Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2015

Open Access 01-12-2015 | Research article

Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimer’s pathophysiology and susceptibility

Authors: Daniel Sevlever, Fanggeng Zou, Li Ma, Sebastian Carrasquillo, Michael G Crump, Oliver J Culley, Talisha A Hunter, Gina D Bisceglio, Linda Younkin, Mariet Allen, Minerva M Carrasquillo, Sigrid B Sando, Jan O Aasly, Dennis W Dickson, Neill R Graff-Radford, Ronald C Petersen, Olivia Belbin, Kevin Morgan for ARUK consortium

Published in: Molecular Neurodegeneration | Issue 1/2015

Login to get access

Abstract

Background

Alzheimer’s disease is a neurodegenerative disorder in which extracellular deposition of β-amyloid (Aβ) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal Aβ release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal Aß release at the synapse and hence play an early role in Alzheimer’s pathophysiology.

Results

Here we report 5 polymorphisms in Vesicle-Associated Membrane Protein 1 (VAMP1), a gene encoding a member of the SNARE complex, associated with bidirectionally altered cerebellar VAMP1 transcript levels (all p < 0.05). At the functional level, we demonstrated that control of VAMP1 expression by heterogeneous knockdown in mice resulted in up to 74% reduction in neuronal Aβ exocytosis (p < 0.001). We performed a case-control association study of the 5 VAMP1 expression regulating polymorphisms in 4,667 Alzheimer’s disease patients and 6,175 controls to determine their contribution to Alzheimer’s disease risk. We found that polymorphisms associated with increased brain VAMP1 transcript levels conferred higher risk for Alzheimer’s disease than those associated with lower VAMP1 transcript levels (p = 0.03). Moreover, we also report a modest protective association for a common VAMP1 polymorphism with Alzheimer’s disease risk (OR = 0.88, p = 0.03). This polymorphism was associated with decreased VAMP1 transcript levels (p = 0.02) and was functionally active in a dual luciferase reporter gene assay (p < 0.01).

Conclusions

Genetically regulated VAMP1 expression in the brain may modify both Alzheimer’s disease risk and may contribute to Alzheimer’s pathophysiology.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, et al. Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci. 2004;24(45):10191–200. doi:24/45/10191. 10.1523/JNEUROSCI.3432-04.2004.CrossRefPubMed Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, et al. Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci. 2004;24(45):10191–200. doi:24/45/10191. 10.1523/JNEUROSCI.3432-04.2004.CrossRefPubMed
3.
go back to reference Calabrese B, Shaked GM, Tabarean IV, Braga J, Koo EH, Halpain S. Rapid, concurrent alterations in pre- and postsynaptic structure induced by naturally-secreted amyloid-beta protein. Mol Cell Neurosci. 2007;35(2):183–93. doi:S1044-7431(07)00031-0 10.1016/j.mcn.2007.02.006.PubMedCentralCrossRefPubMed Calabrese B, Shaked GM, Tabarean IV, Braga J, Koo EH, Halpain S. Rapid, concurrent alterations in pre- and postsynaptic structure induced by naturally-secreted amyloid-beta protein. Mol Cell Neurosci. 2007;35(2):183–93. doi:S1044-7431(07)00031-0 10.1016/j.mcn.2007.02.006.PubMedCentralCrossRefPubMed
4.
go back to reference Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron. 2006;52(5):831–43. doi:S0896-6273(06)00872-5 10.1016/j.neuron.2006.10.035.PubMedCentralCrossRefPubMed Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron. 2006;52(5):831–43. doi:S0896-6273(06)00872-5 10.1016/j.neuron.2006.10.035.PubMedCentralCrossRefPubMed
5.
go back to reference Shrestha BR, Vitolo OV, Joshi P, Lordkipanidze T, Shelanski M, Dunaevsky A. Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Mol Cell Neurosci. 2006;33(3):274–82. doi:S1044-7431(06)00167-9 10.1016/j.mcn.2006.07.011.CrossRefPubMed Shrestha BR, Vitolo OV, Joshi P, Lordkipanidze T, Shelanski M, Dunaevsky A. Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Mol Cell Neurosci. 2006;33(3):274–82. doi:S1044-7431(06)00167-9 10.1016/j.mcn.2006.07.011.CrossRefPubMed
6.
go back to reference Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci. 2007;27(11):2866–75. doi:27/11/2866 10.1523/JNEUROSCI.4970-06.2007.CrossRefPubMed Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci. 2007;27(11):2866–75. doi:27/11/2866 10.1523/JNEUROSCI.4970-06.2007.CrossRefPubMed
7.
go back to reference Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007;27(4):796–807. doi:27/4/796 10.1523/JNEUROSCI.3501-06.2007.CrossRefPubMed Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007;27(4):796–807. doi:27/4/796 10.1523/JNEUROSCI.3501-06.2007.CrossRefPubMed
8.
go back to reference Evans NA, Facci L, Owen DE, Soden PE, Burbidge SA, Prinjha RK, et al. Abeta(1-42) reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: a quantitative analysis. J Neurosci Methods. 2008;175(1):96–103. doi:S0165-0270(08)00461-5 10.1016/j.jneumeth.2008.08.001.CrossRefPubMed Evans NA, Facci L, Owen DE, Soden PE, Burbidge SA, Prinjha RK, et al. Abeta(1-42) reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: a quantitative analysis. J Neurosci Methods. 2008;175(1):96–103. doi:S0165-0270(08)00461-5 10.1016/j.jneumeth.2008.08.001.CrossRefPubMed
9.
go back to reference Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, et al. APP processing and synaptic function. Neuron. 2003;37(6):925–37.CrossRefPubMed Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, et al. APP processing and synaptic function. Neuron. 2003;37(6):925–37.CrossRefPubMed
10.
go back to reference Russell CL, Semerdjieva S, Empson RM, Austen BM, Beesley PW, Alifragis P. Amyloid-beta acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2. PLoS One. 2012;7(8):e43201. doi: 10.1371/journal.pone.0043201. PONE-D-12-07922.PubMedCentralCrossRefPubMed Russell CL, Semerdjieva S, Empson RM, Austen BM, Beesley PW, Alifragis P. Amyloid-beta acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2. PLoS One. 2012;7(8):e43201. doi: 10.1371/journal.pone.0043201. PONE-D-12-07922.PubMedCentralCrossRefPubMed
11.
go back to reference Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, et al. Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron. 2008;58(1):42–51. doi:S0896-6273(08)00124-4 10.1016/j.neuron.2008.02.003.PubMedCentralCrossRefPubMed Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, et al. Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron. 2008;58(1):42–51. doi:S0896-6273(08)00124-4 10.1016/j.neuron.2008.02.003.PubMedCentralCrossRefPubMed
12.
go back to reference Xu J, Luo F, Zhang Z, Xue L, Wu XS, Chiang HC, et al. SNARE proteins synaptobrevin, SNAP-25, and syntaxin are involved in rapid and slow endocytosis at synapses. Cell Rep. 2013;3(5):1414–21. doi:S2211-1247(13)00117-4 10.1016/j.celrep.2013.03.010.PubMedCentralCrossRefPubMed Xu J, Luo F, Zhang Z, Xue L, Wu XS, Chiang HC, et al. SNARE proteins synaptobrevin, SNAP-25, and syntaxin are involved in rapid and slow endocytosis at synapses. Cell Rep. 2013;3(5):1414–21. doi:S2211-1247(13)00117-4 10.1016/j.celrep.2013.03.010.PubMedCentralCrossRefPubMed
13.
go back to reference Del Prete D, Lombino F, Liu X, D’Adamio L. APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions. PLoS One. 2014;9(9):e108576. doi: 10.1371/journal.pone.0108576. PONE-D-14-29860.PubMedCentralCrossRefPubMed Del Prete D, Lombino F, Liu X, D’Adamio L. APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions. PLoS One. 2014;9(9):e108576. doi: 10.1371/journal.pone.0108576. PONE-D-14-29860.PubMedCentralCrossRefPubMed
14.
go back to reference Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, et al. A genome-wide association study of global gene expression. Nat Genet. 2007;39(10):1202–7. doi:ng2109.CrossRefPubMed Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, et al. A genome-wide association study of global gene expression. Nat Genet. 2007;39(10):1202–7. doi:ng2109.CrossRefPubMed
15.
go back to reference Bourassa CV, Meijer IA, Merner ND, Grewal KK, Stefanelli MG, Hodgkinson K, et al. VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. Am J Hum Genet. 2012;91(3):548–52. doi:S0002-9297(12)00375-8.PubMedCentralCrossRefPubMed Bourassa CV, Meijer IA, Merner ND, Grewal KK, Stefanelli MG, Hodgkinson K, et al. VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. Am J Hum Genet. 2012;91(3):548–52. doi:S0002-9297(12)00375-8.PubMedCentralCrossRefPubMed
16.
go back to reference Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL. Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry. 2000;48(3):184–96. doi:S0006-3223(00)00875-1.CrossRefPubMed Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL. Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry. 2000;48(3):184–96. doi:S0006-3223(00)00875-1.CrossRefPubMed
17.
go back to reference Nystuen AM, Schwendinger JK, Sachs AJ, Yang AW, Haider NB. A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant. Neurogenetics. 2007;8(1):1–10. doi: 10.1007/s10048-006-0068-7.CrossRefPubMed Nystuen AM, Schwendinger JK, Sachs AJ, Yang AW, Haider NB. A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant. Neurogenetics. 2007;8(1):1–10. doi: 10.1007/s10048-006-0068-7.CrossRefPubMed
18.
go back to reference McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44.CrossRefPubMed McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44.CrossRefPubMed
19.
go back to reference Sando SB, Melquist S, Cannon A, Hutton ML, Sletvold O, Saltvedt I, et al. APOE epsilon 4 lowers age at onset and is a high risk factor for Alzheimer’s disease; a case control study from central Norway. BMC Neurol. 2008;8:9. doi:1471-2377-8-9.PubMedCentralCrossRefPubMed Sando SB, Melquist S, Cannon A, Hutton ML, Sletvold O, Saltvedt I, et al. APOE epsilon 4 lowers age at onset and is a high risk factor for Alzheimer’s disease; a case control study from central Norway. BMC Neurol. 2008;8:9. doi:1471-2377-8-9.PubMedCentralCrossRefPubMed
20.
go back to reference Sando SB, Melquist S, Cannon A, Hutton M, Sletvold O, Saltvedt I, et al. Risk-reducing effect of education in Alzheimer’s disease. Int J Geriatr Psychiatry. 2008;23(11):1156–62. doi: 10.1002/gps.2043.CrossRefPubMed Sando SB, Melquist S, Cannon A, Hutton M, Sletvold O, Saltvedt I, et al. Risk-reducing effect of education in Alzheimer’s disease. Int J Geriatr Psychiatry. 2008;23(11):1156–62. doi: 10.1002/gps.2043.CrossRefPubMed
21.
go back to reference Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, et al. Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17(5):661–3. doi:nn.3697.CrossRefPubMed Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, et al. Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17(5):661–3. doi:nn.3697.CrossRefPubMed
Metadata
Title
Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimer’s pathophysiology and susceptibility
Authors
Daniel Sevlever
Fanggeng Zou
Li Ma
Sebastian Carrasquillo
Michael G Crump
Oliver J Culley
Talisha A Hunter
Gina D Bisceglio
Linda Younkin
Mariet Allen
Minerva M Carrasquillo
Sigrid B Sando
Jan O Aasly
Dennis W Dickson
Neill R Graff-Radford
Ronald C Petersen
Olivia Belbin
Kevin Morgan for ARUK consortium
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2015
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-015-0015-x

Other articles of this Issue 1/2015

Molecular Neurodegeneration 1/2015 Go to the issue