Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2017

Open Access 01-12-2017 | Letter to the Editor

Novel SEA and LG2 Agrin mutations causing congenital Myasthenic syndrome

Authors: Jianying Xi, Chong Yan, Wei-Wei Liu, Kai Qiao, Jie Lin, Xia Tian, Hui Wu, Jiahong Lu, Lee-Jun Wong, David Beeson, Chongbo Zhao

Published in: Orphanet Journal of Rare Diseases | Issue 1/2017

Login to get access

Abstract

Background

Congenital myasthenic syndrome caused by mutations in AGRN, a gene encoding a protein with a crucial function at the neuromuscular junction, is a rare disorder. There are few studies in this area. We here present two cases with novel mutations of AGRN of which we further investigated possible pathogenesis.

Results

Patient 1 had general limb weakness with fluctuation and deterioration in the afternoon and in hot weather. Patient 2 had early-onset weakness of lower extremities with suspected fluctuation in the early stages, which then progressed to the upper limbs. Both distal and proximal muscles were involved. Repetitive stimulation on EMG in both patients showed decrement in proximal and distal limbs. Patient 2 showed a marked response to salbutamol while Patient 1 did not. By targeted exome sequencing, two novel homozygous missense variants, p.L1176P and p.R1698C, in the SEA and LG2 domain of agrin were identified respectively. Further functional analysis revealed instability of the protein and impaired clustering of the acetylcholine receptor (AChR) by both mutations.

Conclusions

The mutations identified in AGRN in our study may cause congenital myasthenic syndrome by damaging protein stability and interfering with AChR clustering. These results broaden the understandings on the phenotype, genotype and pathogenesis of this rare disorder.
Appendix
Available only for authorised users
Literature
1.
go back to reference Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 2015;14:461.CrossRefPubMed Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 2015;14:461.CrossRefPubMed
2.
3.
go back to reference Nicole S, Azuma Y, Bauche S, et al. Congenital Myasthenic syndromes or inherited disorders of neuromuscular transmission: recent discoveries and open questions. J Neuromuscul Dis. 2017;4:269–84.CrossRefPubMedPubMedCentral Nicole S, Azuma Y, Bauche S, et al. Congenital Myasthenic syndromes or inherited disorders of neuromuscular transmission: recent discoveries and open questions. J Neuromuscul Dis. 2017;4:269–84.CrossRefPubMedPubMedCentral
4.
5.
go back to reference Maselli RA, Arredondo J, Cagney O, et al. Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet. 2010;19:2370–9.CrossRefPubMedPubMedCentral Maselli RA, Arredondo J, Cagney O, et al. Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet. 2010;19:2370–9.CrossRefPubMedPubMedCentral
6.
go back to reference Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. DEV NEUROBIOL. 2011;71:982–1005.CrossRefPubMedPubMedCentral Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. DEV NEUROBIOL. 2011;71:982–1005.CrossRefPubMedPubMedCentral
7.
go back to reference Sanes JR, Lichtman JW. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. NAT REV NEUROSCI. 2001;2:791–805.CrossRefPubMed Sanes JR, Lichtman JW. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. NAT REV NEUROSCI. 2001;2:791–805.CrossRefPubMed
8.
go back to reference Ngo ST, Noakes PG, Phillips WD. Neural agrin: a synaptic stabiliser. Int J Biochem Cell Biol. 2007;39:863–7.CrossRefPubMed Ngo ST, Noakes PG, Phillips WD. Neural agrin: a synaptic stabiliser. Int J Biochem Cell Biol. 2007;39:863–7.CrossRefPubMed
9.
10.
go back to reference Gee SH, Montanaro F, Lindenbaum MH, Carbonetto S. Dystroglycan-alpha, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell. 1994;77:675–86.CrossRefPubMed Gee SH, Montanaro F, Lindenbaum MH, Carbonetto S. Dystroglycan-alpha, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell. 1994;77:675–86.CrossRefPubMed
12.
go back to reference Tsim KW, Ruegg MA, Escher G, Kroger S, McMahan UJ. cDNA that encodes active agrin. Neuron. 1992;8:677–89.CrossRefPubMed Tsim KW, Ruegg MA, Escher G, Kroger S, McMahan UJ. cDNA that encodes active agrin. Neuron. 1992;8:677–89.CrossRefPubMed
13.
go back to reference Rupp F, Ozcelik T, Linial M, et al. Structure and chromosomal localization of the mammalian agrin gene. J Neurosci. 1992;12:3535–44.PubMed Rupp F, Ozcelik T, Linial M, et al. Structure and chromosomal localization of the mammalian agrin gene. J Neurosci. 1992;12:3535–44.PubMed
14.
go back to reference Scotton P, Bleckmann D, Stebler M, et al. Activation of muscle-specific receptor tyrosine kinase and binding to dystroglycan are regulated by alternative mRNA splicing of agrin. J Biol Chem. 2006;281:36835–45.CrossRefPubMed Scotton P, Bleckmann D, Stebler M, et al. Activation of muscle-specific receptor tyrosine kinase and binding to dystroglycan are regulated by alternative mRNA splicing of agrin. J Biol Chem. 2006;281:36835–45.CrossRefPubMed
15.
go back to reference Huze C, Bauche S, Richard P, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet. 2009;85:155–67.CrossRefPubMedPubMedCentral Huze C, Bauche S, Richard P, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet. 2009;85:155–67.CrossRefPubMedPubMedCentral
16.
go back to reference Nicole S, Chaouch A, Torbergsen T, et al. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain. 2014;137:2429–43.CrossRefPubMed Nicole S, Chaouch A, Torbergsen T, et al. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain. 2014;137:2429–43.CrossRefPubMed
17.
go back to reference Maselli RA, Fernandez JM, Arredondo J, et al. LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Hum Genet. 2012;131:1123–35.CrossRefPubMed Maselli RA, Fernandez JM, Arredondo J, et al. LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Hum Genet. 2012;131:1123–35.CrossRefPubMed
18.
go back to reference Karakaya M, Ceyhan-Birsoy O, Beggs AH, Topaloglu H. A novel Missense variant in the AGRN gene; congenital Myasthenic syndrome presenting with head drop. J Clin Neuromuscul Dis. 2017;18:147–51.CrossRefPubMedPubMedCentral Karakaya M, Ceyhan-Birsoy O, Beggs AH, Topaloglu H. A novel Missense variant in the AGRN gene; congenital Myasthenic syndrome presenting with head drop. J Clin Neuromuscul Dis. 2017;18:147–51.CrossRefPubMedPubMedCentral
19.
go back to reference Zhang Y, Dai Y, Han JN, et al. A novel AGRN mutation leads to congenital Myasthenic syndrome only affecting limb-girdle muscle. Chin Med J. 2017;130:2279–82.PubMedPubMedCentral Zhang Y, Dai Y, Han JN, et al. A novel AGRN mutation leads to congenital Myasthenic syndrome only affecting limb-girdle muscle. Chin Med J. 2017;130:2279–82.PubMedPubMedCentral
20.
go back to reference Gesemann M, Denzer AJ, Ruegg MA. Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site. J Cell Biol. 1995;128:625–36.CrossRefPubMed Gesemann M, Denzer AJ, Ruegg MA. Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site. J Cell Biol. 1995;128:625–36.CrossRefPubMed
21.
go back to reference Gesemann M, Cavalli V, Denzer AJ, et al. Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron. 1996;16:755–67.CrossRefPubMed Gesemann M, Cavalli V, Denzer AJ, et al. Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron. 1996;16:755–67.CrossRefPubMed
22.
go back to reference Jacobson C, Montanaro F, Lindenbaum M, Carbonetto S, Ferns M. Alpha-Dystroglycan functions in acetylcholine receptor aggregation but is not a coreceptor for agrin-MuSK signaling. J Neurosci. 1998;18:6340–8.PubMed Jacobson C, Montanaro F, Lindenbaum M, Carbonetto S, Ferns M. Alpha-Dystroglycan functions in acetylcholine receptor aggregation but is not a coreceptor for agrin-MuSK signaling. J Neurosci. 1998;18:6340–8.PubMed
23.
go back to reference Hoch W, Campanelli JT, Harrison S, Scheller RH. Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. EMBO J. 1994;13:2814–21.PubMedPubMedCentral Hoch W, Campanelli JT, Harrison S, Scheller RH. Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. EMBO J. 1994;13:2814–21.PubMedPubMedCentral
24.
go back to reference Nishimune H, Valdez G, Jarad G, et al. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. J Cell Biol. 2008;182:1201–15.CrossRefPubMedPubMedCentral Nishimune H, Valdez G, Jarad G, et al. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. J Cell Biol. 2008;182:1201–15.CrossRefPubMedPubMedCentral
25.
go back to reference Ksiazek I, Burkhardt C, Lin S, et al. Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci. 2007;27:7183–95.CrossRefPubMed Ksiazek I, Burkhardt C, Lin S, et al. Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci. 2007;27:7183–95.CrossRefPubMed
26.
go back to reference Maeda T, Inoue M, Koshiba S, et al. Solution structure of the SEA domain from the murine homologue of ovarian cancer antigen CA125 (MUC16). J Biol Chem. 2004;279:13174–82.CrossRefPubMed Maeda T, Inoue M, Koshiba S, et al. Solution structure of the SEA domain from the murine homologue of ovarian cancer antigen CA125 (MUC16). J Biol Chem. 2004;279:13174–82.CrossRefPubMed
Metadata
Title
Novel SEA and LG2 Agrin mutations causing congenital Myasthenic syndrome
Authors
Jianying Xi
Chong Yan
Wei-Wei Liu
Kai Qiao
Jie Lin
Xia Tian
Hui Wu
Jiahong Lu
Lee-Jun Wong
David Beeson
Chongbo Zhao
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2017
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-017-0732-z

Other articles of this Issue 1/2017

Orphanet Journal of Rare Diseases 1/2017 Go to the issue