Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Bone Defect | Research article

Reconstruction of large segmental bone defects in rabbit using the Masquelet technique with α-calcium sulfate hemihydrate

Authors: Zhu Long Meng, Zi Quan Wu, Bi Xin Shen, Hong Bo Li, Yang Yang Bian, De Lu Zeng, Jian Fu, Lei Peng

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

Large segmental bone defects can be repaired using the Masquelet technique in conjunction with autologous cancellous bone (ACB). However, ACB harvesting is severely restricted. α-calcium sulfate hemihydrate (α-CSH) is an outstanding bone substitute due to its easy availability, excellent biocompatibility, biodegradability, and osteoconductivity. However, the resorption rate of α-CSH is too fast to match the rate of new bone formation. The objective of this study was to investigate the bone repair capacity of the Masquelet technique in conjunction with isolated α-CSH or an α-CSH/ACB mix in a rabbit critical-sized defect model.

Methods

The rabbits (n = 28) were randomized into four groups: sham, isolated α-CSH, α-CSH/ACB mix, and isolated ACB group. A 15-mm critical-sized defect was established in the left radius, followed by filling with polymethyl methacrylate spacer. Six weeks after the first operation, the spacers were removed and the membranous tubes were grafted with isolated α-CSH, isolated ACB, α-CSH/ACB mix, or none. Twelve weeks later, the outcomes were evaluated by manual assessment, radiography, and spiral-CT. The histopathological and morphological changes were examined by H&E staining. The levels of alkaline phosphatase and osteocalcin were analyzed by immunohistochemistry and immunofluorescence staining.

Results

Our results suggest that the bone repair capacity of the α-CSH/ACB mix group was similar to the isolated ACB group, while the isolated α-CSH group was significantly decreased compared to the isolated ACB group.

Conclusion

These results highlighted a promising strategy in the healing of large segmental bone defect with the Masquelet technique in conjunction with an α-CSH/ACB mix (1:1, w/w) as they possessed the combined effects of sufficient supply and low resorption.
Literature
1.
go back to reference Pobloth AM, Schell H, Petersen A, Beierlein K, Kleber C, Schmidt-Bleek K, Duda GN. Tubular open-porous beta-tricalcium phosphate polycaprolactone scaffolds as guiding structure for segmental bone defect regeneration in a novel sheep model. J Tissue Eng Regen Med. 2018;12(4):897–911.PubMedCrossRef Pobloth AM, Schell H, Petersen A, Beierlein K, Kleber C, Schmidt-Bleek K, Duda GN. Tubular open-porous beta-tricalcium phosphate polycaprolactone scaffolds as guiding structure for segmental bone defect regeneration in a novel sheep model. J Tissue Eng Regen Med. 2018;12(4):897–911.PubMedCrossRef
2.
go back to reference Lasanianos NG, Kanakaris NK, Giannoudis PV. Current management of long bone large segmental defects. Orthopaedics Trauma. 2010;24(2):149–63.CrossRef Lasanianos NG, Kanakaris NK, Giannoudis PV. Current management of long bone large segmental defects. Orthopaedics Trauma. 2010;24(2):149–63.CrossRef
3.
go back to reference Minier K, Touré A, Fusellier M, Fellah B, Bouvy B, Weiss P, Gauthier O. BMP-2 delivered from a self-crosslinkable CaP/hydrogel construct promotes bone regeneration in a critical-size segmental defect model of non-union in dogs. Vet Comp Orthop Traumatol. 2014;27(6):411–21.PubMedCrossRef Minier K, Touré A, Fusellier M, Fellah B, Bouvy B, Weiss P, Gauthier O. BMP-2 delivered from a self-crosslinkable CaP/hydrogel construct promotes bone regeneration in a critical-size segmental defect model of non-union in dogs. Vet Comp Orthop Traumatol. 2014;27(6):411–21.PubMedCrossRef
4.
go back to reference Henrich D, Seebach C, Nau C, Basan S, Relja B, Wilhelm K, Schaible A, Frank J, Barker J, Marzi I. Establishment and characterization of the Masquelet induced membrane technique in a rat femur critical-sized defect model. J Tissue Eng Regen Med. 2016;10(10):382–96.CrossRef Henrich D, Seebach C, Nau C, Basan S, Relja B, Wilhelm K, Schaible A, Frank J, Barker J, Marzi I. Establishment and characterization of the Masquelet induced membrane technique in a rat femur critical-sized defect model. J Tissue Eng Regen Med. 2016;10(10):382–96.CrossRef
5.
go back to reference Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthopaedic Surg. 2015;23(3):143–53. Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthopaedic Surg. 2015;23(3):143–53.
6.
go back to reference Friedrich JB, Moran SL, Bishop AT, Shin AY. Free vascularized fibula grafts for salvage of failed oncologic long bone reconstruction and pathologic fractures. Microsurgery. 2009;29(5):385–92.PubMedCrossRef Friedrich JB, Moran SL, Bishop AT, Shin AY. Free vascularized fibula grafts for salvage of failed oncologic long bone reconstruction and pathologic fractures. Microsurgery. 2009;29(5):385–92.PubMedCrossRef
7.
go back to reference Pederson WC, Person DW. Long bone reconstruction with vascularized bone grafts. Orthopedic Clin North Am. 2007;38(1):23–35.CrossRef Pederson WC, Person DW. Long bone reconstruction with vascularized bone grafts. Orthopedic Clin North Am. 2007;38(1):23–35.CrossRef
8.
go back to reference Ghert M, Colterjohn N, Manfrini M. The use of free vascularized fibular grafts in skeletal reconstruction for bone tumors in children. J Am Acad Orthopaedic Surg. 2007;15(10):577–87.CrossRef Ghert M, Colterjohn N, Manfrini M. The use of free vascularized fibular grafts in skeletal reconstruction for bone tumors in children. J Am Acad Orthopaedic Surg. 2007;15(10):577–87.CrossRef
9.
go back to reference Paley D, Maar DC. Ilizarov bone transport treatment for tibial defects. J Orthopaedic Trauma. 2000;14(2):76.CrossRef Paley D, Maar DC. Ilizarov bone transport treatment for tibial defects. J Orthopaedic Trauma. 2000;14(2):76.CrossRef
10.
go back to reference Aronson J. Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg Am. 1997;79(8):1243.PubMedCrossRef Aronson J. Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg Am. 1997;79(8):1243.PubMedCrossRef
11.
12.
go back to reference Mekhail AO, Abraham E, Gruber B, Gonzalez M. Bone transport in the management of posttraumatic bone defects in the lower extremity. J Traum. 2004;56(2):368.CrossRef Mekhail AO, Abraham E, Gruber B, Gonzalez M. Bone transport in the management of posttraumatic bone defects in the lower extremity. J Traum. 2004;56(2):368.CrossRef
13.
go back to reference Pelissier P, Martin D, Baudet J, Lepreux S, Masquelet AC. Behaviour of cancellous bone graft placed in induced membranes. Br J Plast Surg. 2002;55(7):596–8.PubMedCrossRef Pelissier P, Martin D, Baudet J, Lepreux S, Masquelet AC. Behaviour of cancellous bone graft placed in induced membranes. Br J Plast Surg. 2002;55(7):596–8.PubMedCrossRef
14.
go back to reference Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet. 2000;45(3):346–53.PubMed Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet. 2000;45(3):346–53.PubMed
15.
go back to reference Gouron R, Petit L, Boudot C, Six I, Brazier M, Kamel S, Mentaverri R. Osteoclasts and their precursors are present in the induced-membrane during bone reconstruction using the Masquelet technique. J Tissue Eng Regen Med. 2017;11(2):382.PubMedCrossRef Gouron R, Petit L, Boudot C, Six I, Brazier M, Kamel S, Mentaverri R. Osteoclasts and their precursors are present in the induced-membrane during bone reconstruction using the Masquelet technique. J Tissue Eng Regen Med. 2017;11(2):382.PubMedCrossRef
16.
go back to reference Masquelet AC, Begue T. The Concept of Induced Membrane for Reconstruction of Long Bone Defects. Orthop Clin North Am. 2010;41(1):27–37.PubMedCrossRef Masquelet AC, Begue T. The Concept of Induced Membrane for Reconstruction of Long Bone Defects. Orthop Clin North Am. 2010;41(1):27–37.PubMedCrossRef
17.
go back to reference Bosemark P, Perdikouri C, Pelkonen M, Isaksson H. The Masquelet induced membrane technique with BMP anda synthetic scaffold can heal a rat femoral critical size defect. J Orthopaed Res Off Publ Orthopaed Res Soc. 2015;33(4):488–95.CrossRef Bosemark P, Perdikouri C, Pelkonen M, Isaksson H. The Masquelet induced membrane technique with BMP anda synthetic scaffold can heal a rat femoral critical size defect. J Orthopaed Res Off Publ Orthopaed Res Soc. 2015;33(4):488–95.CrossRef
18.
go back to reference Taylor BC, French BG, Fowler TT, Russell J, Poka A. Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg. 2012;20(3):142–50.PubMedCrossRef Taylor BC, French BG, Fowler TT, Russell J, Poka A. Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg. 2012;20(3):142–50.PubMedCrossRef
19.
go back to reference Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22(1):73–9.PubMedCrossRef Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22(1):73–9.PubMedCrossRef
20.
go back to reference Mauffrey C, Hake ME, Chadayammuri V, Masquelet AC. Reconstruction of long bone infections using the induced membrane technique: tips and tricks. J Orthop Trauma. 2016;30(6):188–93. Mauffrey C, Hake ME, Chadayammuri V, Masquelet AC. Reconstruction of long bone infections using the induced membrane technique: tips and tricks. J Orthop Trauma. 2016;30(6):188–93.
21.
go back to reference Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42(Suppl 2):3–15.CrossRef Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42(Suppl 2):3–15.CrossRef
22.
23.
go back to reference Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthopaed Relat Res. 1996;329(329):300–9.CrossRef Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthopaed Relat Res. 1996;329(329):300–9.CrossRef
24.
go back to reference Li X, Xu CP, Hou YL, Song JQ, Cui Z, Wang SN, Huang L, Zhou CR, Yu B. A novel resorbable strontium-containing alpha-calcium sulfate hemihydrate bone substitute: a preparation and preliminary study. Biomed Mater. 2014;9(4):45010.CrossRef Li X, Xu CP, Hou YL, Song JQ, Cui Z, Wang SN, Huang L, Zhou CR, Yu B. A novel resorbable strontium-containing alpha-calcium sulfate hemihydrate bone substitute: a preparation and preliminary study. Biomed Mater. 2014;9(4):45010.CrossRef
25.
go back to reference Young-Kyun K, Ji-Young L, Su-Gwan K, Seung-Chul L. Guided bone regeneration using demineralized allogenic bone matrix with calcium sulfate: case series. J Adv Prosthodont. 2013;5(2):167.CrossRef Young-Kyun K, Ji-Young L, Su-Gwan K, Seung-Chul L. Guided bone regeneration using demineralized allogenic bone matrix with calcium sulfate: case series. J Adv Prosthodont. 2013;5(2):167.CrossRef
26.
go back to reference Stubbs D, Deakin M, Chapman-Sheath P, Bruce W, Debes J, Gillies RM, Walsh WR. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials. 2004;25(20):5037–44.PubMedCrossRef Stubbs D, Deakin M, Chapman-Sheath P, Bruce W, Debes J, Gillies RM, Walsh WR. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials. 2004;25(20):5037–44.PubMedCrossRef
27.
go back to reference Orsini G, Ricci J, Scarano A, Pecora G, Petrone G, Iezzi G, Piattelli A. Bone-defect healing with calcium-sulfate particles and cement: an experimental study in rabbit. J Biomed Mater Res B Appl Biomater. 2004;68B(2):199–208.CrossRef Orsini G, Ricci J, Scarano A, Pecora G, Petrone G, Iezzi G, Piattelli A. Bone-defect healing with calcium-sulfate particles and cement: an experimental study in rabbit. J Biomed Mater Res B Appl Biomater. 2004;68B(2):199–208.CrossRef
28.
go back to reference Jing Z, Wu Y, Su W, Tian M, Jiang W, Cao L, Zhao L, Zhao Z. Carbon nanotube reinforced collagen/hydroxyapatite scaffolds improve bone tissue formation In Vitro and In Vivo. Ann Biomed Eng. 2017;45(9):2075–87.PubMedCrossRef Jing Z, Wu Y, Su W, Tian M, Jiang W, Cao L, Zhao L, Zhao Z. Carbon nanotube reinforced collagen/hydroxyapatite scaffolds improve bone tissue formation In Vitro and In Vivo. Ann Biomed Eng. 2017;45(9):2075–87.PubMedCrossRef
29.
go back to reference Woon CY, Chong KW, Wong MK. Induced membranes—a staged technique of bone-grafting for segmental bone loss: a report of two cases and a literature review. J Bone Joint Surg Am. 2010;92(1):196.PubMedCrossRef Woon CY, Chong KW, Wong MK. Induced membranes—a staged technique of bone-grafting for segmental bone loss: a report of two cases and a literature review. J Bone Joint Surg Am. 2010;92(1):196.PubMedCrossRef
30.
go back to reference Apard T, Bigorre N, Cronier P, Duteille F, Bizot P, Massin P. Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. Orthop Traumatol Surg Res. 2010;96(5):549.PubMedCrossRef Apard T, Bigorre N, Cronier P, Duteille F, Bizot P, Massin P. Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. Orthop Traumatol Surg Res. 2010;96(5):549.PubMedCrossRef
31.
go back to reference Masquelet AC. Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg. 2003;388(5):344–6.PubMedCrossRef Masquelet AC. Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg. 2003;388(5):344–6.PubMedCrossRef
32.
go back to reference Viateau V, Guillemin G, Yang YC, Bensaid W, Reviron T, Oudina K, Meunier A, Sedel L, Petite H. A technique for creating critical-size defects in the metatarsus of sheep for use in investigation of healing of long-bone defects. Am J Vet Res. 2004;65(12):1653–7.PubMedCrossRef Viateau V, Guillemin G, Yang YC, Bensaid W, Reviron T, Oudina K, Meunier A, Sedel L, Petite H. A technique for creating critical-size defects in the metatarsus of sheep for use in investigation of healing of long-bone defects. Am J Vet Res. 2004;65(12):1653–7.PubMedCrossRef
33.
go back to reference Frasca S, Norol F, Visage CL, Collombet JM, Letourneur D, Holy X, Ali ES. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. J Mater Sci Mater Med. 2017;28(2):35.PubMedPubMedCentralCrossRef Frasca S, Norol F, Visage CL, Collombet JM, Letourneur D, Holy X, Ali ES. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. J Mater Sci Mater Med. 2017;28(2):35.PubMedPubMedCentralCrossRef
34.
go back to reference Walsh WR, Morberg P, Yu Y, Yang JL, Haggard W, Sheath PC, Svehla M, Bruce WJ. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res. 2003;406(406):228.CrossRef Walsh WR, Morberg P, Yu Y, Yang JL, Haggard W, Sheath PC, Svehla M, Bruce WJ. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res. 2003;406(406):228.CrossRef
35.
go back to reference Beuerlein MJ, Mckee MD. Calcium sulfates: what is the evidence? J Orthop Trauma. 2010;24(Suppl 1):46–51.CrossRef Beuerlein MJ, Mckee MD. Calcium sulfates: what is the evidence? J Orthop Trauma. 2010;24(Suppl 1):46–51.CrossRef
36.
go back to reference Shen Y, Yang S, Liu J, Xu H, Shi Z, Lin Z, Ying X, Guo P, Lin T, Yan S. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. ACS Appl Mater Interfaces. 2014;6(15):12177.PubMedCrossRef Shen Y, Yang S, Liu J, Xu H, Shi Z, Lin Z, Ying X, Guo P, Lin T, Yan S. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. ACS Appl Mater Interfaces. 2014;6(15):12177.PubMedCrossRef
37.
go back to reference Kanatani M, Sugimoto T, Kanzawa M, Yano S, Chihara K. High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Commun. 1999;261(1):144–8.PubMedCrossRef Kanatani M, Sugimoto T, Kanzawa M, Yano S, Chihara K. High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Commun. 1999;261(1):144–8.PubMedCrossRef
38.
go back to reference Nakade O, Takahashi K, Takuma T, Aoki T, Kaku T. Effect of extracellular calcium on the gene expression of bone morphogenetic protein-2 and -4 of normal human bone cells. J Bone Miner Metab. 2001;19(1):13–9.PubMedCrossRef Nakade O, Takahashi K, Takuma T, Aoki T, Kaku T. Effect of extracellular calcium on the gene expression of bone morphogenetic protein-2 and -4 of normal human bone cells. J Bone Miner Metab. 2001;19(1):13–9.PubMedCrossRef
39.
go back to reference Thomas MV, Puleo DA, Alsabbagh M. Calcium sulfate: a review. J Long Term Eff Med Impl. 2005;15(6):599–607.CrossRef Thomas MV, Puleo DA, Alsabbagh M. Calcium sulfate: a review. J Long Term Eff Med Impl. 2005;15(6):599–607.CrossRef
40.
go back to reference Wiese A, Pape HC. Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions. Orthop Clin North Am. 2010;41(1):1.PubMedCrossRef Wiese A, Pape HC. Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions. Orthop Clin North Am. 2010;41(1):1.PubMedCrossRef
41.
go back to reference Ho MH, Yao CJ, Liao MH, Lin PI, Liu SH, Chen RM. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway. Int J Nanomedicine. 2015;10:5941–54.PubMedPubMedCentral Ho MH, Yao CJ, Liao MH, Lin PI, Liu SH, Chen RM. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway. Int J Nanomedicine. 2015;10:5941–54.PubMedPubMedCentral
42.
go back to reference Wolf G. Function of the bone protein osteocalcin: definitive evidence. Nutr Rev. 1996;54(10):332–3.PubMedCrossRef Wolf G. Function of the bone protein osteocalcin: definitive evidence. Nutr Rev. 1996;54(10):332–3.PubMedCrossRef
43.
go back to reference Boskey AL, Wians F Jr, Hauschka PV. The effect of osteocalcin on in vitro lipid-induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcif Tissue Int. 1985;37(1):57–62.PubMedCrossRef Boskey AL, Wians F Jr, Hauschka PV. The effect of osteocalcin on in vitro lipid-induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcif Tissue Int. 1985;37(1):57–62.PubMedCrossRef
44.
go back to reference Viateau V, Guillemin G, Bousson V, Oudina K, Hannouche D, Sedel L, Logeart-Avramoglou D, Petite H. Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. J Orthop Res. 2007;25(6):741–9.PubMedCrossRef Viateau V, Guillemin G, Bousson V, Oudina K, Hannouche D, Sedel L, Logeart-Avramoglou D, Petite H. Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. J Orthop Res. 2007;25(6):741–9.PubMedCrossRef
Metadata
Title
Reconstruction of large segmental bone defects in rabbit using the Masquelet technique with α-calcium sulfate hemihydrate
Authors
Zhu Long Meng
Zi Quan Wu
Bi Xin Shen
Hong Bo Li
Yang Yang Bian
De Lu Zeng
Jian Fu
Lei Peng
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Bone Defect
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1235-5

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue