Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Research article

Early versus late surgery after cervical spinal cord injury: a Japanese nationwide trauma database study

Authors: Chie Tanaka, Takashi Tagami, Junya Kaneko, Reo Fukuda, Fumihiko Nakayama, Shin Sato, Akiko Takehara, Saori Kudo, Masamune Kuno, Masayoshi Kondo, Kyoko Unemoto

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

The management of cervical spinal cord injury (SCI) has changed drastically in the last decades, and surgery is the primary treatment. However, the optimum timing of early surgical treatment (within 24 h or 72 h after injury) is still controversial. We sought to determine the optimum timing of surgery for cervical SCI, comparing the length of the intensive care unit (ICU) stay and in-hospital mortality in patients who underwent surgical treatments (decompression and stabilization) for cervical SCI within 24 h after injury and within 7 days after injury.

Methods

This was a retrospective cohort study using Japan Trauma Data Bank (JTDB) which is a nationwide, multicenter database. We selected adult isolated cervical SCI patients who underwent operative management within 7 days after injury, between 2004 and 2015. The main outcome measures were the length of ICU stay and in-hospital mortality. We grouped the patients into two, based on the time from onset of injury to surgery, an early group (within 24 h) and a late group (from 25 h to 7 days). Next, we performed multivariable analyses for analyzing the relevance between the timing of surgery and the length of ICU stay after adjusting for baseline characteristics using propensity score. We also performed the Cox survival analyses to evaluate in-hospital mortality.

Results

From 236,698 trauma patients registered in JTDB, we analyzed 514 patients. The early group comprised 291 patients (56.6%), and the late group comprised 223 (43.4%). The length of ICU stay did not differ between the two groups (early, 10 days; late, 11 days; p = 0.29). There was no significant difference for length of ICU stay between the early and late group even after adjustment by multivariate analysis (p = 0.64). There was no significant difference in in-hospital mortality between the two groups (the early group 3.8%, the late group 2.2%, p = 0.32), and no significant difference was found in the Cox survival analysis.

Conclusions

Our study showed that neither the length of ICU stay nor in-hospital mortality after spinal column stabilization or spinal cord decompression for cervical SCI significantly differed according to the timing of surgery between 24 h and 7 days.
Literature
1.
go back to reference Hurlbert RJ. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg. 2000;93(1 Suppl):1–7.PubMed Hurlbert RJ. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg. 2000;93(1 Suppl):1–7.PubMed
2.
go back to reference Hurlbert RJ, Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE, et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery. 2015;76(Suppl 1):S71–83.PubMedCrossRef Hurlbert RJ, Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE, et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery. 2015;76(Suppl 1):S71–83.PubMedCrossRef
3.
go back to reference Gelb DE, Hadley MN, Aarabi B, Dhall SS, Hurlbert RJ, Rozzelle CJ, et al. Initial closed reduction of cervical spinal fracture-dislocation injuries. Neurosurgery. 2013;72(Suppl 2):73–83.PubMedCrossRef Gelb DE, Hadley MN, Aarabi B, Dhall SS, Hurlbert RJ, Rozzelle CJ, et al. Initial closed reduction of cervical spinal fracture-dislocation injuries. Neurosurgery. 2013;72(Suppl 2):73–83.PubMedCrossRef
4.
go back to reference Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75(1):15–26.PubMedCrossRef Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75(1):15–26.PubMedCrossRef
5.
go back to reference Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus. 2008;25(5):E2.PubMedCrossRef Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus. 2008;25(5):E2.PubMedCrossRef
6.
go back to reference Li Y, Walker CL, Zhang YP, Shields CB, Xu XM. Surgical decompression in acute spinal cord injury: a review of clinical evidence, animal model studies, and potential future directions of investigation. Front Biol (Beijing). 2014;9(2):127–36.CrossRef Li Y, Walker CL, Zhang YP, Shields CB, Xu XM. Surgical decompression in acute spinal cord injury: a review of clinical evidence, animal model studies, and potential future directions of investigation. Front Biol (Beijing). 2014;9(2):127–36.CrossRef
7.
go back to reference Fehlings MG, Vaccaro A, Wilson JR, Singh A, D WC, Harrop JS, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One. 2012;7(2):e32037.PubMedPubMedCentralCrossRef Fehlings MG, Vaccaro A, Wilson JR, Singh A, D WC, Harrop JS, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One. 2012;7(2):e32037.PubMedPubMedCentralCrossRef
8.
go back to reference Umerani MS, Abbas A, Sharif S. Clinical outcome in patients with early versus delayed decompression in cervical spine trauma. Asian Spine J. 2014;8(4):427–34.PubMedPubMedCentralCrossRef Umerani MS, Abbas A, Sharif S. Clinical outcome in patients with early versus delayed decompression in cervical spine trauma. Asian Spine J. 2014;8(4):427–34.PubMedPubMedCentralCrossRef
9.
go back to reference Liu Y, Shi CG, Wang XW, Chen HJ, Wang C, Cao P, et al. Timing of surgical decompression for traumatic cervical spinal cord injury. Int Orthop. 2015;39(12):2457–63.PubMedCrossRef Liu Y, Shi CG, Wang XW, Chen HJ, Wang C, Cao P, et al. Timing of surgical decompression for traumatic cervical spinal cord injury. Int Orthop. 2015;39(12):2457–63.PubMedCrossRef
10.
go back to reference Jug M, Kejzar N, Vesel M, Al Mawed S, Dobravec M, Herman S, et al. Neurological recovery after traumatic cervical spinal cord injury is superior if surgical decompression and instrumented fusion are performed within 8 hours versus 8 to 24 hours after injury: a single center experience. J Neurotrauma. 2015;32(18):1385–92.PubMedCrossRef Jug M, Kejzar N, Vesel M, Al Mawed S, Dobravec M, Herman S, et al. Neurological recovery after traumatic cervical spinal cord injury is superior if surgical decompression and instrumented fusion are performed within 8 hours versus 8 to 24 hours after injury: a single center experience. J Neurotrauma. 2015;32(18):1385–92.PubMedCrossRef
11.
go back to reference Liu JM, Long XH, Zhou Y, Peng HW, Liu ZL, Huang SH. Is urgent decompression superior to delayed surgery for traumatic spinal cord injury? A meta-analysis. World Neurosurg. 2016;87:124–31.PubMedCrossRef Liu JM, Long XH, Zhou Y, Peng HW, Liu ZL, Huang SH. Is urgent decompression superior to delayed surgery for traumatic spinal cord injury? A meta-analysis. World Neurosurg. 2016;87:124–31.PubMedCrossRef
12.
go back to reference Sapkas GS, Papadakis SA. Neurological outcome following early versus delayed lower cervical spine surgery. J Orthop Surg (Hong Kong). 2007;15(2):183–6.CrossRef Sapkas GS, Papadakis SA. Neurological outcome following early versus delayed lower cervical spine surgery. J Orthop Surg (Hong Kong). 2007;15(2):183–6.CrossRef
13.
go back to reference Kerwin AJ, Frykberg ER, Schinco MA, Griffen MM, Murphy T, Tepas JJ. The effect of early spine fixation on non-neurologic outcome. J Trauma. 2005;58(1):15–21.PubMedCrossRef Kerwin AJ, Frykberg ER, Schinco MA, Griffen MM, Murphy T, Tepas JJ. The effect of early spine fixation on non-neurologic outcome. J Trauma. 2005;58(1):15–21.PubMedCrossRef
16.
go back to reference Tanaka C, Tagami T, Matsumoto H, Matsuda K, Kim S, Moroe Y, et al. Recent trends in 30-day mortality in patients with blunt splenic injury: a nationwide trauma database study in Japan. PLoS One. 2017;12(9):e0184690.PubMedPubMedCentralCrossRef Tanaka C, Tagami T, Matsumoto H, Matsuda K, Kim S, Moroe Y, et al. Recent trends in 30-day mortality in patients with blunt splenic injury: a nationwide trauma database study in Japan. PLoS One. 2017;12(9):e0184690.PubMedPubMedCentralCrossRef
17.
go back to reference Medicine AftAoA. Abbreviated Injury Scale 2005 update 2008. Barrington Illinois: Association for the Advancement of Automotive Medicine; 2008. Medicine AftAoA. Abbreviated Injury Scale 2005 update 2008. Barrington Illinois: Association for the Advancement of Automotive Medicine; 2008.
18.
go back to reference Baker SP, O’Neill B, Haddon W Jr, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14(3):187–96.PubMedCrossRef Baker SP, O’Neill B, Haddon W Jr, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14(3):187–96.PubMedCrossRef
19.
20.
go back to reference El Tecle NE, Dahdaleh NS, Hitchon PW. Timing of surgery in spinal cord injury. Spine (Phila Pa 1976). 2016;41(16):E995–e1004.CrossRef El Tecle NE, Dahdaleh NS, Hitchon PW. Timing of surgery in spinal cord injury. Spine (Phila Pa 1976). 2016;41(16):E995–e1004.CrossRef
21.
go back to reference Biglari B, Child C, Yildirim TM, Swing T, Reitzel T, Moghaddam A. Does surgical treatment within 4 hours after trauma have an influence on neurological remission in patients with acute spinal cord injury? Ther Clin Risk Manag. 2016;12:1339–46.PubMedPubMedCentralCrossRef Biglari B, Child C, Yildirim TM, Swing T, Reitzel T, Moghaddam A. Does surgical treatment within 4 hours after trauma have an influence on neurological remission in patients with acute spinal cord injury? Ther Clin Risk Manag. 2016;12:1339–46.PubMedPubMedCentralCrossRef
22.
go back to reference Janssen KJ, Donders AR, Harrell FE Jr, Vergouwe Y, Chen Q, Grobbee DE, KGM M, et al. Missing covariate data in medical research: to impute is better than to ignore. J Clin Epidemiol. 2010;63(7):721–7.PubMedCrossRef Janssen KJ, Donders AR, Harrell FE Jr, Vergouwe Y, Chen Q, Grobbee DE, KGM M, et al. Missing covariate data in medical research: to impute is better than to ignore. J Clin Epidemiol. 2010;63(7):721–7.PubMedCrossRef
23.
go back to reference Little RJ, D’Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367:1355–60.PubMedPubMedCentralCrossRef Little RJ, D’Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367:1355–60.PubMedPubMedCentralCrossRef
24.
go back to reference Chikuda H, Yasunaga H, Takeshita K, Horiguchi H, Kawaguchi H, Ohe K, et al. Mortality and morbidity after high-dose methylprednisolone treatment in patients with acute cervical spinal cord injury: a propensity-matched analysis using a nationwide administrative database. Emerg Med J. 2014;31(3):201–6.PubMedCrossRef Chikuda H, Yasunaga H, Takeshita K, Horiguchi H, Kawaguchi H, Ohe K, et al. Mortality and morbidity after high-dose methylprednisolone treatment in patients with acute cervical spinal cord injury: a propensity-matched analysis using a nationwide administrative database. Emerg Med J. 2014;31(3):201–6.PubMedCrossRef
25.
go back to reference McKinley W, Meade MA, Kirshblum S, Barnard B. Outcomes of early surgical management versus late or no surgical intervention after acute spinal cord injury. Arch Phys Med Rehabil. 2004;85(11):1818–25.PubMedCrossRef McKinley W, Meade MA, Kirshblum S, Barnard B. Outcomes of early surgical management versus late or no surgical intervention after acute spinal cord injury. Arch Phys Med Rehabil. 2004;85(11):1818–25.PubMedCrossRef
26.
go back to reference Papadopoulos SM, Selden NR, Quint DJ, Patel N, Gillespie B, Grube S. Immediate spinal cord decompression for cervical spinal cord injury: feasibility and outcome. J Trauma. 2002;52(2):323–32.PubMed Papadopoulos SM, Selden NR, Quint DJ, Patel N, Gillespie B, Grube S. Immediate spinal cord decompression for cervical spinal cord injury: feasibility and outcome. J Trauma. 2002;52(2):323–32.PubMed
Metadata
Title
Early versus late surgery after cervical spinal cord injury: a Japanese nationwide trauma database study
Authors
Chie Tanaka
Takashi Tagami
Junya Kaneko
Reo Fukuda
Fumihiko Nakayama
Shin Sato
Akiko Takehara
Saori Kudo
Masamune Kuno
Masayoshi Kondo
Kyoko Unemoto
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1341-4

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue