Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01-12-2016 | Research article

Analysis of the osseointegrative force of a hyperhydrophilic and nanostructured surface refinement for TPS surfaces in a gap healing model with the Göttingen minipig

Authors: Roland Seidling, Lars J. Lehmann, Manuel Lingner, Eckhard Mauermann, Udo Obertacke, Markus L. R. Schwarz

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2016

Login to get access

Abstract

Background

A lot of advantages can result in a high wettability as well as a nanostructure at a titanium surface on bone implants. Thus, the aim of this study was to evaluate the osseointegrative potential of a titan plasma-sprayed (TPS) surface refinement by acid-etching with chromosulfuric acid. This results in a hyperhydrophilic surface with a nanostructure and an extreme high wetting rate.

Methods

In total, 72 dumbbell shape titan implants were inserted in the spongy bone of the femora of 18 Göttingen minipigs in a conservative gap model. Thirty-six titan implants were coated with a standard TPS surface and 36 with the hyperhydrophilic chromosulfuric acid (CSA) surface. After a healing period of 4, 8, and 12 weeks, the animals were killed. The chronological healing process was histomorphometrically analyzed.

Results

The de novo bone formation, represented by the bone area (BA), is increased by approximately 1.5 times after 12 weeks with little additional benefit by use of the CSA surface. The bone-to-implant contact (BIC), which represents osseoconductive forces, shows results with a highly increased osteoid production in the CSA implants beginning at 8 and 12 weeks compared to TPS. This culminates in a 17-fold increase in BIC after a healing period of 12 weeks. After 4 weeks, significantly more osteoid was seen in the gap as de novo formation in the CSA group (p = 0.0062). Osteoid was also found more frequently after 12 weeks at the CSA-treated surface (p = 0.0355). The site of implantation, intertrochanteric or intercondylar, may influence on the de novo bone formation in the gap.

Conclusions

There is a benefit by the CSA surface treatment of the TPS layer for osseointegration over an observation time up to 12 weeks. Significant differences were able to be shown in two direct comparisons between the CSA and the TPS surface for osteoid formation in the gap model. Further trials may reveal the benefit of the CSA treatment of the TPS layer involving mechanical tests if possible.
Appendix
Available only for authorised users
Literature
1.
go back to reference Albrektsson T, et al. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155–70.PubMedCrossRef Albrektsson T, et al. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155–70.PubMedCrossRef
2.
go back to reference Mendonça G, et al. Advancing dental implant surface technology—from micron- to nanotopography. Biomaterials. 2008;29(28):3822–35.PubMedCrossRef Mendonça G, et al. Advancing dental implant surface technology—from micron- to nanotopography. Biomaterials. 2008;29(28):3822–35.PubMedCrossRef
3.
4.
go back to reference Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl. 2009;48(30):5406–15.PubMedPubMedCentralCrossRef Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl. 2009;48(30):5406–15.PubMedPubMedCentralCrossRef
5.
go back to reference Klein MO, et al. Long-term response of osteogenic cells on micron and submicron-scale-structured hydrophilic titanium surfaces: sequence of cell proliferation and cell differentiation. Clin Oral Implants Res. 2010;21(6):642–9.PubMedCrossRef Klein MO, et al. Long-term response of osteogenic cells on micron and submicron-scale-structured hydrophilic titanium surfaces: sequence of cell proliferation and cell differentiation. Clin Oral Implants Res. 2010;21(6):642–9.PubMedCrossRef
6.
go back to reference Klein MO, et al. Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin Implant Dent Relat Res. 2013;15(2):166–75.PubMedCrossRef Klein MO, et al. Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin Implant Dent Relat Res. 2013;15(2):166–75.PubMedCrossRef
7.
go back to reference Masaki C, et al. Effects of implant surface microtopography on osteoblast gene expression. Clin Oral Implants Res. 2005;16(6):650–6.PubMedCrossRef Masaki C, et al. Effects of implant surface microtopography on osteoblast gene expression. Clin Oral Implants Res. 2005;16(6):650–6.PubMedCrossRef
8.
go back to reference Olivares-Navarrete R, et al. Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J Bone Miner Res. 2012;27(8):1773–83.PubMedCrossRef Olivares-Navarrete R, et al. Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J Bone Miner Res. 2012;27(8):1773–83.PubMedCrossRef
9.
go back to reference Abdel-Haq J, et al. Osseointegration and stability of a modified sand-blasted acid-etched implant: an experimental pilot study in sheep. Clin Oral Implants Res. 2011;22(3):265–74.PubMedCrossRef Abdel-Haq J, et al. Osseointegration and stability of a modified sand-blasted acid-etched implant: an experimental pilot study in sheep. Clin Oral Implants Res. 2011;22(3):265–74.PubMedCrossRef
10.
go back to reference Bornstein MM, et al. Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res. 2008;19(3):233–41.PubMedCrossRef Bornstein MM, et al. Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res. 2008;19(3):233–41.PubMedCrossRef
11.
go back to reference Jimbo R, et al. Histomorphometry and bone mechanical property evolution around different implant systems at early healing stages: an experimental study in dogs. Implant Dent. 2013;9:9. Jimbo R, et al. Histomorphometry and bone mechanical property evolution around different implant systems at early healing stages: an experimental study in dogs. Implant Dent. 2013;9:9.
12.
go back to reference Lang NP, et al. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22(4):349–56.PubMedCrossRef Lang NP, et al. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22(4):349–56.PubMedCrossRef
13.
go back to reference Park JW, Kwon TG, Suh JY. The relative effect of surface strontium chemistry and super-hydrophilicity on the early osseointegration of moderately rough titanium surface in the rabbit femur. Clin Oral Implants Res. 2013;24(6):706–9.PubMedCrossRef Park JW, Kwon TG, Suh JY. The relative effect of surface strontium chemistry and super-hydrophilicity on the early osseointegration of moderately rough titanium surface in the rabbit femur. Clin Oral Implants Res. 2013;24(6):706–9.PubMedCrossRef
14.
go back to reference Vasak C, et al. Early bone apposition to hydrophilic and hydrophobic titanium implant surfaces: a histologic and histomorphometric study in minipigs. Clin Oral Implants Res. 2013;10(10):12277. Vasak C, et al. Early bone apposition to hydrophilic and hydrophobic titanium implant surfaces: a histologic and histomorphometric study in minipigs. Clin Oral Implants Res. 2013;10(10):12277.
15.
go back to reference Park JH, et al. The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials. 2012;33(30):7386–93.PubMedPubMedCentralCrossRef Park JH, et al. The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials. 2012;33(30):7386–93.PubMedPubMedCentralCrossRef
16.
go back to reference Jennissen HP. Stabilizing ultra-hydrophilic surfaces by an exsiccation layer of salts and implications of the Hofmeistereffect. Stabilisierung ultra-hydrophiler Oberflächen durch eine Exsikkationsschicht aus Salzen und Bedeutung des Hofmeister-Effektes. Mater Werkst. 2010;41(12):1035–9.CrossRef Jennissen HP. Stabilizing ultra-hydrophilic surfaces by an exsiccation layer of salts and implications of the Hofmeistereffect. Stabilisierung ultra-hydrophiler Oberflächen durch eine Exsikkationsschicht aus Salzen und Bedeutung des Hofmeister-Effektes. Mater Werkst. 2010;41(12):1035–9.CrossRef
17.
go back to reference Jennissen HP, Lüers S. Lotus-effect and inverse Lotus-effect in connection with extremely rough titanium surfaces. Lotus- und inverser Lotus-Effekt im Zusammenhang mit extrem rauen Titanoberflächen. Mater Werkst. 2010;41(12):1062–9.CrossRef Jennissen HP, Lüers S. Lotus-effect and inverse Lotus-effect in connection with extremely rough titanium surfaces. Lotus- und inverser Lotus-Effekt im Zusammenhang mit extrem rauen Titanoberflächen. Mater Werkst. 2010;41(12):1062–9.CrossRef
18.
go back to reference Straumann® Dental Implant System. Straumann® SLActive WISSENSCHAFTLICHE STUDIEN FÜNFTE AUSGABE. 2011. Straumann® Dental Implant System. Straumann® SLActive WISSENSCHAFTLICHE STUDIEN FÜNFTE AUSGABE. 2011.
19.
go back to reference Sadoghi P, et al. Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty. 2013;28(8):1329–32.PubMedCrossRef Sadoghi P, et al. Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty. 2013;28(8):1329–32.PubMedCrossRef
21.
go back to reference Harris WH. Wear and periprosthetic osteolysis: the problem. Clin Orthop Relat Res. 2001;393:66–70.PubMedCrossRef Harris WH. Wear and periprosthetic osteolysis: the problem. Clin Orthop Relat Res. 2001;393:66–70.PubMedCrossRef
22.
go back to reference Schroder C, et al. Characterization of polyethylene wear particle: the impact of methodology. Acta Biomater. 2013;9(12):9485–91.PubMedCrossRef Schroder C, et al. Characterization of polyethylene wear particle: the impact of methodology. Acta Biomater. 2013;9(12):9485–91.PubMedCrossRef
23.
go back to reference Sundfeldt M, et al. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2006;77(2):177–97.PubMedCrossRef Sundfeldt M, et al. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2006;77(2):177–97.PubMedCrossRef
24.
go back to reference Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am. 1992;74(6):849–63.PubMed Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am. 1992;74(6):849–63.PubMed
25.
go back to reference Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl. 1993;255:1–58.PubMedCrossRef Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl. 1993;255:1–58.PubMedCrossRef
26.
go back to reference Schwarz ML, et al. Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model. J Biomed Mater Res A. 2009;89(3):667–78.PubMedCrossRef Schwarz ML, et al. Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model. J Biomed Mater Res A. 2009;89(3):667–78.PubMedCrossRef
27.
go back to reference Jennissen HP. Ultrahydrophile metallische Oberflächen. Biomaterialien. 2001;2(1):45–53.CrossRef Jennissen HP. Ultrahydrophile metallische Oberflächen. Biomaterialien. 2001;2(1):45–53.CrossRef
28.
go back to reference Jennissen HP. Ultra-hydrophilic transition metals as histophilic biomaterials. Macromol Symp. 2005;225:43–69.CrossRef Jennissen HP. Ultra-hydrophilic transition metals as histophilic biomaterials. Macromol Symp. 2005;225:43–69.CrossRef
29.
go back to reference Jennissen HP, et al. Biocoating of implants with mediator molecules: surface enhancement of metals by treatment with chromosulfuric acid. Mater Werkst. 1999;30(12):838–45.CrossRef Jennissen HP, et al. Biocoating of implants with mediator molecules: surface enhancement of metals by treatment with chromosulfuric acid. Mater Werkst. 1999;30(12):838–45.CrossRef
30.
go back to reference Lattner D, Jennissen HP. Preparation and properties of ultra-hydrophilic surfaces on titanium and steel. Mater Werkst. 2009;40(1-2):108–16.CrossRef Lattner D, Jennissen HP. Preparation and properties of ultra-hydrophilic surfaces on titanium and steel. Mater Werkst. 2009;40(1-2):108–16.CrossRef
31.
32.
go back to reference DOT GmbH, Charles-Darwin-Ring 1a, 18059 Rostock, Deutschland: Schichtdossier TPS. 2016 DOT GmbH, Charles-Darwin-Ring 1a, 18059 Rostock, Deutschland: Schichtdossier TPS. 2016
33.
go back to reference Jennissen HP. Hyperhydrophilic rough surfaces and imaginary contact angles Hyperhydrophile raue Oberflächen und imaginäre Kontaktwinkel. Mater Werkst. 2012;43(8):743–50.CrossRef Jennissen HP. Hyperhydrophilic rough surfaces and imaginary contact angles Hyperhydrophile raue Oberflächen und imaginäre Kontaktwinkel. Mater Werkst. 2012;43(8):743–50.CrossRef
34.
go back to reference Jennissen HP. A general mathematical form and description of contact angles. Mater Werkst. 2014;45(11):961–9.CrossRef Jennissen HP. A general mathematical form and description of contact angles. Mater Werkst. 2014;45(11):961–9.CrossRef
35.
go back to reference Jennissen HP, Luers S, Laub M. Hyperhydrophilic surfaces, the inverse lotus effect and imaginary contact angles. Biomed Tech. 2012:s1-D. Jennissen HP, Luers S, Laub M. Hyperhydrophilic surfaces, the inverse lotus effect and imaginary contact angles. Biomed Tech. 2012:s1-D.
36.
go back to reference Lehmann LJ, et al. Scintigraphic evaluation of rhBMP-2-biocoated implants reveals no ectopic bone formation. Biomed Pharmacother. 2011;65(1):63–8.PubMedCrossRef Lehmann LJ, et al. Scintigraphic evaluation of rhBMP-2-biocoated implants reveals no ectopic bone formation. Biomed Pharmacother. 2011;65(1):63–8.PubMedCrossRef
37.
go back to reference Schwarz M, et al. Scintigraphic evaluation of bone formation in Göttinger minipigs. Scand J Lab Anim Sci. 2010;37(1):13–8. Schwarz M, et al. Scintigraphic evaluation of bone formation in Göttinger minipigs. Scand J Lab Anim Sci. 2010;37(1):13–8.
38.
go back to reference Alstrup AK. Anaesthesia and analgesia in Ellegaard Göttingen minipigs, PET Centre, Aarhus University Hospital, Nørrebrogade 44, 10G. 2010. Alstrup AK. Anaesthesia and analgesia in Ellegaard Göttingen minipigs, PET Centre, Aarhus University Hospital, Nørrebrogade 44, 10G. 2010.
39.
go back to reference Schwarz M, Feuerstack M, Herbig J, Brade J, Becker K, Scheller G. Effect of a resorbable cap coating on bone-implant contact and density in a gap model after 4 and 8 weeks. An experimental study in Göttinger minipigs. 52th Annual Meeting of the Orthopaedic Research society. March 19-22, 2006, Chicago Illinois, USA, 2006. Schwarz M, Feuerstack M, Herbig J, Brade J, Becker K, Scheller G. Effect of a resorbable cap coating on bone-implant contact and density in a gap model after 4 and 8 weeks. An experimental study in Göttinger minipigs. 52th Annual Meeting of the Orthopaedic Research society. March 19-22, 2006, Chicago Illinois, USA, 2006.
40.
go back to reference Ettrup KS et al. Basic surgical techniques in the Gottingen minipig: intubation, bladder catheterization, femoral vessel catheterization, and transcardial perfusion. J Vis Exp. 2011;26(52). Ettrup KS et al. Basic surgical techniques in the Gottingen minipig: intubation, bladder catheterization, femoral vessel catheterization, and transcardial perfusion. J Vis Exp. 2011;26(52).
41.
go back to reference Thomsen M, et al. The Gottinger minipig as an animal model in hip endoprosthesis. Anatomy, anesthesia, operation results. Z Orthop Ihre Grenzgeb. 1997;135(1):58–62.PubMedCrossRef Thomsen M, et al. The Gottinger minipig as an animal model in hip endoprosthesis. Anatomy, anesthesia, operation results. Z Orthop Ihre Grenzgeb. 1997;135(1):58–62.PubMedCrossRef
42.
go back to reference Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J Oral Pathol. 1982;11(4):318–26.PubMedCrossRef Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J Oral Pathol. 1982;11(4):318–26.PubMedCrossRef
43.
go back to reference Romeis B, Plenk H jr. Untersuchung des Binde- und Stützgewebes In: Böck P, editor. Mikroskopische Techniken. 17th ed. München-Wien-Baltimore: Urban & Schwarzenberg; 1989. p. 491–566. Romeis B, Plenk H jr. Untersuchung des Binde- und Stützgewebes In: Böck P, editor. Mikroskopische Techniken. 17th ed. München-Wien-Baltimore: Urban & Schwarzenberg; 1989. p. 491–566.
44.
go back to reference Walker GA, Shostak J. Common statistical methods for clinical research with SAS examples, third edition, vol. chapter 8. Cary: SAS Institue Inc; 2010. p. 136–137. ISBN 978-1-60764-228-2. Walker GA, Shostak J. Common statistical methods for clinical research with SAS examples, third edition, vol. chapter 8. Cary: SAS Institue Inc; 2010. p. 136–137. ISBN 978-1-60764-228-2.
45.
go back to reference Pearce AI, et al. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1–10.PubMed Pearce AI, et al. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1–10.PubMed
46.
go back to reference Johner R. Dependence of bone healing on defect size. Helv Chir Acta. 1972;39(1):409–11. Johner R. Dependence of bone healing on defect size. Helv Chir Acta. 1972;39(1):409–11.
47.
go back to reference Schenk R. Cytodynamics and histodynamics of primary bone repair. In: Lane JM, editor. Fracture healing. New York: Churchill Livingstone; 1987. p. 23–32. Schenk R. Cytodynamics and histodynamics of primary bone repair. In: Lane JM, editor. Fracture healing. New York: Churchill Livingstone; 1987. p. 23–32.
48.
go back to reference Sumner DR, et al. Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model. J Orthop Res. 2004;22(1):58–65.PubMedCrossRef Sumner DR, et al. Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model. J Orthop Res. 2004;22(1):58–65.PubMedCrossRef
49.
go back to reference Iwaniec UT, Wronski TJ, Turner RT. Histological analysis of bone. Methods Mol Biol. 2008;447:325–41.PubMedCrossRef Iwaniec UT, Wronski TJ, Turner RT. Histological analysis of bone. Methods Mol Biol. 2008;447:325–41.PubMedCrossRef
50.
go back to reference Yeom H, et al. Correlation between micro-computed tomography and histomorphometry for assessment of new bone formation in a calvarial experimental model. J Craniofac Surg. 2008;19(2):446–52.PubMedCrossRef Yeom H, et al. Correlation between micro-computed tomography and histomorphometry for assessment of new bone formation in a calvarial experimental model. J Craniofac Surg. 2008;19(2):446–52.PubMedCrossRef
51.
go back to reference Lahm A, et al. Correlation between 3D microstructural and 2D histomorphometric properties of subchondral bone with healthy and degenerative cartilage of the knee joint. Histol Histopathol. 2014;29(11):1477–88.PubMed Lahm A, et al. Correlation between 3D microstructural and 2D histomorphometric properties of subchondral bone with healthy and degenerative cartilage of the knee joint. Histol Histopathol. 2014;29(11):1477–88.PubMed
52.
go back to reference Stadlinger B, et al. Osseointegration of biochemically modified implants in an osteoporosis rodent model. Eur Cell Mater. 2013;25:326–40.PubMed Stadlinger B, et al. Osseointegration of biochemically modified implants in an osteoporosis rodent model. Eur Cell Mater. 2013;25:326–40.PubMed
53.
go back to reference DOT GmbH, Charles-Darwin-Ring 1a, 18059 Rostock, Deutschland: Universitätsmedizin Mannheim - Beurteilung der TPS-Grenzschicht. Projektauswertung F026-16, 2016 DOT GmbH, Charles-Darwin-Ring 1a, 18059 Rostock, Deutschland: Universitätsmedizin Mannheim - Beurteilung der TPS-Grenzschicht. Projektauswertung F026-16, 2016
54.
go back to reference Becker J, et al. Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein-2 (rhBMP-2). A pilot study in dogs. Clin Oral Investig. 2006;10(3):217–24.PubMedPubMedCentralCrossRef Becker J, et al. Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein-2 (rhBMP-2). A pilot study in dogs. Clin Oral Investig. 2006;10(3):217–24.PubMedPubMedCentralCrossRef
55.
go back to reference Le Guehennec L, et al. Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits. Clin Oral Implants Res. 2008;19(11):1103–10.PubMedCrossRef Le Guehennec L, et al. Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits. Clin Oral Implants Res. 2008;19(11):1103–10.PubMedCrossRef
56.
go back to reference Alfarsi MA, Hamlet SM, Ivanovski S. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response. J Biomed Mater Res A. 2013;18(10):34666. Alfarsi MA, Hamlet SM, Ivanovski S. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response. J Biomed Mater Res A. 2013;18(10):34666.
57.
go back to reference Novaes Jr AB, et al. Influence of implant microstructure on the osseointegration of immediate implants placed in periodontally infected sites. A histomorphometric study in dogs. Clin Oral Implants Res. 2004;15(1):34–43.PubMedCrossRef Novaes Jr AB, et al. Influence of implant microstructure on the osseointegration of immediate implants placed in periodontally infected sites. A histomorphometric study in dogs. Clin Oral Implants Res. 2004;15(1):34–43.PubMedCrossRef
58.
go back to reference Rahbek O, et al. Sealing effect of hydroxyapatite coating: a 12-month study in canines. Acta Orthop Scand. 2000;71(6):563–73.PubMedCrossRef Rahbek O, et al. Sealing effect of hydroxyapatite coating: a 12-month study in canines. Acta Orthop Scand. 2000;71(6):563–73.PubMedCrossRef
59.
go back to reference Rahbek O, et al. Superior sealing effect of hydroxyapatite in porous-coated implants: experimental studies on the migration of polyethylene particles around stable and unstable implants in dogs. Acta Orthop. 2005;76(3):375–85.PubMed Rahbek O, et al. Superior sealing effect of hydroxyapatite in porous-coated implants: experimental studies on the migration of polyethylene particles around stable and unstable implants in dogs. Acta Orthop. 2005;76(3):375–85.PubMed
60.
go back to reference Gotfredsen K, Berglundh T, Lindhe J. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits. Clin Implant Dent Relat Res. 2000;2(3):120–8.PubMedCrossRef Gotfredsen K, Berglundh T, Lindhe J. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits. Clin Implant Dent Relat Res. 2000;2(3):120–8.PubMedCrossRef
61.
go back to reference Gotfredsen K, et al. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J Biomed Mater Res. 1995;29(10):1223–31.PubMedCrossRef Gotfredsen K, et al. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J Biomed Mater Res. 1995;29(10):1223–31.PubMedCrossRef
Metadata
Title
Analysis of the osseointegrative force of a hyperhydrophilic and nanostructured surface refinement for TPS surfaces in a gap healing model with the Göttingen minipig
Authors
Roland Seidling
Lars J. Lehmann
Manuel Lingner
Eckhard Mauermann
Udo Obertacke
Markus L. R. Schwarz
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2016
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-016-0434-6

Other articles of this Issue 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Go to the issue