Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2017

Open Access 01-12-2017 | Research

Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia

Authors: Jessica L. Zambonin, Allison Bellomo, Hilla Ben-Pazi, David B. Everman, Lee M. Frazer, Michael T. Geraghty, Amy D. Harper, Julie R. Jones, Benjamin Kamien, Kristin Kernohan, Mary Kay Koenig, Matthew Lines, Elizabeth Emma Palmer, Randal Richardson, Reeval Segel, Mark Tarnopolsky, Jason R. Vanstone, Melissa Gibbons, Abigail Collins, Brent L. Fogel, Tracy Dudding-Byth, Kym M. Boycott, Care4Rare Canada Consortium

Published in: Orphanet Journal of Rare Diseases | Issue 1/2017

Login to get access

Abstract

Background

Spinocerebellar ataxia type 29 (SCA29) is an autosomal dominant, non-progressive cerebellar ataxia characterized by infantile-onset hypotonia, gross motor delay and cognitive impairment. Affected individuals exhibit cerebellar dysfunction and often have cerebellar atrophy on neuroimaging. Recently, missense mutations in ITPR1 were determined to be responsible.

Results

Clinical information on 21 individuals from 15 unrelated families with ITPR1 mutations was retrospectively collected using standardized questionnaires, including 11 previously unreported singletons and 2 new patients from a previously reported family. We describe the genetic, clinical and neuroimaging features of these patients to further characterize the clinical features of this rare condition and assess for any genotype-phenotype correlation for this disorder. Our cohort consisted of 9 males and 12 females, with ages ranging from 28 months to 49 years. Disease course was non-progressive with infantile-onset hypotonia and delays in motor and speech development. Gait ataxia was present in all individuals and 10 (48%) were not ambulating independently between the ages of 3–12 years of age. Mild-to-moderate cognitive impairment was present in 17 individuals (85%). Cerebellar atrophy developed after initial symptom presentation in 13 individuals (72%) and was not associated with disease progression or worsening functional impairment. We identified 12 different mutations including 6 novel mutations; 10 mutations were missense (with 4 present in >1 individual), 1 a splice site mutation leading to an in-frame insertion and 1 an in-frame deletion. No specific genotype-phenotype correlations were observed within our cohort.

Conclusions

Our findings document significant clinical heterogeneity between individuals with SCA29 in a large cohort of molecularly confirmed cases. Based on the retrospective observed clinical features and disease course, we provide recommendations for management. Further research into the natural history of SCA29 through prospective studies is an important next step in better understanding the condition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shakkottai VG, Fogel BL. Clinical neurogenetics: autosomal dominant spinocerebellar ataxia. Neurol Clin. 2013;31:987–1007.CrossRefPubMed Shakkottai VG, Fogel BL. Clinical neurogenetics: autosomal dominant spinocerebellar ataxia. Neurol Clin. 2013;31:987–1007.CrossRefPubMed
2.
go back to reference Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI. Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology. 2004;63:2288–92.CrossRefPubMed Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI. Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology. 2004;63:2288–92.CrossRefPubMed
3.
go back to reference Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, et al. Missense mutations in ITPR1 cause autosomal dominant congenital non-progressive spinocerebellar ataxia. Orphanet J Rare Dis. 2012;7:67.CrossRefPubMedPubMedCentral Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, et al. Missense mutations in ITPR1 cause autosomal dominant congenital non-progressive spinocerebellar ataxia. Orphanet J Rare Dis. 2012;7:67.CrossRefPubMedPubMedCentral
4.
go back to reference Sasaki M, Ohba C, Iai M, Hirabayashi S, Osaka H, Hiraide T, et al. Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene. J Neurol. 2015;262:1278–84.CrossRefPubMed Sasaki M, Ohba C, Iai M, Hirabayashi S, Osaka H, Hiraide T, et al. Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene. J Neurol. 2015;262:1278–84.CrossRefPubMed
5.
go back to reference Parolin Schnekenberg R, Perkins EM, Miller JW, Davies WIL, D'Adamo MC, Pessia M, et al. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain. 2015;138:1817–32.CrossRefPubMedPubMedCentral Parolin Schnekenberg R, Perkins EM, Miller JW, Davies WIL, D'Adamo MC, Pessia M, et al. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain. 2015;138:1817–32.CrossRefPubMedPubMedCentral
6.
go back to reference Fogel BL, Lee H, Deignan JL, Strom SP, Kantarci S, Wang X, et al. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol. 2014;71:1237–46.CrossRefPubMedPubMedCentral Fogel BL, Lee H, Deignan JL, Strom SP, Kantarci S, Wang X, et al. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol. 2014;71:1237–46.CrossRefPubMedPubMedCentral
7.
go back to reference Shadrina MI, Shulskaya MV, Klyushnikov SA, Nikopensius T, Nelis M, Kivistik PA, et al. ITPR1 gene p.Val1553Met mutation in Russian family with mild spinocerebellar ataxia. Cerebellum Ataxias. 2016;3:2.CrossRefPubMedPubMedCentral Shadrina MI, Shulskaya MV, Klyushnikov SA, Nikopensius T, Nelis M, Kivistik PA, et al. ITPR1 gene p.Val1553Met mutation in Russian family with mild spinocerebellar ataxia. Cerebellum Ataxias. 2016;3:2.CrossRefPubMedPubMedCentral
8.
go back to reference Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Tippin Davis B, et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med. 2015;17:578–86.CrossRefPubMed Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Tippin Davis B, et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med. 2015;17:578–86.CrossRefPubMed
9.
go back to reference Gonzaga-Jauregui C, Harel T, Gambin T, Kousi M, Griffin LB, Francescatto L, et al. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep. 2015;12:1169–83.CrossRefPubMedPubMedCentral Gonzaga-Jauregui C, Harel T, Gambin T, Kousi M, Griffin LB, Francescatto L, et al. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep. 2015;12:1169–83.CrossRefPubMedPubMedCentral
10.
go back to reference Barresi S, Niceta M, Alfieri P, Brankovic V, Piccini G, Bruselles A, et al. Mutations in the IRBIT domain of ITPR1 are a frequent cause of autosomal dominant non-progressive congenital ataxia. Clin Genet. 2016. Epub ahead of print. doi:10.1111/cge.12783. Barresi S, Niceta M, Alfieri P, Brankovic V, Piccini G, Bruselles A, et al. Mutations in the IRBIT domain of ITPR1 are a frequent cause of autosomal dominant non-progressive congenital ataxia. Clin Genet. 2016. Epub ahead of print. doi:10.​1111/​cge.​12783.
11.
go back to reference Steinlin M, Zangger B, Boltshauser E. Non-progressive congenital ataxia with or without cerebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol. 1998;40:148–54.CrossRefPubMed Steinlin M, Zangger B, Boltshauser E. Non-progressive congenital ataxia with or without cerebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol. 1998;40:148–54.CrossRefPubMed
12.
13.
go back to reference Tomiwa K, Baraitser M, Wilson J. Dominantly inherited congenital cerebellar ataxia with atrophy of the vermis. Pediatr Neurol. 1987;3:360–2.CrossRefPubMed Tomiwa K, Baraitser M, Wilson J. Dominantly inherited congenital cerebellar ataxia with atrophy of the vermis. Pediatr Neurol. 1987;3:360–2.CrossRefPubMed
14.
go back to reference Fenichel GM, Phillips JA. Familial aplasia of the cerebellar vermis. Possible X-linked dominant inheritance. Arch Neurol. 1989;46:582–3.CrossRefPubMed Fenichel GM, Phillips JA. Familial aplasia of the cerebellar vermis. Possible X-linked dominant inheritance. Arch Neurol. 1989;46:582–3.CrossRefPubMed
15.
go back to reference Furman JM, Baloh RW, Chugani H, Waluch V, Bradley WG. Infantile cerebellar atrophy. Ann Neurol. 1985;17:399–402.CrossRefPubMed Furman JM, Baloh RW, Chugani H, Waluch V, Bradley WG. Infantile cerebellar atrophy. Ann Neurol. 1985;17:399–402.CrossRefPubMed
16.
go back to reference Kornberg AJ, Shield LK. An extended phenotype of an early-onset inherited non-progressive cerebellar ataxia syndrome. J Child Neurol. 1991;6:20–3.CrossRefPubMed Kornberg AJ, Shield LK. An extended phenotype of an early-onset inherited non-progressive cerebellar ataxia syndrome. J Child Neurol. 1991;6:20–3.CrossRefPubMed
17.
go back to reference Rivier F, Echenne B. Dominantly inherited hypoplasia of the vermis. Neuropediatrics. 1992;23:206–8.CrossRefPubMed Rivier F, Echenne B. Dominantly inherited hypoplasia of the vermis. Neuropediatrics. 1992;23:206–8.CrossRefPubMed
18.
go back to reference Imamura S, Tachi N, Oya K. Dominantly inherited early-onset non-progressive cerebellar ataxia syndrome. Brain and Development. 1993;15:372–6.CrossRefPubMed Imamura S, Tachi N, Oya K. Dominantly inherited early-onset non-progressive cerebellar ataxia syndrome. Brain and Development. 1993;15:372–6.CrossRefPubMed
19.
go back to reference Tada M, Nishizawa M, Onodera O. Roles of inositol 1,4,5-trisphosphate receptors in spinocerebellar ataxias. Neurochem Int. 2016;94:1–8.CrossRefPubMed Tada M, Nishizawa M, Onodera O. Roles of inositol 1,4,5-trisphosphate receptors in spinocerebellar ataxias. Neurochem Int. 2016;94:1–8.CrossRefPubMed
20.
go back to reference Gerber S, Alzayady KJ, Burglen L, Brémond-Gignac D, Marchesin V, Roche O, et al. Recessive and dominant de novo ITPR1 mutations cause Gillespie syndrome. Am J Hum Genet. 2016;98:971–80.CrossRefPubMedPubMedCentral Gerber S, Alzayady KJ, Burglen L, Brémond-Gignac D, Marchesin V, Roche O, et al. Recessive and dominant de novo ITPR1 mutations cause Gillespie syndrome. Am J Hum Genet. 2016;98:971–80.CrossRefPubMedPubMedCentral
21.
go back to reference McEntagart M, Williamson KA, Rainger JK, Wheeler A, Seawright A, De Baere E, et al. A restricted repertoire of de novo mutations in ITPR1 cause Gillespie syndrome with evidence for dominant-negative effect. Am J Hum Genet. 2016;98:981–92.CrossRefPubMedPubMedCentral McEntagart M, Williamson KA, Rainger JK, Wheeler A, Seawright A, De Baere E, et al. A restricted repertoire of de novo mutations in ITPR1 cause Gillespie syndrome with evidence for dominant-negative effect. Am J Hum Genet. 2016;98:981–92.CrossRefPubMedPubMedCentral
22.
go back to reference Tsao JW, Neal J, Apse K, Stephan MJ, Dobyns WB, Hill RS, et al. Cerebellar ataxia with progressive improvement. Arch Neurol. 2006;63:594–7.CrossRefPubMed Tsao JW, Neal J, Apse K, Stephan MJ, Dobyns WB, Hill RS, et al. Cerebellar ataxia with progressive improvement. Arch Neurol. 2006;63:594–7.CrossRefPubMed
23.
go back to reference Shevell MI, Majnemer A. Clinical features of developmental disability associated with cerebellar hypoplasia. Pediatr Neurol. 1996;15:224–9.CrossRefPubMed Shevell MI, Majnemer A. Clinical features of developmental disability associated with cerebellar hypoplasia. Pediatr Neurol. 1996;15:224–9.CrossRefPubMed
24.
go back to reference Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, Ishiguro H, et al. Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology. 2008;71:547–51.CrossRefPubMed Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, Ishiguro H, et al. Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology. 2008;71:547–51.CrossRefPubMed
25.
go back to reference Ganesamoorthy D, Bruno DL, Schoumans J, Storey E, Delatycki MB, Zhu D, et al. Development of a multiplex ligation-dependent probe amplification assay for diagnosis and estimation of the frequency of spinocerebellar ataxia type 15. Clin Chem. 2009;55:1415–8.CrossRefPubMed Ganesamoorthy D, Bruno DL, Schoumans J, Storey E, Delatycki MB, Zhu D, et al. Development of a multiplex ligation-dependent probe amplification assay for diagnosis and estimation of the frequency of spinocerebellar ataxia type 15. Clin Chem. 2009;55:1415–8.CrossRefPubMed
26.
go back to reference Yamazaki H, Nozaki H, Onodera O, Michikawa T, Nishizawa M, Mikoshiba K. Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family. Biochem Biophys Res Commun. 2011;410:754–8.CrossRefPubMed Yamazaki H, Nozaki H, Onodera O, Michikawa T, Nishizawa M, Mikoshiba K. Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family. Biochem Biophys Res Commun. 2011;410:754–8.CrossRefPubMed
27.
go back to reference van Dijk T, Barth P, Reneman L, Appelhof B, Baas F, Poll-The BT. A de novo missense mutation in the inositol 1,4,5-triphosphate receptor type 1 gene causing severe pontine and cerebellar hypoplasia: Expanding the phenotype of ITPR1-related spinocerebellar ataxia's. Am J Med Genet A. 2017;173:207–12.CrossRefPubMed van Dijk T, Barth P, Reneman L, Appelhof B, Baas F, Poll-The BT. A de novo missense mutation in the inositol 1,4,5-triphosphate receptor type 1 gene causing severe pontine and cerebellar hypoplasia: Expanding the phenotype of ITPR1-related spinocerebellar ataxia's. Am J Med Genet A. 2017;173:207–12.CrossRefPubMed
28.
go back to reference Sawyer SL, Schwartzentruber J, Beaulieu CL, Dyment D, Smith A, Warman Chardon J, et al. Exome sequencing as a diagnostic tool for pediatric-onset ataxia. Hum Mutat. 2014;35:45–9.CrossRefPubMed Sawyer SL, Schwartzentruber J, Beaulieu CL, Dyment D, Smith A, Warman Chardon J, et al. Exome sequencing as a diagnostic tool for pediatric-onset ataxia. Hum Mutat. 2014;35:45–9.CrossRefPubMed
Metadata
Title
Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia
Authors
Jessica L. Zambonin
Allison Bellomo
Hilla Ben-Pazi
David B. Everman
Lee M. Frazer
Michael T. Geraghty
Amy D. Harper
Julie R. Jones
Benjamin Kamien
Kristin Kernohan
Mary Kay Koenig
Matthew Lines
Elizabeth Emma Palmer
Randal Richardson
Reeval Segel
Mark Tarnopolsky
Jason R. Vanstone
Melissa Gibbons
Abigail Collins
Brent L. Fogel
Tracy Dudding-Byth
Kym M. Boycott
Care4Rare Canada Consortium
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2017
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-017-0672-7

Other articles of this Issue 1/2017

Orphanet Journal of Rare Diseases 1/2017 Go to the issue