Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2015

Open Access 01-12-2015 | Research article

Prognostic factors for surgical outcome in spinal cord injury associated with ossification of the posterior longitudinal ligament (OPLL)

Authors: Soon Young Kwon, Jun Jae Shin, Ji Hae Lee, Woo Ho Cho

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2015

Login to get access

Abstract

Background

Ossification of the posterior longitudinal ligament (OPLL) may increase the risk of spinal cord injury (SCI) with various neurological deficits after minor trauma. However, few studies have investigated the influence of OPLL on neurological outcome after acute cord injury. We examined whether severe spinal canal stenosis caused by OPLL affects neurological outcome after SCI based on intramedullary signal intensity (SI) changes on magnetic resonance imaging (MRI).

Methods

From June 2006 to July 2013, we treated 246 patients with cervical cord injury. Fifty-one (20.7 %) patients had ventral cord compression due to OPLL without any bony fractures. Among them, 38 patients (34 men, mean age 62.7 years) underwent cervical laminoplasty (8) and cervical decompression and fixation (30). The neurologic assessments were performed in patients who had 1-year follow-up, and the mean follow-up period was 42.2 months. OPLL type, cause of injury, cervical sagittal angle, cervical spine stenosis, cord compression ratio (space available for the spinal cord (SAC)), and grade of intramedullary SI (grade 0, none; grade 1, light; grade 2, intense T2WI) were assessed.

Results

Mean American Spinal Injury Association (ASIA) motor score at admission was 38.4 ± 21.9 (range, 2–70) and improved to 67.7 ± 19.1 (range, 8–94) at last follow-up (p < 0.05). Mean recovery rate of the motor score was 55.8 ± 19.9 %. Five patients had SI grade 0, 20 patients had SI grade 1, and 13 patients had SI grade 2. Among the variables tested, age, initial ASIA motor grade, intramedullary SI grade, and SAC were significantly related to neurological outcome. However, initial cervical alignment, canal diameter, length of SI, time interval between injury and operation, and OPLL type had no significant effect on neurological outcome.

Conclusions

Preoperative neurological status, cord compression ratio, and SI grade are related to neurological outcome in patients with SCI associated with OPLL. The better the preoperative neurological status, the more favorable the neurological outcome after surgery. A higher SI grade on preoperative T2WI was negatively related to neurological outcome. Therefore, the severity of SI change, cord compression ratio, and preoperative neurological status can be regarded as significant prognostic factors in patients with SCI associated with OPLL.
Literature
1.
go back to reference Katoh S, el Masry WS, Jaffray D, McCall IW, Eisenstein SM, Pringle RG, et al. Neurologic outcome in conservatively treated patients with incomplete closed traumatic cervical spinal cord injuries. Spine (Phila Pa 1976). 1996;21:2345–51.CrossRef Katoh S, el Masry WS, Jaffray D, McCall IW, Eisenstein SM, Pringle RG, et al. Neurologic outcome in conservatively treated patients with incomplete closed traumatic cervical spinal cord injuries. Spine (Phila Pa 1976). 1996;21:2345–51.CrossRef
2.
go back to reference Koyanagi I, Iwasaki Y, Hida K, Akino M, Imamura H, Abe H. Acute cervical cord injury without fracture or dislocation of the spinal column. J Neurosurg. 2000;93:15–20.PubMed Koyanagi I, Iwasaki Y, Hida K, Akino M, Imamura H, Abe H. Acute cervical cord injury without fracture or dislocation of the spinal column. J Neurosurg. 2000;93:15–20.PubMed
3.
go back to reference Ishida Y, Tominaga T. Predictors of neurologic recovery in acute central cervical cord injury with only upper extremity impairment. Spine (Phila Pa 1976). 2002;27:1652–8. discussion 1658.CrossRef Ishida Y, Tominaga T. Predictors of neurologic recovery in acute central cervical cord injury with only upper extremity impairment. Spine (Phila Pa 1976). 2002;27:1652–8. discussion 1658.CrossRef
4.
go back to reference Penrod LE, Hegde SK, Ditunno Jr JF. Age effect on prognosis for functional recovery in acute, traumatic central cord syndrome. Arch Phys Med Rehabil. 1990;71:963–8.PubMed Penrod LE, Hegde SK, Ditunno Jr JF. Age effect on prognosis for functional recovery in acute, traumatic central cord syndrome. Arch Phys Med Rehabil. 1990;71:963–8.PubMed
5.
go back to reference Shepard MJ, Bracken MB. Magnetic resonance imaging and neurological recovery in acute spinal cord injury: observations from the National Acute Spinal Cord Injury Study 3. Spinal Cord. 1999;37:833–7.PubMedCrossRef Shepard MJ, Bracken MB. Magnetic resonance imaging and neurological recovery in acute spinal cord injury: observations from the National Acute Spinal Cord Injury Study 3. Spinal Cord. 1999;37:833–7.PubMedCrossRef
6.
go back to reference Choi JH, Shin JJ, Kim TH, Shin HS, Hwang YS, Park SK. Does intramedullary signal intensity on MRI affect the surgical outcomes of patients with ossification of posterior longitudinal ligament? J Korean Neurosurg Soc. 2014;56:121–9.PubMedCentralPubMedCrossRef Choi JH, Shin JJ, Kim TH, Shin HS, Hwang YS, Park SK. Does intramedullary signal intensity on MRI affect the surgical outcomes of patients with ossification of posterior longitudinal ligament? J Korean Neurosurg Soc. 2014;56:121–9.PubMedCentralPubMedCrossRef
7.
go back to reference Wada E, Yonenobu K, Suzuki S, Kanazawa A, Ochi T. Can intramedullary signal change on magnetic resonance imaging predict surgical outcome in cervical spondylotic myelopathy? Spine (Phila Pa 1976). 1999;24:455–61. discussion 462.CrossRef Wada E, Yonenobu K, Suzuki S, Kanazawa A, Ochi T. Can intramedullary signal change on magnetic resonance imaging predict surgical outcome in cervical spondylotic myelopathy? Spine (Phila Pa 1976). 1999;24:455–61. discussion 462.CrossRef
8.
go back to reference Morio Y, Teshima R, Nagashima H, Nawata K, Yamasaki D, Nanjo Y. Correlation between operative outcomes of cervical compression myelopathy and MRI of the spinal cord. Spine (Phila Pa 1976). 2001;26:1238–45.CrossRef Morio Y, Teshima R, Nagashima H, Nawata K, Yamasaki D, Nanjo Y. Correlation between operative outcomes of cervical compression myelopathy and MRI of the spinal cord. Spine (Phila Pa 1976). 2001;26:1238–45.CrossRef
9.
go back to reference Shin JJ, Jin BH, Kim KS, Cho YE, Cho WH. Intramedullary high signal intensity and neurological status as prognostic factors in cervical spondylotic myelopathy. Acta Neurochir (Wien). 2010;152:1687–94.PubMedCrossRef Shin JJ, Jin BH, Kim KS, Cho YE, Cho WH. Intramedullary high signal intensity and neurological status as prognostic factors in cervical spondylotic myelopathy. Acta Neurochir (Wien). 2010;152:1687–94.PubMedCrossRef
10.
go back to reference Onishi E, Sakamoto A, Murata S, Matsushita M. Risk factors for acute cervical spinal cord injury associated with ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 2012;37:660–6.CrossRef Onishi E, Sakamoto A, Murata S, Matsushita M. Risk factors for acute cervical spinal cord injury associated with ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 2012;37:660–6.CrossRef
11.
go back to reference Gu Y, Chen L, Dong RB, Feng Y, Yang HL, Tang TS. Laminoplasty versus conservative treatment for acute cervical spinal cord injury caused by ossification of the posterior longitudinal ligament after minor trauma. Spine J. 2014;14:344–52.PubMedCrossRef Gu Y, Chen L, Dong RB, Feng Y, Yang HL, Tang TS. Laminoplasty versus conservative treatment for acute cervical spinal cord injury caused by ossification of the posterior longitudinal ligament after minor trauma. Spine J. 2014;14:344–52.PubMedCrossRef
12.
go back to reference Lucas JT, Ducker TB. Motor classification of spinal cord injuries with mobility, morbidity and recovery indices. Am Surg. 1979;45:151–8.PubMed Lucas JT, Ducker TB. Motor classification of spinal cord injuries with mobility, morbidity and recovery indices. Am Surg. 1979;45:151–8.PubMed
13.
go back to reference Tsuyama N. Ossification of the posterior longitudinal ligament of the spine. Clin Orthop Relat Res. 1984;71–84. Tsuyama N. Ossification of the posterior longitudinal ligament of the spine. Clin Orthop Relat Res. 1984;71–84.
14.
go back to reference Fujiyoshi T, Yamazaki M, Kawabe J, Endo T, Furuya T, Koda M, et al. A new concept for making decisions regarding the surgical approach for cervical ossification of the posterior longitudinal ligament: the K-line. Spine (Phila Pa 1976). 2008;33:E990–993.CrossRef Fujiyoshi T, Yamazaki M, Kawabe J, Endo T, Furuya T, Koda M, et al. A new concept for making decisions regarding the surgical approach for cervical ossification of the posterior longitudinal ligament: the K-line. Spine (Phila Pa 1976). 2008;33:E990–993.CrossRef
15.
go back to reference Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med. 1990;322:1405–11.PubMedCrossRef Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med. 1990;322:1405–11.PubMedCrossRef
16.
go back to reference Matsunaga S, Sakou T, Hayashi K, Ishidou Y, Hirotsu M, Komiya S. Trauma-induced myelopathy in patients with ossification of the posterior longitudinal ligament. J Neurosurg. 2002;97:172–5.PubMed Matsunaga S, Sakou T, Hayashi K, Ishidou Y, Hirotsu M, Komiya S. Trauma-induced myelopathy in patients with ossification of the posterior longitudinal ligament. J Neurosurg. 2002;97:172–5.PubMed
17.
go back to reference Boldin C, Raith J, Fankhauser F, Haunschmid C, Schwantzer G, Schweighofer F. Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging. Spine (Phila Pa 1976). 2006;31:554–9.CrossRef Boldin C, Raith J, Fankhauser F, Haunschmid C, Schwantzer G, Schweighofer F. Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging. Spine (Phila Pa 1976). 2006;31:554–9.CrossRef
18.
go back to reference Shin J-J. Intramedullary signal intensity and other prognostic factors for surgical outcome in spinal cord injury associated with ossification of the posterior longitudinal ligament (OPLL). The Spine Journal. 2014;14:S8–9.CrossRef Shin J-J. Intramedullary signal intensity and other prognostic factors for surgical outcome in spinal cord injury associated with ossification of the posterior longitudinal ligament (OPLL). The Spine Journal. 2014;14:S8–9.CrossRef
19.
go back to reference Ramanauskas WL, Wilner HI, Metes JJ, Lazo A, Kelly JK. MR imaging of compressive myelomalacia. J Comput Assist Tomogr. 1989;13:399–404.PubMedCrossRef Ramanauskas WL, Wilner HI, Metes JJ, Lazo A, Kelly JK. MR imaging of compressive myelomalacia. J Comput Assist Tomogr. 1989;13:399–404.PubMedCrossRef
20.
go back to reference Roth EJ, Lawler MH, Yarkony GM. Traumatic central cord syndrome: clinical features and functional outcomes. Arch Phys Med Rehabil. 1990;71:18–23.PubMed Roth EJ, Lawler MH, Yarkony GM. Traumatic central cord syndrome: clinical features and functional outcomes. Arch Phys Med Rehabil. 1990;71:18–23.PubMed
21.
go back to reference Schaefer DM, Flanders AE, Osterholm JL, Northrup BE. Prognostic significance of magnetic resonance imaging in the acute phase of cervical spine injury. J Neurosurg. 1992;76:218–23.PubMedCrossRef Schaefer DM, Flanders AE, Osterholm JL, Northrup BE. Prognostic significance of magnetic resonance imaging in the acute phase of cervical spine injury. J Neurosurg. 1992;76:218–23.PubMedCrossRef
22.
go back to reference Kulkarni MV, Bondurant FJ, Rose SL, Narayana PA. 1.5 tesla magnetic resonance imaging of acute spinal trauma. Radiographics. 1988;8:1059–82.PubMedCrossRef Kulkarni MV, Bondurant FJ, Rose SL, Narayana PA. 1.5 tesla magnetic resonance imaging of acute spinal trauma. Radiographics. 1988;8:1059–82.PubMedCrossRef
23.
go back to reference Sieh KM, Leung SM, Lam JS, Cheung KY, Fung KY. The use of average Pavlov ratio to predict the risk of post operative upper limb palsy after posterior cervical decompression. J Orthop Surg Res. 2009;4:24.PubMedCentralPubMedCrossRef Sieh KM, Leung SM, Lam JS, Cheung KY, Fung KY. The use of average Pavlov ratio to predict the risk of post operative upper limb palsy after posterior cervical decompression. J Orthop Surg Res. 2009;4:24.PubMedCentralPubMedCrossRef
24.
go back to reference Ramon S, Dominguez R, Ramirez L, Paraira M, Olona M, Castello T, et al. Clinical and magnetic resonance imaging correlation in acute spinal cord injury. Spinal Cord. 1997;35:664–73.PubMedCrossRef Ramon S, Dominguez R, Ramirez L, Paraira M, Olona M, Castello T, et al. Clinical and magnetic resonance imaging correlation in acute spinal cord injury. Spinal Cord. 1997;35:664–73.PubMedCrossRef
25.
go back to reference Flanders AE, Spettell CM, Friedman DP, Marino RJ, Herbison GJ. The relationship between the functional abilities of patients with cervical spinal cord injury and the severity of damage revealed by MR imaging. AJNR Am J Neuroradiol. 1999;20:926–34.PubMed Flanders AE, Spettell CM, Friedman DP, Marino RJ, Herbison GJ. The relationship between the functional abilities of patients with cervical spinal cord injury and the severity of damage revealed by MR imaging. AJNR Am J Neuroradiol. 1999;20:926–34.PubMed
26.
go back to reference Marciello MA, Flanders AE, Herbison GJ, Schaefer DM, Friedman DP, Lane JI. Magnetic resonance imaging related to neurologic outcome in cervical spinal cord injury. Arch Phys Med Rehabil. 1993;74:940–6.PubMed Marciello MA, Flanders AE, Herbison GJ, Schaefer DM, Friedman DP, Lane JI. Magnetic resonance imaging related to neurologic outcome in cervical spinal cord injury. Arch Phys Med Rehabil. 1993;74:940–6.PubMed
27.
go back to reference Lao L, Zhong G, Li X, Qian L, Liu Z. Laminoplasty versus laminectomy for multi-level cervical spondylotic myelopathy: a systematic review of the literature. J Orthop Surg Res. 2013;8:45.PubMedCentralPubMedCrossRef Lao L, Zhong G, Li X, Qian L, Liu Z. Laminoplasty versus laminectomy for multi-level cervical spondylotic myelopathy: a systematic review of the literature. J Orthop Surg Res. 2013;8:45.PubMedCentralPubMedCrossRef
28.
go back to reference Cho YE, Shin JJ, Kim KS, Chin DK, Kuh SU, Lee JH, et al. The relevance of intramedullary high signal intensity and gadolinium (Gd-DTPA) enhancement to the clinical outcome in cervical compressive myelopathy. Eur Spine J. 2011;20:2267–74.PubMedCentralPubMedCrossRef Cho YE, Shin JJ, Kim KS, Chin DK, Kuh SU, Lee JH, et al. The relevance of intramedullary high signal intensity and gadolinium (Gd-DTPA) enhancement to the clinical outcome in cervical compressive myelopathy. Eur Spine J. 2011;20:2267–74.PubMedCentralPubMedCrossRef
29.
go back to reference Fujimori T, Iwasaki M, Okuda S, Takenaka S, Kashii M, Kaito T, et al. Long-term results of cervical myelopathy due to ossification of the posterior longitudinal ligament with an occupying ratio of 60 % or more. Spine (Phila Pa 1976). 2014;39:58–67.CrossRef Fujimori T, Iwasaki M, Okuda S, Takenaka S, Kashii M, Kaito T, et al. Long-term results of cervical myelopathy due to ossification of the posterior longitudinal ligament with an occupying ratio of 60 % or more. Spine (Phila Pa 1976). 2014;39:58–67.CrossRef
30.
go back to reference Nagashima H, Nanjo Y, Tanida A, Mihara T, Takeda C, Teshima R. Influence of spinous process spacers on surgical outcome of laminoplasty for OPLL. Orthopedics. 2013;36:e494–500.PubMedCrossRef Nagashima H, Nanjo Y, Tanida A, Mihara T, Takeda C, Teshima R. Influence of spinous process spacers on surgical outcome of laminoplasty for OPLL. Orthopedics. 2013;36:e494–500.PubMedCrossRef
Metadata
Title
Prognostic factors for surgical outcome in spinal cord injury associated with ossification of the posterior longitudinal ligament (OPLL)
Authors
Soon Young Kwon
Jun Jae Shin
Ji Hae Lee
Woo Ho Cho
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2015
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-015-0235-3

Other articles of this Issue 1/2015

Journal of Orthopaedic Surgery and Research 1/2015 Go to the issue