Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Research

Comparison of treatment plans between IMRT with MR-linac and VMAT for lung SABR

Authors: Jong Min Park, Hong-Gyun Wu, Hak Jae Kim, Chang Heon Choi, Jung-in Kim

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

The aim of this study was to compare the plan quality of magnetic-resonance image-based intensity modulated radiation therapy (MRI-based-IMRT) with the MRIdian Linac system to that of volumetric modulated arc therapy (VMAT) with the TrueBeam STx system for lung stereotactic ablative radiotherapy (SABR).

Methods

A total of 22 patients with tumors located in the lower lobe were retrospectively selected for the study. For each patient, both the MRI-based-IMRT and VMAT plans were generated using an identical CT image set and identical structures with the exception of the planning target volume (PTV). The PTVs of the MRI-based-IMRT were generated by adding an isotropic margin of 3 mm from the gross tumor volume, whereas those of VMAT were generated by adding an isotropic margin of 5 mm from the internal target volume. For both the MRI-based-IMRT and VMAT, the prescription doses to the PTVs were 60 Gy in four fractions.

Results

The average PTV volume of the MRI-based-IMRT was approximately 4-times smaller than that of VMAT (p <  0.001). The maximum dose to the bronchi for the MRI-based-IMRT was smaller than that for the VMAT (20.4 Gy versus 24.2 Gy, p <  0.001). In addition, V40Gy of the rib for the MRI-based-IMRT was smaller than that for the VMAT (1.8 cm3 versus 7.7 cm3, p = 0.008). However, the maximum doses to the skin and spinal cord for the MRI-based-IMRT (33.0 Gy and 14.5 Gy, respectively) were larger than those for the VMAT (27.8 Gy and 11.0 Gy, respectively) showing p values of less than 0.02. For the ipsilateral lung, the mean dose, V20Gy, V10Gy, and V5Gy for the MRI-based-IMRT were smaller than those for the VMAT (all with p <  0.05). For the contralateral lung, V5Gy, V10Gy, D1500cc, and D1000cc for the MRI-based-IMRT were larger than those for the VMAT (all with p <  0.05). The mean dose and V50% of the whole body for the MRI-based-IMRT were smaller than those for the VMAT (0.9 Gy versus 1.2 Gy, and 78.7 cm3 versus 103.5 cm3, respectively, all at p <  0.001).

Conclusions

The MRI-based-IMRT using the MRIdian Linac system could reduce doses to bronchi, rib, ipsilateral lung, and whole body compared to VMAT for lung SABR when the tumor was located in the lower lobe.
Literature
1.
go back to reference Ramey SJ, Padgett KR, Lamichhane N, Neboori HJ, Kwon D, Mellon EA, Brown K, Duffy M, Victoria J, Dogan N, Portelance L. Dosimetric analysis of stereotactic body radiation therapy for pancreatic cancer using MR-guided tri-60Co unit, MR-guided LINAC, and conventional LINAC-based plans. Pract Radiat Oncol. 2018;8:e312–21.CrossRef Ramey SJ, Padgett KR, Lamichhane N, Neboori HJ, Kwon D, Mellon EA, Brown K, Duffy M, Victoria J, Dogan N, Portelance L. Dosimetric analysis of stereotactic body radiation therapy for pancreatic cancer using MR-guided tri-60Co unit, MR-guided LINAC, and conventional LINAC-based plans. Pract Radiat Oncol. 2018;8:e312–21.CrossRef
2.
go back to reference Park JM, Park SY, Kim HJ, Wu HG, Carlson J, Kim JI. A comparative planning study for lung SABR between tri-co-60 magnetic resonance image guided radiation therapy system and volumetric modulated arc therapy. Radiother Oncol. 2016;120:279–85.CrossRef Park JM, Park SY, Kim HJ, Wu HG, Carlson J, Kim JI. A comparative planning study for lung SABR between tri-co-60 magnetic resonance image guided radiation therapy system and volumetric modulated arc therapy. Radiother Oncol. 2016;120:279–85.CrossRef
3.
go back to reference Choi CH, Park SY, Kim JI, Kim JH, Kim K, Carlson J, Park JM. Quality of tri-co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. Br J Radiol. 2017;90(1070):20160652.CrossRef Choi CH, Park SY, Kim JI, Kim JH, Kim K, Carlson J, Park JM. Quality of tri-co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. Br J Radiol. 2017;90(1070):20160652.CrossRef
4.
go back to reference Rodal J, Sovik A, Malinen E. Influence of MLC leaf width on biologically adapted IMRT plans. Acta Oncol. 2010;49:1116–23.CrossRef Rodal J, Sovik A, Malinen E. Influence of MLC leaf width on biologically adapted IMRT plans. Acta Oncol. 2010;49:1116–23.CrossRef
5.
go back to reference Park JM, Park SY, Kim JH, Carlson J, Kim JI. The effect of extremely narrow MLC leaf width on the plan quality of VMAT for prostate cancer. Radiat Oncol. 2016;11:85.CrossRef Park JM, Park SY, Kim JH, Carlson J, Kim JI. The effect of extremely narrow MLC leaf width on the plan quality of VMAT for prostate cancer. Radiat Oncol. 2016;11:85.CrossRef
6.
go back to reference Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, Miyasaka K. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53:822–34.CrossRef Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, Miyasaka K. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53:822–34.CrossRef
7.
go back to reference Yeo SG, Kim ES. Efficient approach for determining four-dimensional computed tomography-based internal target volume in stereotactic radiotherapy of lung cancer. Radiat Oncol J. 2013;31:247–51.CrossRef Yeo SG, Kim ES. Efficient approach for determining four-dimensional computed tomography-based internal target volume in stereotactic radiotherapy of lung cancer. Radiat Oncol J. 2013;31:247–51.CrossRef
8.
go back to reference Saenz DL, Paliwal BR, Bayouth JE. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans. J Med Phys. 2014;39:64–70.CrossRef Saenz DL, Paliwal BR, Bayouth JE. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans. J Med Phys. 2014;39:64–70.CrossRef
9.
go back to reference Kishan AU, Cao M, Wang PC, Mikaeilian AG, Tenn S, Rwigema JC, Sheng K, Low DA, Kupelian PA, Steinberg ML, Lee P. Feasibility of magnetic resonance imaging-guided liver stereotactic body radiation therapy: a comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based intensity modulated radiation therapy. Pract Radiat Oncol. 2015;5:330–7.CrossRef Kishan AU, Cao M, Wang PC, Mikaeilian AG, Tenn S, Rwigema JC, Sheng K, Low DA, Kupelian PA, Steinberg ML, Lee P. Feasibility of magnetic resonance imaging-guided liver stereotactic body radiation therapy: a comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based intensity modulated radiation therapy. Pract Radiat Oncol. 2015;5:330–7.CrossRef
10.
go back to reference Wooten HO, Green O, Yang M, DeWees T, Kashani R, Olsen J, Michalski J, Yang D, Tanderup K, Hu Y, et al. Quality of intensity modulated radiation therapy treatment plans using a 60Co magnetic resonance image guidance radiation therapy system. Int J Radiat Oncol Biol Phys. 2015;92:771–8.CrossRef Wooten HO, Green O, Yang M, DeWees T, Kashani R, Olsen J, Michalski J, Yang D, Tanderup K, Hu Y, et al. Quality of intensity modulated radiation therapy treatment plans using a 60Co magnetic resonance image guidance radiation therapy system. Int J Radiat Oncol Biol Phys. 2015;92:771–8.CrossRef
11.
go back to reference Merna C, Rwigema JC, Cao M, Wang PC, Kishan AU, Michailian A, Lamb J, Sheng K, Agazaryan N, Low DA, et al. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer. Med Dosim. 2016;41:87–91.CrossRef Merna C, Rwigema JC, Cao M, Wang PC, Kishan AU, Michailian A, Lamb J, Sheng K, Agazaryan N, Low DA, et al. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer. Med Dosim. 2016;41:87–91.CrossRef
12.
go back to reference Kim JI, Han JH, Choi CH, An HJ, Wu HG, Park JM. Discrepancies in dose-volume histograms henerated from different treatment planning systems. J Radiat Prot and Res. 2018;43(2):59–65.CrossRef Kim JI, Han JH, Choi CH, An HJ, Wu HG, Park JM. Discrepancies in dose-volume histograms henerated from different treatment planning systems. J Radiat Prot and Res. 2018;43(2):59–65.CrossRef
13.
go back to reference Park JM, Kim K, Chie EK, Choi CH, Ye SJ, Ha SW. RapidArc vs intensity-modulated radiation therapy for hepatocellular carcinoma: a comparative planning study. Br J Radiol. 2012;85:e323–9.CrossRef Park JM, Kim K, Chie EK, Choi CH, Ye SJ, Ha SW. RapidArc vs intensity-modulated radiation therapy for hepatocellular carcinoma: a comparative planning study. Br J Radiol. 2012;85:e323–9.CrossRef
14.
go back to reference Holt A, van Vliet-Vroegindeweij C, Mans A, Belderbos JS, Damen EM. Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques. Int J Radiat Oncol Biol Phys. 2011;81:1560–7.CrossRef Holt A, van Vliet-Vroegindeweij C, Mans A, Belderbos JS, Damen EM. Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques. Int J Radiat Oncol Biol Phys. 2011;81:1560–7.CrossRef
15.
go back to reference Li W, Purdie TG, Taremi M, Fung S, Brade A, Cho BC, Hope A, Sun A, Jaffray DA, Bezjak A, Bissonnette JP. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients. Int J Radiat Oncol Biol Phys. 2011;81:1568–75.CrossRef Li W, Purdie TG, Taremi M, Fung S, Brade A, Cho BC, Hope A, Sun A, Jaffray DA, Bezjak A, Bissonnette JP. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients. Int J Radiat Oncol Biol Phys. 2011;81:1568–75.CrossRef
Metadata
Title
Comparison of treatment plans between IMRT with MR-linac and VMAT for lung SABR
Authors
Jong Min Park
Hong-Gyun Wu
Hak Jae Kim
Chang Heon Choi
Jung-in Kim
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1314-0

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue