Skip to main content
Top
Published in: Chinese Medicine 1/2018

Open Access 01-12-2018 | Review

Cellular stress response mechanisms of Rhizoma coptidis: a systematic review

Authors: Jin Wang, Qian Ran, Hai-rong Zeng, Lin Wang, Chang-jiang Hu, Qin-wan Huang

Published in: Chinese Medicine | Issue 1/2018

Login to get access

Abstract

Rhizoma coptidis has been used in China for thousands of years with the functions of heating dampness and purging fire detoxification. But the underlying molecular mechanisms of Rhizoma coptidis are still far from being fully elucidated. Alkaloids, especially berberine, coptisine and palmatine, are responsible for multiple pharmacological effects of Rhizoma coptidis. In this review, we studied on the effects and molecular mechanisms of Rhizoma coptidis on NF-κB/MAPK/PI3K–Akt/AMPK/ERS and oxidative stress pathways. Then we summarized the mechanisms of these alkaloid components of Rhizoma coptidis on cardiovascular and cerebrovascular diseases, diabetes and diabetic complications. Evidence presented in this review implicated that Rhizoma coptidis exerted beneficial effects on various diseases by regulation of NF-κB/MAPK/PI3K–Akt/AMPK/ERS and oxidative stress pathways, which support the clinical application of Rhizoma coptidis and offer references for future researches.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hsu YY, et al. Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur J Pharm Sci. 2012;46(5):415–25.PubMedCrossRef Hsu YY, et al. Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur J Pharm Sci. 2012;46(5):415–25.PubMedCrossRef
2.
go back to reference Yan B, et al. Palmatine inhibits TRIF-dependent NF-kappaB pathway against inflammation induced by LPS in goat endometrial epithelial cells. Int Immunopharmacol. 2017;45:194–200.PubMedCrossRef Yan B, et al. Palmatine inhibits TRIF-dependent NF-kappaB pathway against inflammation induced by LPS in goat endometrial epithelial cells. Int Immunopharmacol. 2017;45:194–200.PubMedCrossRef
3.
go back to reference Zou ZY, et al. Coptisine attenuates obesity-related inflammation through LPS/TLR-4-mediated signaling pathway in Syrian golden hamsters. Fitoterapia. 2015;105:139–46.PubMedCrossRef Zou ZY, et al. Coptisine attenuates obesity-related inflammation through LPS/TLR-4-mediated signaling pathway in Syrian golden hamsters. Fitoterapia. 2015;105:139–46.PubMedCrossRef
4.
go back to reference Gao MY, et al. Berberine inhibits LPS-induced TF procoagulant activity and expression through NF-kappaB/p65, Akt and MAPK pathway in THP-1 cells. Pharmacol Rep. 2014;66(3):480–4.PubMedCrossRef Gao MY, et al. Berberine inhibits LPS-induced TF procoagulant activity and expression through NF-kappaB/p65, Akt and MAPK pathway in THP-1 cells. Pharmacol Rep. 2014;66(3):480–4.PubMedCrossRef
6.
go back to reference Yokozawa T, et al. Protective role of Coptidis Rhizoma alkaloids against peroxynitrite-induced damage to renal tubular epithelial cells. J Pharm Pharmacol. 2005;57(3):367–74.PubMedCrossRef Yokozawa T, et al. Protective role of Coptidis Rhizoma alkaloids against peroxynitrite-induced damage to renal tubular epithelial cells. J Pharm Pharmacol. 2005;57(3):367–74.PubMedCrossRef
7.
go back to reference Zhang Y, Liang Y, He C. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med. 2017;12(1):20.PubMedPubMedCentralCrossRef Zhang Y, Liang Y, He C. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med. 2017;12(1):20.PubMedPubMedCentralCrossRef
8.
go back to reference Feng M, et al. Comparative effect of berberine and its derivative 8-cetylberberine on attenuating atherosclerosis in ApoE(−/−) mice. Int Immunopharmacol. 2017;43:195–202.PubMedCrossRef Feng M, et al. Comparative effect of berberine and its derivative 8-cetylberberine on attenuating atherosclerosis in ApoE(−/−) mice. Int Immunopharmacol. 2017;43:195–202.PubMedCrossRef
9.
go back to reference Zhang DS, et al. Effect of berberine on the insulin resistance and TLR4/IKKbeta/NF-kappaB signaling pathways in skeletal muscle of obese rats with insulin resistance. J Sichuan Univ Med Sci Ed. 2015;46(6):827–31. Zhang DS, et al. Effect of berberine on the insulin resistance and TLR4/IKKbeta/NF-kappaB signaling pathways in skeletal muscle of obese rats with insulin resistance. J Sichuan Univ Med Sci Ed. 2015;46(6):827–31.
10.
go back to reference Meng FC, et al. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med. 2018;13(1):13.PubMedPubMedCentralCrossRef Meng FC, et al. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med. 2018;13(1):13.PubMedPubMedCentralCrossRef
11.
go back to reference Kültz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol. 2005;67(1):225–57.PubMedCrossRef Kültz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol. 2005;67(1):225–57.PubMedCrossRef
12.
13.
go back to reference Simmons SO, Fan CY, Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci. 2009;111(2):202–25.PubMedCrossRef Simmons SO, Fan CY, Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci. 2009;111(2):202–25.PubMedCrossRef
14.
go back to reference Qi H, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Med Res Rev. 2017;38(4):625–54.PubMed Qi H, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Med Res Rev. 2017;38(4):625–54.PubMed
15.
go back to reference Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nat Immunol. 2011;12(8):695–708.PubMedCrossRef Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nat Immunol. 2011;12(8):695–708.PubMedCrossRef
16.
go back to reference Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25(51):6680–4.PubMedCrossRef Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25(51):6680–4.PubMedCrossRef
17.
go back to reference Esparza-López J, et al. Doxorubicin induces atypical NF-κB activation through c-Abl kinase activity in breast cancer cells. J Cancer Res Clin Oncol. 2013;139(10):1625–35.PubMedCrossRef Esparza-López J, et al. Doxorubicin induces atypical NF-κB activation through c-Abl kinase activity in breast cancer cells. J Cancer Res Clin Oncol. 2013;139(10):1625–35.PubMedCrossRef
18.
go back to reference Wan X, et al. Berberine ameliorates chronic kidney injury caused by atherosclerotic renovascular disease through the suppression of NFkappaB signaling pathway in rats. PLoS ONE. 2013;8(3):e59794.PubMedPubMedCentralCrossRef Wan X, et al. Berberine ameliorates chronic kidney injury caused by atherosclerotic renovascular disease through the suppression of NFkappaB signaling pathway in rats. PLoS ONE. 2013;8(3):e59794.PubMedPubMedCentralCrossRef
19.
go back to reference Feng M, et al. The protective effect of coptisine on experimental atherosclerosis ApoE−/− mice is mediated by MAPK/NF-κB-dependent pathway. Biomed Pharmacother. 2017;93:721–9.PubMedCrossRef Feng M, et al. The protective effect of coptisine on experimental atherosclerosis ApoE−/− mice is mediated by MAPK/NF-κB-dependent pathway. Biomed Pharmacother. 2017;93:721–9.PubMedCrossRef
20.
go back to reference Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci. 2000;25(6):257–60.PubMedCrossRef Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci. 2000;25(6):257–60.PubMedCrossRef
21.
go back to reference Sun Z, Huang Z, Zhang DD. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS ONE. 2009;4(8):e6588.PubMedPubMedCentralCrossRef Sun Z, Huang Z, Zhang DD. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS ONE. 2009;4(8):e6588.PubMedPubMedCentralCrossRef
22.
go back to reference Morrison DK, Davis RJ. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol. 2003;19(19):91–118.PubMedCrossRef Morrison DK, Davis RJ. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol. 2003;19(19):91–118.PubMedCrossRef
23.
go back to reference Enslen H, Davis RJ. Regulation of MAP kinases by docking domains. Biol Cell. 2001;93(1–2):5–14.PubMedCrossRef Enslen H, Davis RJ. Regulation of MAP kinases by docking domains. Biol Cell. 2001;93(1–2):5–14.PubMedCrossRef
24.
go back to reference Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81(2):807–69.PubMedCrossRef Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81(2):807–69.PubMedCrossRef
25.
go back to reference Lu DY, et al. Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia. J Cell Biochem. 2010;110(3):697–705.PubMedCrossRef Lu DY, et al. Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia. J Cell Biochem. 2010;110(3):697–705.PubMedCrossRef
26.
go back to reference Wang Q, et al. Effect of berberine on proinflammatory cytokine production by ARPE-19 cells following stimulation with tumor necrosis factor-alpha. Invest Ophthalmol Vis Sci. 2012;53(4):2395–402.PubMedCrossRef Wang Q, et al. Effect of berberine on proinflammatory cytokine production by ARPE-19 cells following stimulation with tumor necrosis factor-alpha. Invest Ophthalmol Vis Sci. 2012;53(4):2395–402.PubMedCrossRef
27.
go back to reference Li L, et al. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomed Pharmacother. 2017;95:1225–31.PubMedCrossRef Li L, et al. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomed Pharmacother. 2017;95:1225–31.PubMedCrossRef
28.
go back to reference Liang KW, et al. Berberine suppresses MEK/ERK-dependent Egr-1 signaling pathway and inhibits vascular smooth muscle cell regrowth after in vitro mechanical injury. Biochem Pharmacol. 2006;71(6):806–17.PubMedPubMedCentralCrossRef Liang KW, et al. Berberine suppresses MEK/ERK-dependent Egr-1 signaling pathway and inhibits vascular smooth muscle cell regrowth after in vitro mechanical injury. Biochem Pharmacol. 2006;71(6):806–17.PubMedPubMedCentralCrossRef
29.
go back to reference Li XX, et al. Berberine attenuates vascular remodeling and inflammation in a rat model of metabolic syndrome. Biol Pharm Bull. 2015;38(6):862–8.PubMedCrossRef Li XX, et al. Berberine attenuates vascular remodeling and inflammation in a rat model of metabolic syndrome. Biol Pharm Bull. 2015;38(6):862–8.PubMedCrossRef
30.
go back to reference Zhou J, et al. Neuroprotective effect of berberine is mediated by MAPK signaling pathway in experimental diabetic neuropathy in rats. Eur J Pharmacol. 2016;774:87–94.PubMedCrossRef Zhou J, et al. Neuroprotective effect of berberine is mediated by MAPK signaling pathway in experimental diabetic neuropathy in rats. Eur J Pharmacol. 2016;774:87–94.PubMedCrossRef
31.
go back to reference Carling D, et al. AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol. 2011;7(8):512–8.PubMedCrossRef Carling D, et al. AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol. 2011;7(8):512–8.PubMedCrossRef
32.
go back to reference Lu J, et al. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status. Exp Cell Res. 2015;334(2):194–206.PubMedCrossRef Lu J, et al. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status. Exp Cell Res. 2015;334(2):194–206.PubMedCrossRef
34.
go back to reference Lee JO, et al. Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells. J Biol Chem. 2012;287(53):44121–9.PubMedPubMedCentralCrossRef Lee JO, et al. Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells. J Biol Chem. 2012;287(53):44121–9.PubMedPubMedCentralCrossRef
35.
go back to reference Miyamoto L, et al. Effect of acute activation of 5′-AMP-activated protein kinase on glycogen regulation in isolated rat skeletal muscle. J Appl Physiol. 2007;102(3):1007–13.PubMedCrossRef Miyamoto L, et al. Effect of acute activation of 5′-AMP-activated protein kinase on glycogen regulation in isolated rat skeletal muscle. J Appl Physiol. 2007;102(3):1007–13.PubMedCrossRef
36.
go back to reference Schweitzer GG, Arias EB, Cartee GD. Sustained postexercise increases in AS160 Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase phosphorylation. J Appl Physiol. 2012;113(12):1852–61.PubMedPubMedCentralCrossRef Schweitzer GG, Arias EB, Cartee GD. Sustained postexercise increases in AS160 Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase phosphorylation. J Appl Physiol. 2012;113(12):1852–61.PubMedPubMedCentralCrossRef
37.
go back to reference Arden C, et al. A role for PFK-2/FBPase-2, as distinct from fructose 2,6-bisphosphate, in regulation of insulin secretion in pancreatic beta-cells. Biochem J. 2008;411(1):41–51.PubMedCrossRef Arden C, et al. A role for PFK-2/FBPase-2, as distinct from fructose 2,6-bisphosphate, in regulation of insulin secretion in pancreatic beta-cells. Biochem J. 2008;411(1):41–51.PubMedCrossRef
38.
go back to reference Cantó C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci CMLS. 2010;67(20):3407–23.PubMedCrossRef Cantó C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci CMLS. 2010;67(20):3407–23.PubMedCrossRef
39.
go back to reference Chen MH, Lin CH, Shih CC. Antidiabetic and antihyperlipidemic effects of Clitocybe nuda on glucose transporter 4 and AMP-activated protein kinase phosphorylation in high-fat-fed mice. Evid Based Complement Altern Med. 2014;2014(10):981046. Chen MH, Lin CH, Shih CC. Antidiabetic and antihyperlipidemic effects of Clitocybe nuda on glucose transporter 4 and AMP-activated protein kinase phosphorylation in high-fat-fed mice. Evid Based Complement Altern Med. 2014;2014(10):981046.
40.
go back to reference Diraison F, et al. Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Biochem J. 2004;378(3):769–78.PubMedPubMedCentralCrossRef Diraison F, et al. Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Biochem J. 2004;378(3):769–78.PubMedPubMedCentralCrossRef
41.
go back to reference Fujii N, et al. Ablation of AMP-activated protein kinase α2 activity exacerbates insulin resistance induced by high-fat feeding of mice. Diabetes. 2008;57(11):2958–66.PubMedPubMedCentralCrossRef Fujii N, et al. Ablation of AMP-activated protein kinase α2 activity exacerbates insulin resistance induced by high-fat feeding of mice. Diabetes. 2008;57(11):2958–66.PubMedPubMedCentralCrossRef
42.
go back to reference Viollet B, et al. Targeting the AMPK pathway for the treatment of type 2 diabetes. Front Biosci. 2009;14(9):3380–400.CrossRef Viollet B, et al. Targeting the AMPK pathway for the treatment of type 2 diabetes. Front Biosci. 2009;14(9):3380–400.CrossRef
43.
go back to reference Salt IP, Palmer TM. Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation. Expert Opin Investig Drugs. 2012;21(8):1155–67.PubMedCrossRef Salt IP, Palmer TM. Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation. Expert Opin Investig Drugs. 2012;21(8):1155–67.PubMedCrossRef
44.
go back to reference Zhang Q, et al. Berberine preconditioning protects neurons against ischemia via sphingosine-1-phosphate and hypoxia-inducible factor-1α. Am J Chin Med. 2016;44(5):927–41.PubMedCrossRef Zhang Q, et al. Berberine preconditioning protects neurons against ischemia via sphingosine-1-phosphate and hypoxia-inducible factor-1α. Am J Chin Med. 2016;44(5):927–41.PubMedCrossRef
45.
go back to reference Chen M, et al. Berberine protects homocysteic acid-induced HT-22 cell death: involvement of Akt pathway. Metab Brain Dis. 2015;30(1):137–42.PubMedCrossRef Chen M, et al. Berberine protects homocysteic acid-induced HT-22 cell death: involvement of Akt pathway. Metab Brain Dis. 2015;30(1):137–42.PubMedCrossRef
46.
go back to reference Jiang SJ, et al. Berberine inhibits hepatic gluconeogenesis via the LKB1–AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats. World J Gastroenterol. 2015;21(25):7777–85.PubMedPubMedCentralCrossRef Jiang SJ, et al. Berberine inhibits hepatic gluconeogenesis via the LKB1–AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats. World J Gastroenterol. 2015;21(25):7777–85.PubMedPubMedCentralCrossRef
47.
go back to reference Choi JS, et al. Anti-adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKalpha/Akt pathways. Arch Pharm Res. 2015;38(12):2153–62.PubMedCrossRef Choi JS, et al. Anti-adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKalpha/Akt pathways. Arch Pharm Res. 2015;38(12):2153–62.PubMedCrossRef
48.
go back to reference Pires ENS, et al. Berberine was neuroprotective against an in vitro model of brain ischemia: survival and apoptosis pathways involved. Brain Res. 2014;1557:26–33.CrossRef Pires ENS, et al. Berberine was neuroprotective against an in vitro model of brain ischemia: survival and apoptosis pathways involved. Brain Res. 2014;1557:26–33.CrossRef
49.
go back to reference Hsu YY, Tseng YT, Lo YC. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol Appl Pharmacol. 2013;272(3):787–96.PubMedCrossRef Hsu YY, Tseng YT, Lo YC. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol Appl Pharmacol. 2013;272(3):787–96.PubMedCrossRef
50.
go back to reference Datta SR, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41.PubMedCrossRef Datta SR, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41.PubMedCrossRef
51.
go back to reference Cardone MH, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282(5392):1318–21.PubMedCrossRef Cardone MH, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282(5392):1318–21.PubMedCrossRef
52.
go back to reference Saito Y, et al. Dysfunctional gastric emptying with down-regulation of muscle-specific microRNAs in Helicobacter pylori-infected mice. Gastroenterology. 2011;140(1):189–98.PubMedCrossRef Saito Y, et al. Dysfunctional gastric emptying with down-regulation of muscle-specific microRNAs in Helicobacter pylori-infected mice. Gastroenterology. 2011;140(1):189–98.PubMedCrossRef
53.
go back to reference Lum JJ, et al. The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 2007;21(9):1037–49.PubMedPubMedCentralCrossRef Lum JJ, et al. The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 2007;21(9):1037–49.PubMedPubMedCentralCrossRef
54.
go back to reference Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Des. 2003;9(7):521–30.PubMedCrossRef Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Des. 2003;9(7):521–30.PubMedCrossRef
55.
go back to reference Zhou GL, et al. Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. J Biol Chem. 2006;281(47):36443–53.PubMedCrossRef Zhou GL, et al. Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. J Biol Chem. 2006;281(47):36443–53.PubMedCrossRef
56.
go back to reference Liu LZ, et al. Berberine modulates insulin signaling transduction in insulin-resistant cells. Mol Cell Endocrinol. 2010;317(1–2):148–53.PubMedCrossRef Liu LZ, et al. Berberine modulates insulin signaling transduction in insulin-resistant cells. Mol Cell Endocrinol. 2010;317(1–2):148–53.PubMedCrossRef
57.
go back to reference Song YC, et al. Berberine regulates melanin synthesis by activating PI3K/AKT, ERK and GSK3beta in B16F10 melanoma cells. Int J Mol Med. 2015;35(4):1011–6.PubMedCrossRef Song YC, et al. Berberine regulates melanin synthesis by activating PI3K/AKT, ERK and GSK3beta in B16F10 melanoma cells. Int J Mol Med. 2015;35(4):1011–6.PubMedCrossRef
58.
go back to reference Chang W, et al. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5′-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells. Eur J Pharmacol. 2015;769:55–63.PubMedCrossRef Chang W, et al. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5′-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells. Eur J Pharmacol. 2015;769:55–63.PubMedCrossRef
59.
go back to reference Ai F, et al. Berberine regulates proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts via AMPK-mTOR-p70S6K signaling pathway. Int J Clin Exp Pathol. 2015;8(10):12509–16.PubMedPubMedCentral Ai F, et al. Berberine regulates proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts via AMPK-mTOR-p70S6K signaling pathway. Int J Clin Exp Pathol. 2015;8(10):12509–16.PubMedPubMedCentral
60.
go back to reference Yi T, et al. Akt signaling is associated with the berberine-induced apoptosis of human gastric cancer cells. Nutr Cancer. 2015;67(3):523–31.PubMedCrossRef Yi T, et al. Akt signaling is associated with the berberine-induced apoptosis of human gastric cancer cells. Nutr Cancer. 2015;67(3):523–31.PubMedCrossRef
61.
go back to reference Xiao M, et al. Berberine protects endothelial progenitor cell from damage of TNF-alpha via the PI3K/AKT/eNOS signaling pathway. Eur J Pharmacol. 2014;743:11–6.PubMedCrossRef Xiao M, et al. Berberine protects endothelial progenitor cell from damage of TNF-alpha via the PI3K/AKT/eNOS signaling pathway. Eur J Pharmacol. 2014;743:11–6.PubMedCrossRef
62.
go back to reference Ryder J, Su Y, Ni B. Akt/GSK3beta serine/threonine kinases: evidence for a signalling pathway mediated by familial Alzheimer’s disease mutations. Cell Signal. 2004;16(2):187–200.PubMedCrossRef Ryder J, Su Y, Ni B. Akt/GSK3beta serine/threonine kinases: evidence for a signalling pathway mediated by familial Alzheimer’s disease mutations. Cell Signal. 2004;16(2):187–200.PubMedCrossRef
63.
go back to reference Chen JH, et al. Berberine induces heme oxygenase-1 up-regulation through phosphatidylinositol 3-kinase/AKT and NF-E2-related factor-2 signaling pathway in astrocytes. Int Immunopharmacol. 2012;12(1):94–100.PubMedCrossRef Chen JH, et al. Berberine induces heme oxygenase-1 up-regulation through phosphatidylinositol 3-kinase/AKT and NF-E2-related factor-2 signaling pathway in astrocytes. Int Immunopharmacol. 2012;12(1):94–100.PubMedCrossRef
64.
go back to reference Bae J, et al. Berberine protects 6-hydroxydopamine-induced human dopaminergic neuronal cell death through the induction of heme oxygenase-1. Mol Cells. 2013;35(2):151–7.PubMedPubMedCentralCrossRef Bae J, et al. Berberine protects 6-hydroxydopamine-induced human dopaminergic neuronal cell death through the induction of heme oxygenase-1. Mol Cells. 2013;35(2):151–7.PubMedPubMedCentralCrossRef
65.
66.
go back to reference Wang ZS, et al. Berberine reduces endoplasmic reticulum stress and improves insulin signal transduction in Hep G2 cells. Acta Pharmacol Sin. 2010;31(5):578–84.PubMedPubMedCentralCrossRef Wang ZS, et al. Berberine reduces endoplasmic reticulum stress and improves insulin signal transduction in Hep G2 cells. Acta Pharmacol Sin. 2010;31(5):578–84.PubMedPubMedCentralCrossRef
68.
go back to reference Hao X, et al. Berberine ameliorates pro-inflammatory cytokine-induced endoplasmic reticulum stress in human intestinal epithelial cells in vitro. Inflammation. 2012;35(3):841–9.PubMedCrossRef Hao X, et al. Berberine ameliorates pro-inflammatory cytokine-induced endoplasmic reticulum stress in human intestinal epithelial cells in vitro. Inflammation. 2012;35(3):841–9.PubMedCrossRef
69.
go back to reference Pham TP, Kwon J, Shin J. Berberine exerts anti-adipogenic activity through up-regulation of C/EBP inhibitors, CHOP and DEC2. Biochem Biophys Res Commun. 2011;413(2):376–82.PubMedCrossRef Pham TP, Kwon J, Shin J. Berberine exerts anti-adipogenic activity through up-regulation of C/EBP inhibitors, CHOP and DEC2. Biochem Biophys Res Commun. 2011;413(2):376–82.PubMedCrossRef
70.
go back to reference Zhang W, et al. Berberine protects mesenchymal stem cells against hypoxia-induced apoptosis in vitro. Biol Pharm Bull. 2009;32(8):1335–42.PubMedCrossRef Zhang W, et al. Berberine protects mesenchymal stem cells against hypoxia-induced apoptosis in vitro. Biol Pharm Bull. 2009;32(8):1335–42.PubMedCrossRef
71.
go back to reference Brüne B. The intimate relation between nitric oxide and superoxide in apoptosis and cell survival. Antioxid Redox Signal. 2005;7(3–4):497–507.PubMedCrossRef Brüne B. The intimate relation between nitric oxide and superoxide in apoptosis and cell survival. Antioxid Redox Signal. 2005;7(3–4):497–507.PubMedCrossRef
73.
go back to reference Gloire G, Piette J. Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal. 2009;11(9):2209–22.PubMedCrossRef Gloire G, Piette J. Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal. 2009;11(9):2209–22.PubMedCrossRef
74.
go back to reference Liu SC, et al. Berberine attenuates CCN2-induced IL-1beta expression and prevents cartilage degradation in a rat model of osteoarthritis. Toxicol Appl Pharmacol. 2015;289(1):20–9.PubMedCrossRef Liu SC, et al. Berberine attenuates CCN2-induced IL-1beta expression and prevents cartilage degradation in a rat model of osteoarthritis. Toxicol Appl Pharmacol. 2015;289(1):20–9.PubMedCrossRef
75.
go back to reference Zhang X, et al. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. Apoptosis. 2016;21(6):721–36.PubMedCrossRef Zhang X, et al. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. Apoptosis. 2016;21(6):721–36.PubMedCrossRef
76.
go back to reference Itoh K, et al. An Nrf2 small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.PubMedCrossRef Itoh K, et al. An Nrf2 small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.PubMedCrossRef
77.
go back to reference Hu YR, et al. Activation of Akt and JNK/Nrf2/NQO1 pathway contributes to the protective effect of coptisine against AAPH-induced oxidative stress. Biomed Pharmacother. 2017;85:313–22.PubMedCrossRef Hu YR, et al. Activation of Akt and JNK/Nrf2/NQO1 pathway contributes to the protective effect of coptisine against AAPH-induced oxidative stress. Biomed Pharmacother. 2017;85:313–22.PubMedCrossRef
79.
go back to reference He K, Kou S, Zou Z, et al. Hypolipidemic effects of alkaloids from rhizoma coptidis in diet-induced hyperlipidemic hamsters. Planta Med. 2016;82(08):690–7. He K, Kou S, Zou Z, et al. Hypolipidemic effects of alkaloids from rhizoma coptidis in diet-induced hyperlipidemic hamsters. Planta Med. 2016;82(08):690–7.
80.
go back to reference Zhang X, et al. Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: up-regulated pAkt, pGSK and pCREB, down-regulated NF-kappaB expression, ameliorated BBB permeability. Brain Res. 2012;1459:61–70.PubMedCrossRef Zhang X, et al. Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: up-regulated pAkt, pGSK and pCREB, down-regulated NF-kappaB expression, ameliorated BBB permeability. Brain Res. 2012;1459:61–70.PubMedCrossRef
81.
go back to reference Chen K, et al. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis. 2014;19(6):946–57.PubMedCrossRef Chen K, et al. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis. 2014;19(6):946–57.PubMedCrossRef
82.
go back to reference Youngmin K, et al. Palmatine from Coptidis rhizoma reduces ischemia-reperfusion-mediated acute myocardial injury in the rat. Food Chem Toxicol. 2009;47(8):2097–102.CrossRef Youngmin K, et al. Palmatine from Coptidis rhizoma reduces ischemia-reperfusion-mediated acute myocardial injury in the rat. Food Chem Toxicol. 2009;47(8):2097–102.CrossRef
83.
go back to reference Ashraf MI, et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal CCS. 2014;12(1):6.PubMedCrossRef Ashraf MI, et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal CCS. 2014;12(1):6.PubMedCrossRef
84.
go back to reference Choi JS, et al. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-alpha and PPAR-gamma. Fitoterapia. 2014;98:199–208.PubMedCrossRef Choi JS, et al. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-alpha and PPAR-gamma. Fitoterapia. 2014;98:199–208.PubMedCrossRef
85.
go back to reference Jang J, et al. Berberine activates AMPK to suppress proteolytic processing, nuclear translocation and target DNA binding of SREBP-1c in 3T3-L1 adipocytes. Mol Med Rep. 2017;15(6):4139–47.PubMedPubMedCentralCrossRef Jang J, et al. Berberine activates AMPK to suppress proteolytic processing, nuclear translocation and target DNA binding of SREBP-1c in 3T3-L1 adipocytes. Mol Med Rep. 2017;15(6):4139–47.PubMedPubMedCentralCrossRef
86.
go back to reference Yang W, et al. Jatrorrhizine hydrochloride attenuates hyperlipidemia in a high-fat diet-induced obesity mouse model. Mol Med Rep. 2016;14(4):3277–84.PubMedCrossRef Yang W, et al. Jatrorrhizine hydrochloride attenuates hyperlipidemia in a high-fat diet-induced obesity mouse model. Mol Med Rep. 2016;14(4):3277–84.PubMedCrossRef
87.
go back to reference Choi JS, et al. Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies. J Ethnopharmacol. 2015;171:28–36.PubMedCrossRef Choi JS, et al. Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies. J Ethnopharmacol. 2015;171:28–36.PubMedCrossRef
88.
go back to reference Patel MB, Mishra S. Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine. 2011;18(12):1045–52.PubMedCrossRef Patel MB, Mishra S. Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine. 2011;18(12):1045–52.PubMedCrossRef
89.
go back to reference Patel MB, Mishra S. Isoquinoline alkaloids from Tinospora cordifolia inhibit rat lens aldose reductase. Phytother Res. 2012;26(9):1342–7.PubMedCrossRef Patel MB, Mishra S. Isoquinoline alkaloids from Tinospora cordifolia inhibit rat lens aldose reductase. Phytother Res. 2012;26(9):1342–7.PubMedCrossRef
90.
go back to reference Ye L, et al. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance. Life Sci. 2016;166:82–91.PubMedCrossRef Ye L, et al. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance. Life Sci. 2016;166:82–91.PubMedCrossRef
91.
go back to reference Zhao W, et al. Nandinine, a derivative of berberine, inhibits inflammation and reduces insulin resistance in adipocytes via regulation of AMP-kinase activity. Planta Med. 2017;83(3–04):203–9.PubMed Zhao W, et al. Nandinine, a derivative of berberine, inhibits inflammation and reduces insulin resistance in adipocytes via regulation of AMP-kinase activity. Planta Med. 2017;83(3–04):203–9.PubMed
92.
go back to reference Wang Y. Attenuation of berberine on lipopolysaccharide-induced inflammatory and apoptosis responses in beta-cells via TLR4-independent JNK/NF-kappaB pathway. Pharm Biol. 2013;52(4):532–8.CrossRef Wang Y. Attenuation of berberine on lipopolysaccharide-induced inflammatory and apoptosis responses in beta-cells via TLR4-independent JNK/NF-kappaB pathway. Pharm Biol. 2013;52(4):532–8.CrossRef
94.
go back to reference Wang Y, et al. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res. 2009;82(3):484–92.PubMedCrossRef Wang Y, et al. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res. 2009;82(3):484–92.PubMedCrossRef
95.
go back to reference Xing LJ, et al. Berberine reducing insulin resistance by up-regulating IRS-2 mRNA expression in nonalcoholic fatty liver disease (NAFLD) rat liver. Eur J Pharmacol. 2011;668(3):467–71.PubMedCrossRef Xing LJ, et al. Berberine reducing insulin resistance by up-regulating IRS-2 mRNA expression in nonalcoholic fatty liver disease (NAFLD) rat liver. Eur J Pharmacol. 2011;668(3):467–71.PubMedCrossRef
96.
go back to reference Lou T, et al. Berberine inhibits inflammatory response and ameliorates insulin resistance in hepatocytes. Inflammation. 2011;34(6):659–67.PubMedCrossRef Lou T, et al. Berberine inhibits inflammatory response and ameliorates insulin resistance in hepatocytes. Inflammation. 2011;34(6):659–67.PubMedCrossRef
97.
go back to reference Kong WJ, et al. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism. 2009;58(1):109–19.PubMedCrossRef Kong WJ, et al. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism. 2009;58(1):109–19.PubMedCrossRef
98.
go back to reference Sandeep MS, Nandini CD. Influence of quercetin, naringenin and berberine on glucose transporters and insulin signalling molecules in brain of streptozotocin-induced diabetic rats. Biomed Pharmacother. 2017;94:605–11.CrossRef Sandeep MS, Nandini CD. Influence of quercetin, naringenin and berberine on glucose transporters and insulin signalling molecules in brain of streptozotocin-induced diabetic rats. Biomed Pharmacother. 2017;94:605–11.CrossRef
99.
go back to reference Xie X, et al. Berberine ameliorates hyperglycemia in alloxan-induced diabetic C57BL/6 mice through activation of Akt signaling pathway. Endocr J. 2011;58(9):761–8.PubMedCrossRef Xie X, et al. Berberine ameliorates hyperglycemia in alloxan-induced diabetic C57BL/6 mice through activation of Akt signaling pathway. Endocr J. 2011;58(9):761–8.PubMedCrossRef
100.
go back to reference Yu Y, et al. Modulation of glucagon-like peptide-1 release by berberine: in vivo and in vitro studies. Biochem Pharmacol. 2010;79(7):1000–6.PubMedCrossRef Yu Y, et al. Modulation of glucagon-like peptide-1 release by berberine: in vivo and in vitro studies. Biochem Pharmacol. 2010;79(7):1000–6.PubMedCrossRef
101.
go back to reference Yang Z, et al. Berberine attenuates high glucose-induced fibrosis by activating the G protein-coupled bile acid receptor TGR5 and repressing the S1P2/MAPK signaling pathway in glomerular mesangial cells. Exp Cell Res. 2016;346(2):241–7.PubMedCrossRef Yang Z, et al. Berberine attenuates high glucose-induced fibrosis by activating the G protein-coupled bile acid receptor TGR5 and repressing the S1P2/MAPK signaling pathway in glomerular mesangial cells. Exp Cell Res. 2016;346(2):241–7.PubMedCrossRef
102.
go back to reference Yu Y, et al. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways. Biochem Pharmacol. 2015;97(2):173–7.PubMedCrossRef Yu Y, et al. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways. Biochem Pharmacol. 2015;97(2):173–7.PubMedCrossRef
103.
go back to reference Cheng Z, et al. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochim Biophys Acta. 2006;1760(11):1682–9.PubMedCrossRef Cheng Z, et al. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochim Biophys Acta. 2006;1760(11):1682–9.PubMedCrossRef
104.
go back to reference Chang W, et al. Berberine improves insulin resistance in cardiomyocytes via activation of 5′-adenosine monophosphate-activated protein kinase. Metabolism. 2013;62(8):1159–67.PubMedCrossRef Chang W, et al. Berberine improves insulin resistance in cardiomyocytes via activation of 5′-adenosine monophosphate-activated protein kinase. Metabolism. 2013;62(8):1159–67.PubMedCrossRef
105.
go back to reference Liu W, et al. Berberine reduces fibronectin and collagen accumulation in rat glomerular mesangial cells cultured under high glucose condition. Mol Cell Biochem. 2009;325(1–2):99–105.PubMedCrossRef Liu W, et al. Berberine reduces fibronectin and collagen accumulation in rat glomerular mesangial cells cultured under high glucose condition. Mol Cell Biochem. 2009;325(1–2):99–105.PubMedCrossRef
106.
go back to reference Qiu YY, Tang LQ, Wei W. Berberine exerts renoprotective effects by regulating the AGEs-RAGE signaling pathway in mesangial cells during diabetic nephropathy. Mol Cell Endocrinol. 2017;443:89–105.PubMedCrossRef Qiu YY, Tang LQ, Wei W. Berberine exerts renoprotective effects by regulating the AGEs-RAGE signaling pathway in mesangial cells during diabetic nephropathy. Mol Cell Endocrinol. 2017;443:89–105.PubMedCrossRef
107.
go back to reference Lan T, et al. Berberine attenuates high glucose-induced proliferation and extracellular matrix accumulation in mesangial cells: involvement of suppression of cell cycle progression and NF-kappaB/AP-1 pathways. Mol Cell Endocrinol. 2014;384(1–2):109–16.PubMedCrossRef Lan T, et al. Berberine attenuates high glucose-induced proliferation and extracellular matrix accumulation in mesangial cells: involvement of suppression of cell cycle progression and NF-kappaB/AP-1 pathways. Mol Cell Endocrinol. 2014;384(1–2):109–16.PubMedCrossRef
108.
go back to reference Lan T, et al. Berberine suppresses high glucose-induced TGF-beta1 and fibronectin synthesis in mesangial cells through inhibition of sphingosine kinase 1/AP-1 pathway. Eur J Pharmacol. 2012;697(1–3):165–72.PubMedCrossRef Lan T, et al. Berberine suppresses high glucose-induced TGF-beta1 and fibronectin synthesis in mesangial cells through inhibition of sphingosine kinase 1/AP-1 pathway. Eur J Pharmacol. 2012;697(1–3):165–72.PubMedCrossRef
109.
go back to reference Yerra VG, et al. Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy. Neuropharmacology. 2017;131:256.PubMedCrossRef Yerra VG, et al. Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy. Neuropharmacology. 2017;131:256.PubMedCrossRef
110.
go back to reference Wang B, et al. Berberine improved aldo-induced podocyte injury via inhibiting oxidative stress and endoplasmic reticulum stress pathways both in vivo and in vitro. Cell Physiol Biochem. 2016;39(1):217–28.PubMedCrossRef Wang B, et al. Berberine improved aldo-induced podocyte injury via inhibiting oxidative stress and endoplasmic reticulum stress pathways both in vivo and in vitro. Cell Physiol Biochem. 2016;39(1):217–28.PubMedCrossRef
111.
go back to reference Yu SM, et al. Berberine induces dedifferentiation by actin cytoskeleton reorganization via phosphoinositide 3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes. Exp Biol Med (Maywood). 2016;241(8):800–7.CrossRef Yu SM, et al. Berberine induces dedifferentiation by actin cytoskeleton reorganization via phosphoinositide 3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes. Exp Biol Med (Maywood). 2016;241(8):800–7.CrossRef
112.
go back to reference Zhao H, et al. Berberine ameliorates cartilage degeneration in interleukin-1beta-stimulated rat chondrocytes and in a rat model of osteoarthritis via Akt signalling. J Cell Mol Med. 2014;18(2):283–92.PubMedCrossRef Zhao H, et al. Berberine ameliorates cartilage degeneration in interleukin-1beta-stimulated rat chondrocytes and in a rat model of osteoarthritis via Akt signalling. J Cell Mol Med. 2014;18(2):283–92.PubMedCrossRef
113.
go back to reference Lee YS, et al. AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone. 2010;47(5):926–37.PubMedCrossRef Lee YS, et al. AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone. 2010;47(5):926–37.PubMedCrossRef
114.
go back to reference Zhou K, et al. Coptisine prevented IL-beta-induced expression of inflammatory mediators in chondrocytes. Inflammation. 2016;39(4):1558–65.PubMedCrossRef Zhou K, et al. Coptisine prevented IL-beta-induced expression of inflammatory mediators in chondrocytes. Inflammation. 2016;39(4):1558–65.PubMedCrossRef
115.
go back to reference Ishikawa S, et al. Influence of palmatine on bone metabolism in ovariectomized mice and cytokine secretion of osteoblasts. In Vivo. 2015;29(6):671–7.PubMed Ishikawa S, et al. Influence of palmatine on bone metabolism in ovariectomized mice and cytokine secretion of osteoblasts. In Vivo. 2015;29(6):671–7.PubMed
Metadata
Title
Cellular stress response mechanisms of Rhizoma coptidis: a systematic review
Authors
Jin Wang
Qian Ran
Hai-rong Zeng
Lin Wang
Chang-jiang Hu
Qin-wan Huang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2018
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-018-0184-y

Other articles of this Issue 1/2018

Chinese Medicine 1/2018 Go to the issue