCrossRefPubMed Kara E, Lewis PA, Ling H, Proukakis C, Houlden H, Hardy J. α-Synuclein mutations cluster around a putative protein loop. Neurosci Lett. 2013;546:67–70.PubMedCentralCrossRefPubMed
9.
go back to reference Collaboration TM-SAR. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med. 2013;369:233–44.CrossRef Collaboration TM-SAR. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med. 2013;369:233–44.CrossRef
10.
go back to reference Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N, et al. G51D α-synuclein mutation causes a novel Parkinsonian–pyramidal syndrome. Ann Neurol. 2013;73(4):459–71.CrossRefPubMed Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N, et al. G51D α-synuclein mutation causes a novel Parkinsonian–pyramidal syndrome. Ann Neurol. 2013;73(4):459–71.CrossRefPubMed
11.
go back to reference Tokutake T, Ishikawa A, Yoshimura N, Miyashita A, Kuwano R, Nishizawa M, et al. Clinical and neuroimaging features of patient with early-onset Parkinson’s disease with dementia carrying SNCA p.G51D mutation. Parkinsonism Relat Disord. 2014;20(2):262–4.CrossRefPubMed Tokutake T, Ishikawa A, Yoshimura N, Miyashita A, Kuwano R, Nishizawa M, et al. Clinical and neuroimaging features of patient with early-onset Parkinson’s disease with dementia carrying SNCA p.G51D mutation. Parkinsonism Relat Disord. 2014;20(2):262–4.CrossRefPubMed
12.
go back to reference Kara E, Kiely AP, Proukakis C, Giffin N, Love S, Hehir J, et al. A 6.4 mb duplication of the α-synuclein locus causing frontotemporal dementia and parkinsonism: phenotype-genotype correlations. JAMA Neurol. 2014;71(9):1162–71.PubMedCentralCrossRefPubMed Kara E, Kiely AP, Proukakis C, Giffin N, Love S, Hehir J, et al. A 6.4 mb duplication of the α-synuclein locus causing frontotemporal dementia and parkinsonism: phenotype-genotype correlations. JAMA Neurol. 2014;71(9):1162–71.PubMedCentralCrossRefPubMed
13.
go back to reference Seidel K, Mahlke J, Siswanto S, Krüger R, Heinsen H, Auburger G, et al. The brainstem pathologies of Parkinson’s disease and dementia with lewy bodies. Brain Pathol. 2014;25(2):121–35.CrossRefPubMed Seidel K, Mahlke J, Siswanto S, Krüger R, Heinsen H, Auburger G, et al. The brainstem pathologies of Parkinson’s disease and dementia with lewy bodies. Brain Pathol. 2014;25(2):121–35.CrossRefPubMed
14.
go back to reference Kovacs G, Wagner U, Dumont B, Pikkarainen M, Osman A, Streichenberger N, et al. An antibody with high reactivity for disease-associated α-synuclein reveals extensive brain pathology. Acta Neuropathol. 2012;124(1):37–50.CrossRefPubMed Kovacs G, Wagner U, Dumont B, Pikkarainen M, Osman A, Streichenberger N, et al. An antibody with high reactivity for disease-associated α-synuclein reveals extensive brain pathology. Acta Neuropathol. 2012;124(1):37–50.CrossRefPubMed
15.
go back to reference Kovacs GG, Breydo L, Green R, Kis V, Puska G, Lőrincz P, et al. Intracellular processing of disease-associated α-synuclein in the human brain suggests prion-like cell-to-cell spread. Neurobiol Dis. 2014. Kovacs GG, Breydo L, Green R, Kis V, Puska G, Lőrincz P, et al. Intracellular processing of disease-associated α-synuclein in the human brain suggests prion-like cell-to-cell spread. Neurobiol Dis. 2014.
16.
go back to reference Chen L, Periquet M, Wang X, Negro A, McLean PJ, Hyman BT, et al. Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin Invest. 2009;119(11):3257–65.PubMedCentralPubMed Chen L, Periquet M, Wang X, Negro A, McLean PJ, Hyman BT, et al. Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin Invest. 2009;119(11):3257–65.PubMedCentralPubMed
17.
go back to reference Hejjaoui M, Butterfield S, Fauvet B, Vercruysse F, Cui J, Dikiy I, et al. Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125. J Am Chem Soc. 2012;134(11):5196–210.PubMedCentralCrossRefPubMed Hejjaoui M, Butterfield S, Fauvet B, Vercruysse F, Cui J, Dikiy I, et al. Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125. J Am Chem Soc. 2012;134(11):5196–210.PubMedCentralCrossRefPubMed
18.
go back to reference Negro A, Brunati AM, Donella-Deana A, Massimino ML, Pinna LA. Multiple phosphorylation of α-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. FASEB J. 2002;16(2):210–2.PubMed Negro A, Brunati AM, Donella-Deana A, Massimino ML, Pinna LA. Multiple phosphorylation of α-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. FASEB J. 2002;16(2):210–2.PubMed
19.
go back to reference Tai H-C, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci. 2008;9(11):826–38.CrossRefPubMed Tai H-C, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci. 2008;9(11):826–38.CrossRefPubMed
20.
go back to reference Komatsu M, Waguri S, Koike M, Sou Y-S, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131(6):1149–63.CrossRefPubMed Komatsu M, Waguri S, Koike M, Sou Y-S, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131(6):1149–63.CrossRefPubMed
21.
go back to reference Doherty KM, Silveira-Moriyama L, Parkkinen L, Healy DG, Farrell M, Mencacci NE, et al. Parkin disease: a clinicopathologic entity? JAMA Neurol. 2013;70(5):571–9.PubMedCentralCrossRefPubMed Doherty KM, Silveira-Moriyama L, Parkkinen L, Healy DG, Farrell M, Mencacci NE, et al. Parkin disease: a clinicopathologic entity? JAMA Neurol. 2013;70(5):571–9.PubMedCentralCrossRefPubMed
22.
go back to reference Asi YT, Ling H, Ahmed Z, Lees AJ, Revesz T, Holton JL. Neuropathological features of multiple system atrophy with cognitive impairment. Mov Disord. 2014;29(7):884–8.CrossRefPubMed Asi YT, Ling H, Ahmed Z, Lees AJ, Revesz T, Holton JL. Neuropathological features of multiple system atrophy with cognitive impairment. Mov Disord. 2014;29(7):884–8.CrossRefPubMed
24.
go back to reference Fuchs J, Nilsson C, Kachergus J, Munz M, Larsson E-M, Schüle B, et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology. 2007;68(12):916–22.CrossRefPubMed Fuchs J, Nilsson C, Kachergus J, Munz M, Larsson E-M, Schüle B, et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology. 2007;68(12):916–22.CrossRefPubMed
25.
go back to reference Nishioka K, Ross OA, Ishii K, Kachergus JM, Ishiwata K, Kitagawa M, et al. Expanding the clinical phenotype of SNCA duplication carriers. Mov Disord. 2009;24(12):1811–9.CrossRefPubMed Nishioka K, Ross OA, Ishii K, Kachergus JM, Ishiwata K, Kitagawa M, et al. Expanding the clinical phenotype of SNCA duplication carriers. Mov Disord. 2009;24(12):1811–9.CrossRefPubMed
26.
go back to reference Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord. 2013;28(6):811–3.CrossRefPubMed Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord. 2013;28(6):811–3.CrossRefPubMed
27.
go back to reference Marui W, Iseki E, Nakai T, Miura S, Kato M, Uéda K, et al. Progression and staging of Lewy pathology in brains from patients with dementia with Lewy bodies. J Neurol Sci. 2002;195(2):153–9.CrossRefPubMed Marui W, Iseki E, Nakai T, Miura S, Kato M, Uéda K, et al. Progression and staging of Lewy pathology in brains from patients with dementia with Lewy bodies. J Neurol Sci. 2002;195(2):153–9.CrossRefPubMed
28.
go back to reference Braak H, Del Tredici K, Rub U, de Vos R, Jansen Steur E, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.CrossRefPubMed Braak H, Del Tredici K, Rub U, de Vos R, Jansen Steur E, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.CrossRefPubMed
29.
go back to reference Nakashima-Yasuda H, Uryu K, Robinson J, Xie S, Hurtig H, Duda J, et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 2007;114(3):221–9.CrossRefPubMed Nakashima-Yasuda H, Uryu K, Robinson J, Xie S, Hurtig H, Duda J, et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 2007;114(3):221–9.CrossRefPubMed
30.
go back to reference Geser F, Malunda JA, Hurtig HI, Duda JE, Wenning GK, Gilman S, et al. TDP-43 pathology occurs infrequently in multiple system atrophy. Neuropathol Appl Neurobiol. 2011;37(4):358–65. Epub 2010/10/15.PubMedCentralCrossRefPubMed Geser F, Malunda JA, Hurtig HI, Duda JE, Wenning GK, Gilman S, et al. TDP-43 pathology occurs infrequently in multiple system atrophy. Neuropathol Appl Neurobiol. 2011;37(4):358–65. Epub 2010/10/15.PubMedCentralCrossRefPubMed
31.
go back to reference Abeliovich A, Schmitz Y, Fariñas I, Choi-Lundberg D, Ho W-H, Castillo PE, et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25(1):239–52.CrossRefPubMed Abeliovich A, Schmitz Y, Fariñas I, Choi-Lundberg D, Ho W-H, Castillo PE, et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25(1):239–52.CrossRefPubMed
32.
go back to reference Rohan de Silva HA, Khan NL, Wood NW. The genetics of Parkinson’s disease. Curr Opin Genet Dev. 2000;10(3):292–8.CrossRef Rohan de Silva HA, Khan NL, Wood NW. The genetics of Parkinson’s disease. Curr Opin Genet Dev. 2000;10(3):292–8.CrossRef
33.
go back to reference Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J Biol Chem. 2011;286(23):20710–26.PubMedCentralCrossRefPubMed Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J Biol Chem. 2011;286(23):20710–26.PubMedCentralCrossRefPubMed
34.
go back to reference Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC. α-synuclein cooperates with CSPα in preventing neurodegeneration. Cell. 2005;123(3):383–96.CrossRefPubMed Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC. α-synuclein cooperates with CSPα in preventing neurodegeneration. Cell. 2005;123(3):383–96.CrossRefPubMed
35.
go back to reference Anderson J, Walker D, Goldstein J, de Laat R, Banducci K, Caccavello R, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006;281:29739–52.CrossRefPubMed Anderson J, Walker D, Goldstein J, de Laat R, Banducci K, Caccavello R, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006;281:29739–52.CrossRefPubMed
36.
go back to reference Giasson BI, Duda JE, Murray IVJ, Chen Q, Souza JM, Hurtig HI, et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science. 2000;290(5493):985–9.CrossRefPubMed Giasson BI, Duda JE, Murray IVJ, Chen Q, Souza JM, Hurtig HI, et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science. 2000;290(5493):985–9.CrossRefPubMed
37.
go back to reference Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG. Ubiquitination of α-synuclein in lewy bodies is a pathological event Not associated with impairment of proteasome function. J Biol Chem. 2003;278(45):44405–11.CrossRefPubMed Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG. Ubiquitination of α-synuclein in lewy bodies is a pathological event Not associated with impairment of proteasome function. J Biol Chem. 2003;278(45):44405–11.CrossRefPubMed
38.
go back to reference Guerrero E, Vasudevaraju P, Hegde M, Britton GB, Rao KS. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease. Mol Neurobiol. 2013;47(2):525–36.CrossRefPubMed Guerrero E, Vasudevaraju P, Hegde M, Britton GB, Rao KS. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease. Mol Neurobiol. 2013;47(2):525–36.CrossRefPubMed
39.
go back to reference Yamashita S, Sakashita N, Yamashita T, Tawara N, Tasaki M, Kawakami K, et al. Concomitant accumulation of α-synuclein and TDP-43 in a patient with corticobasal degeneration. J Neurol. 2014;1–9. Yamashita S, Sakashita N, Yamashita T, Tawara N, Tasaki M, Kawakami K, et al. Concomitant accumulation of α-synuclein and TDP-43 in a patient with corticobasal degeneration. J Neurol. 2014;1–9.
40.
go back to reference Ishizawa T, Mattila P, Davies P, Wang D, Dickson DW. Colocalization of Tau and alpha-synuclein epitopes in lewy bodies. J Neuropathol Exp Neurol. 2003;62(4):389–97.PubMed Ishizawa T, Mattila P, Davies P, Wang D, Dickson DW. Colocalization of Tau and alpha-synuclein epitopes in lewy bodies. J Neuropathol Exp Neurol. 2003;62(4):389–97.PubMed
41.
go back to reference Sengupta U, Guerrero-Muñoz MJ, Castillo-Carranza DL, Lasagna-Reeves CA, Gerson JE, Paulucci-Holthauzen AA, et al. Pathological interface between oligomeric alpha-synuclein and Tau in synucleinopathies. Biol Psychiatry. 2015. Sengupta U, Guerrero-Muñoz MJ, Castillo-Carranza DL, Lasagna-Reeves CA, Gerson JE, Paulucci-Holthauzen AA, et al. Pathological interface between oligomeric alpha-synuclein and Tau in synucleinopathies. Biol Psychiatry. 2015.
42.
go back to reference Hossain S, Alim A, Takeda K, Kaji H, Shinoda T, Ueda K. Limited proteolysis of NACP/alpha-synuclein. J Alzheimers Dis. 2001;3:577–84.PubMed Hossain S, Alim A, Takeda K, Kaji H, Shinoda T, Ueda K. Limited proteolysis of NACP/alpha-synuclein. J Alzheimers Dis. 2001;3:577–84.PubMed
43.
go back to reference Tenreiro S, Reimão-Pinto MM, Antas P, Rino J, Wawrzycka D, Macedo D, et al. Phosphorylation modulates clearance of alpha-synuclein inclusions in a yeast model of Parkinson’s disease. PLoS Genet. 2014;10(5), e1004302.PubMedCentralCrossRefPubMed Tenreiro S, Reimão-Pinto MM, Antas P, Rino J, Wawrzycka D, Macedo D, et al. Phosphorylation modulates clearance of alpha-synuclein inclusions in a yeast model of Parkinson’s disease. PLoS Genet. 2014;10(5), e1004302.PubMedCentralCrossRefPubMed
44.
go back to reference Selkoe D, Dettmer U, Luth E, Kim N, Newman A, Bartels T. Defining the native state of α-synuclein. Neurodegener Dis. 2014;13(2–3):114–7.CrossRefPubMed Selkoe D, Dettmer U, Luth E, Kim N, Newman A, Bartels T. Defining the native state of α-synuclein. Neurodegener Dis. 2014;13(2–3):114–7.CrossRefPubMed
45.
go back to reference Bartels T, Choi JG, Selkoe DJ. alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011;477(7362):107–10. Epub 2011/08/16.PubMedCentralCrossRefPubMed Bartels T, Choi JG, Selkoe DJ. alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011;477(7362):107–10. Epub 2011/08/16.PubMedCentralCrossRefPubMed
46.
go back to reference Dettmer U, Newman AJ, Luth ES, Bartels T, Selkoe D. In vivo cross-linking reveals principally oligomeric forms of α-synuclein and β-synuclein in neurons and Non-neural cells. J Biol Chem. 2013;288(9):6371–85.PubMedCentralCrossRefPubMed Dettmer U, Newman AJ, Luth ES, Bartels T, Selkoe D. In vivo cross-linking reveals principally oligomeric forms of α-synuclein and β-synuclein in neurons and Non-neural cells. J Biol Chem. 2013;288(9):6371–85.PubMedCentralCrossRefPubMed
49.
go back to reference Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS. Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect. 2011;119(6):807–14. Epub 2011/01/20.PubMedCentralCrossRefPubMed Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS. Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect. 2011;119(6):807–14. Epub 2011/01/20.PubMedCentralCrossRefPubMed
50.
go back to reference Brundin P, Li J-Y, Holton JL, Lindvall O, Revesz T. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci. 2008;9(10):741–5.CrossRefPubMed Brundin P, Li J-Y, Holton JL, Lindvall O, Revesz T. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci. 2008;9(10):741–5.CrossRefPubMed
51.
go back to reference Greenbaum EA, Graves CL, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, et al. The E46K mutation in α-synuclein increases amyloid fibril formation. J Biol Chem. 2005;280(9):7800–7.CrossRefPubMed Greenbaum EA, Graves CL, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, et al. The E46K mutation in α-synuclein increases amyloid fibril formation. J Biol Chem. 2005;280(9):7800–7.CrossRefPubMed
52.
go back to reference Choi W, Zibaee S, Jakes R, Serpell LC, Davletov B, Anthony Crowther R, et al. Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein. FEBS Lett. 2004;576(3):363–8.CrossRefPubMed Choi W, Zibaee S, Jakes R, Serpell LC, Davletov B, Anthony Crowther R, et al. Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein. FEBS Lett. 2004;576(3):363–8.CrossRefPubMed
53.
go back to reference Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4(11):1318–20. Epub 1998/11/11.CrossRefPubMed Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4(11):1318–20. Epub 1998/11/11.CrossRefPubMed
54.
go back to reference Conway KA, Lee S-J, Rochet J-C, Ding TT, Williamson RE, Lansbury PT. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci. 2000;97(2):571–6.PubMedCentralCrossRefPubMed Conway KA, Lee S-J, Rochet J-C, Ding TT, Williamson RE, Lansbury PT. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci. 2000;97(2):571–6.PubMedCentralCrossRefPubMed
55.
go back to reference Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, et al. Both familial Parkinson’s disease mutations accelerate α-synuclein aggregation. J Biol Chem. 1999;274(14):9843–6.CrossRefPubMed Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, et al. Both familial Parkinson’s disease mutations accelerate α-synuclein aggregation. J Biol Chem. 1999;274(14):9843–6.CrossRefPubMed
56.
go back to reference Fares M-B, Bouziad NA, Dikiy I, Mbefo MK, Jovičić A, Kiely A, et al. The novel Parkinson’s disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Hum Mol Genet. 2014;23(17):4491–509.CrossRefPubMed Fares M-B, Bouziad NA, Dikiy I, Mbefo MK, Jovičić A, Kiely A, et al. The novel Parkinson’s disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Hum Mol Genet. 2014;23(17):4491–509.CrossRefPubMed
57.
go back to reference Rutherford NJ, Moore BD, Golde TE, Giasson BI. Divergent effects of the H50Q and G51D SNCA mutations on the aggregation of α-synuclein. J Neurochem. 2014;131(6):859–67.CrossRefPubMed Rutherford NJ, Moore BD, Golde TE, Giasson BI. Divergent effects of the H50Q and G51D SNCA mutations on the aggregation of α-synuclein. J Neurochem. 2014;131(6):859–67.CrossRefPubMed
58.
go back to reference Ghosh D, Sahay S, Ranjan P, Salot S, Mohite GM, Singh PK, et al. The newly discovered Parkinson’s disease associated Finnish mutation (A53E) attenuates α-synuclein aggregation and membrane binding. Biochemistry (Mosc). 2014;53(41):6419–21.CrossRef Ghosh D, Sahay S, Ranjan P, Salot S, Mohite GM, Singh PK, et al. The newly discovered Parkinson’s disease associated Finnish mutation (A53E) attenuates α-synuclein aggregation and membrane binding. Biochemistry (Mosc). 2014;53(41):6419–21.CrossRef
59.
go back to reference Chi Y-C, Armstrong GS, Jones DNM, Eisenmesser EZ, Liu C-W. Residue histidine 50 plays a Key role in protecting α-synuclein from aggregation at physiological pH. J Biol Chem. 2014;289(22):15474–81.PubMedCentralCrossRefPubMed Chi Y-C, Armstrong GS, Jones DNM, Eisenmesser EZ, Liu C-W. Residue histidine 50 plays a Key role in protecting α-synuclein from aggregation at physiological pH. J Biol Chem. 2014;289(22):15474–81.PubMedCentralCrossRefPubMed
60.
go back to reference Khalaf O, Fauvet B, Oueslati A, Dikiy I, Mahul-Mellier A-L, Ruggeri FS, et al. The H50Q mutation enhances α-synuclein aggregation, secretion, and toxicity. J Biol Chem. 2014;289(32):21856–76.PubMedCentralCrossRefPubMed Khalaf O, Fauvet B, Oueslati A, Dikiy I, Mahul-Mellier A-L, Ruggeri FS, et al. The H50Q mutation enhances α-synuclein aggregation, secretion, and toxicity. J Biol Chem. 2014;289(32):21856–76.PubMedCentralCrossRefPubMed
61.
go back to reference Porcari R, Proukakis C, Waudby CA, Bolognesi B, Mangione PP, Paton JFS, et al. The H50Q mutation induces a 10-fold decrease in the solubility of α-synuclein. J Biol Chem. 2015;290(4):2395–404.PubMedCentralCrossRefPubMed Porcari R, Proukakis C, Waudby CA, Bolognesi B, Mangione PP, Paton JFS, et al. The H50Q mutation induces a 10-fold decrease in the solubility of α-synuclein. J Biol Chem. 2015;290(4):2395–404.PubMedCentralCrossRefPubMed
62.
go back to reference Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci. 2011;108(10):4194–9.PubMedCentralCrossRefPubMed Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci. 2011;108(10):4194–9.PubMedCentralCrossRefPubMed
63.
go back to reference Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol. 2013;73(2):155–69.PubMedCentralCrossRefPubMed Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol. 2013;73(2):155–69.PubMedCentralCrossRefPubMed
64.
go back to reference Markopoulou K, Dickson D, McComb R, Wszolek Z, Katechalidou L, Avery L, et al. Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Acta Neuropathol. 2008;116(1):25–35.PubMedCentralCrossRefPubMed Markopoulou K, Dickson D, McComb R, Wszolek Z, Katechalidou L, Avery L, et al. Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Acta Neuropathol. 2008;116(1):25–35.PubMedCentralCrossRefPubMed
65.
go back to reference Lemkau LR, Comellas G, Kloepper KD, Woods WS, George JM, Rienstra CM. Mutant protein A30P α-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem. 2012;287(14):11526–32.PubMedCentralCrossRefPubMed Lemkau LR, Comellas G, Kloepper KD, Woods WS, George JM, Rienstra CM. Mutant protein A30P α-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem. 2012;287(14):11526–32.PubMedCentralCrossRefPubMed
66.
go back to reference Seidel K, Schöls L, Nuber S, Petrasch-Parwez E, Gierga K, Wszolek Z, et al. First appraisal of brain pathology owing to A30P mutant alpha-synuclein. Ann Neurol. 2010;67(5):684–9.PubMed Seidel K, Schöls L, Nuber S, Petrasch-Parwez E, Gierga K, Wszolek Z, et al. First appraisal of brain pathology owing to A30P mutant alpha-synuclein. Ann Neurol. 2010;67(5):684–9.PubMed
67.
go back to reference Obi T, Nishioka K, Ross OA, Terada T, Yamazaki K, Sugiura A, et al. Clincopathologic study of a SNCA gene duplication patient with Parkinson disease and dementia. Neurology. 2008;70(3):238–41.CrossRefPubMed Obi T, Nishioka K, Ross OA, Terada T, Yamazaki K, Sugiura A, et al. Clincopathologic study of a SNCA gene duplication patient with Parkinson disease and dementia. Neurology. 2008;70(3):238–41.CrossRefPubMed
68.
go back to reference Ikeuchi T, Kakita A, Shiga A, Kasuga K, Kaneko H, Tan CF, et al. Patients homozygous and heterozygous for snca duplication in a family with parkinsonism and dementia. Arch Neurol. 2008;65(4):514–9.CrossRefPubMed Ikeuchi T, Kakita A, Shiga A, Kasuga K, Kaneko H, Tan CF, et al. Patients homozygous and heterozygous for snca duplication in a family with parkinsonism and dementia. Arch Neurol. 2008;65(4):514–9.CrossRefPubMed
69.
go back to reference Gwinn-Hardy K, Mehta ND, Farrer M, Maraganore D, Muenter M, Yen SH, et al. Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol. 2000;99(6):663–72. Epub 2000/06/27.CrossRefPubMed Gwinn-Hardy K, Mehta ND, Farrer M, Maraganore D, Muenter M, Yen SH, et al. Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol. 2000;99(6):663–72. Epub 2000/06/27.CrossRefPubMed
70.
go back to reference Ozawa T, Paviour D, Quinn NP, Josephs KA, Sangha H, Kilford L, et al. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain. 2004;127(12):2657–71.CrossRefPubMed Ozawa T, Paviour D, Quinn NP, Josephs KA, Sangha H, Kilford L, et al. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain. 2004;127(12):2657–71.CrossRefPubMed
Metadata
Title
Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation
Authors
Aoife P. Kiely
Helen Ling
Yasmine T. Asi
Eleanna Kara
Christos Proukakis
Anthony H. Schapira
Huw R. Morris
Helen C. Roberts
Steven Lubbe
Patricia Limousin
Patrick A. Lewis
Andrew J. Lees
Niall Quinn
John Hardy
Seth Love
Tamas Revesz
Henry Houlden
Janice L. Holton
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2015
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-015-0038-3

Other articles of this Issue 1/2015

Molecular Neurodegeneration 1/2015 Go to the issue