Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Research

Development of a semi-customized tongue displacement device using a 3D printer for head and neck IMRT

Authors: Chae-Seon Hong, Dongryul Oh, Sang Gyu Ju, Yong Chan Ahn, Cho Hee Na, Dong Yeol Kwon, Cheol Chong Kim

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Purpose

To reduce radiation doses to the tongue, a patient-specific semi-customized tongue displacement device (SCTDD) was developed using a 3D printer (3DP) for head and neck (H&N) radiation therapy (RT). Dosimetric characteristics of the SCTDD were compared with those of a standard mouthpiece (SMP).

Materials and methods

The SCTDD consists of three parts: a mouthpiece, connector with an immobilization mask, and tongue displacer, which can displace the tongue to the contralateral side of the planning target volume. Semi-customization was enabled by changing the thickness and length of the SCTDD. The instrument was printed using a 3DP with a biocompatible material. With the SCTDD and SMP, two sets of planning computed tomography (CT) and tomotherapy plans were obtained for seven H&N cancer patients. Dosimetric and geometric characteristics were compared.

Results

Using the SCTDD, the tongue was effectively displaced from the planning target volume without significant tongue volume change compared to the SMP. The median tongue dose was significantly reduced (29.6 Gy vs. 34.3 Gy). The volumes of the tongue receiving a dose of 15 Gy, 30 Gy, 35 Gy, 45 Gy, and 60 Gy were significantly lower than using the SMP.

Conclusion

The SCTDD significantly decreased the radiation dose to the tongue compared to the SMP, which may potentially reduce RT-related tongue toxicity.
Literature
1.
go back to reference Kubicek GJ, Machtay M. New advances in high-technology radiotherapy for head and neck cancer. Hematol Oncol Clin North Am. 2008;22:1165–80 viii.CrossRef Kubicek GJ, Machtay M. New advances in high-technology radiotherapy for head and neck cancer. Hematol Oncol Clin North Am. 2008;22:1165–80 viii.CrossRef
2.
go back to reference Bhide SA, Nutting CM. Advances in radiotherapy for head and neck cancer. Oral Oncol. 2010;46:439–41.CrossRef Bhide SA, Nutting CM. Advances in radiotherapy for head and neck cancer. Oral Oncol. 2010;46:439–41.CrossRef
3.
go back to reference Lee YH, Cho SG, Jung SE, Kim SH, O JH, Park GS, et al. Analysis of treatment outcomes for primary tonsillar lymphoma. Radiat Oncol J. 2016;34:273–9.CrossRef Lee YH, Cho SG, Jung SE, Kim SH, O JH, Park GS, et al. Analysis of treatment outcomes for primary tonsillar lymphoma. Radiat Oncol J. 2016;34:273–9.CrossRef
4.
go back to reference Gregoire V, Langendijk JA, Nuyts S. Advances in radiotherapy for head and neck Cancer. J Clin Oncol. 2015;33:3277.CrossRef Gregoire V, Langendijk JA, Nuyts S. Advances in radiotherapy for head and neck Cancer. J Clin Oncol. 2015;33:3277.CrossRef
5.
go back to reference Eisbruch A, Kim HM, Terrell JE, Marsh LH, Dawson LA, Ship JA. Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001;50:695–704.CrossRef Eisbruch A, Kim HM, Terrell JE, Marsh LH, Dawson LA, Ship JA. Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001;50:695–704.CrossRef
6.
go back to reference Chao KS, Majhail N, Huang CJ, Simpson JR, Perez CA, Haughey B, et al. Intensity-modulated radiation therapy reduces late salivary toxicity without compromising tumor control in patients with oropharyngeal carcinoma: a comparison with conventional techniques. Radiother Oncol. 2001;61:275–80.CrossRef Chao KS, Majhail N, Huang CJ, Simpson JR, Perez CA, Haughey B, et al. Intensity-modulated radiation therapy reduces late salivary toxicity without compromising tumor control in patients with oropharyngeal carcinoma: a comparison with conventional techniques. Radiother Oncol. 2001;61:275–80.CrossRef
7.
go back to reference Little M, Schipper M, Feng FY, Vineberg K, Cornwall C, Murdoch-Kinch CA, et al. Reducing xerostomia after chemo-IMRT for head-and-neck cancer: beyond sparing the parotid glands. Int J Radiat Oncol Biol Phys. 2012;83:1007–14.CrossRef Little M, Schipper M, Feng FY, Vineberg K, Cornwall C, Murdoch-Kinch CA, et al. Reducing xerostomia after chemo-IMRT for head-and-neck cancer: beyond sparing the parotid glands. Int J Radiat Oncol Biol Phys. 2012;83:1007–14.CrossRef
8.
go back to reference Brouwer CL, Steenbakkers RJ, Bourhis J, Budach W, Grau C, Gregoire V, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG oncology and TROG consensus guidelines. Radiother Oncol. 2015;117:83–90.CrossRef Brouwer CL, Steenbakkers RJ, Bourhis J, Budach W, Grau C, Gregoire V, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG oncology and TROG consensus guidelines. Radiother Oncol. 2015;117:83–90.CrossRef
9.
go back to reference Sapir E, Tao Y, Feng F, Samuels S, El Naqa I, Murdoch-Kinch CA, et al. Predictors of Dysgeusia in patients with oropharyngeal Cancer treated with chemotherapy and intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2016;96:354–61.CrossRef Sapir E, Tao Y, Feng F, Samuels S, El Naqa I, Murdoch-Kinch CA, et al. Predictors of Dysgeusia in patients with oropharyngeal Cancer treated with chemotherapy and intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2016;96:354–61.CrossRef
10.
go back to reference Jacobi I, Navran A, van der Molen L, Heemsbergen WD, Hilgers FJ, van den Brekel MW. Radiation dose to the tongue and velopharynx predicts acoustic-articulatory changes after chemo-IMRT treatment for advanced head and neck cancer. Eur Arch Otorhinolaryngol. 2016;273:487–94.CrossRef Jacobi I, Navran A, van der Molen L, Heemsbergen WD, Hilgers FJ, van den Brekel MW. Radiation dose to the tongue and velopharynx predicts acoustic-articulatory changes after chemo-IMRT treatment for advanced head and neck cancer. Eur Arch Otorhinolaryngol. 2016;273:487–94.CrossRef
11.
go back to reference Mossman KL. Gustatory tissue injury in man: radiation dose response relationships and mechanisms of taste loss. Br J Cancer Suppl. 1986;7:9–11.PubMedPubMedCentral Mossman KL. Gustatory tissue injury in man: radiation dose response relationships and mechanisms of taste loss. Br J Cancer Suppl. 1986;7:9–11.PubMedPubMedCentral
12.
go back to reference Shi HB, Masuda M, Umezaki T, Kuratomi Y, Kumamoto Y, Yamamoto T, et al. Irradiation impairment of umami taste in patients with head and neck cancer. Auris Nasus Larynx. 2004;31:401–6.CrossRef Shi HB, Masuda M, Umezaki T, Kuratomi Y, Kumamoto Y, Yamamoto T, et al. Irradiation impairment of umami taste in patients with head and neck cancer. Auris Nasus Larynx. 2004;31:401–6.CrossRef
13.
go back to reference Kil WJ, Kulasekere C, Derrwaldt R, Bugno J, Hatch C. Decreased radiation doses to tongue with “stick-out” tongue position over neutral tongue position in head and neck cancer patients who refused or could not tolerate an intraoral device (bite-block, tongue blade, or mouthpiece) due trismus, gag reflex, or discomfort during intensity-modulated radiation therapy. Oncotarget. 2016;7:53029–36.CrossRef Kil WJ, Kulasekere C, Derrwaldt R, Bugno J, Hatch C. Decreased radiation doses to tongue with “stick-out” tongue position over neutral tongue position in head and neck cancer patients who refused or could not tolerate an intraoral device (bite-block, tongue blade, or mouthpiece) due trismus, gag reflex, or discomfort during intensity-modulated radiation therapy. Oncotarget. 2016;7:53029–36.CrossRef
14.
go back to reference Johnson B, Sales L, Winston A, Liao J, Laramore G, Parvathaneni U. Fabrication of customized tongue-displacing stents: considerations for use in patients receiving head and neck radiotherapy. J Am Dent Assoc. 2013;144:594–600.CrossRef Johnson B, Sales L, Winston A, Liao J, Laramore G, Parvathaneni U. Fabrication of customized tongue-displacing stents: considerations for use in patients receiving head and neck radiotherapy. J Am Dent Assoc. 2013;144:594–600.CrossRef
15.
go back to reference Fleming TJ, Rambach SC. A tongue-shielding radiation stent. J Prosthet Dent. 1983;49:389–92.CrossRef Fleming TJ, Rambach SC. A tongue-shielding radiation stent. J Prosthet Dent. 1983;49:389–92.CrossRef
16.
go back to reference Bodard AG, Racadot S, Salino S, Pommier P, Zrounba P, Montbarbon X. A new, simple maxillary-sparing tongue depressor for external mandibular radiotherapy: a case report. Head Neck. 2009;31:1528–30.CrossRef Bodard AG, Racadot S, Salino S, Pommier P, Zrounba P, Montbarbon X. A new, simple maxillary-sparing tongue depressor for external mandibular radiotherapy: a case report. Head Neck. 2009;31:1528–30.CrossRef
17.
go back to reference Kaanders JH, Fleming TJ, Ang KK, Maor MH, Peters LJ. Devices valuable in head and neck radiotherapy. Int J Radiat Oncol Biol Phys. 1992;23:639–45.CrossRef Kaanders JH, Fleming TJ, Ang KK, Maor MH, Peters LJ. Devices valuable in head and neck radiotherapy. Int J Radiat Oncol Biol Phys. 1992;23:639–45.CrossRef
18.
go back to reference Qin WJ, Luo W, Lin SR, Sun Y, Li FM, Liu XQ, et al. Sparing normal oral tissues with individual dental stent in radiotherapy for primary nasopharyngeal carcinoma patients. Ai Zheng. 2007;26:285–9.PubMed Qin WJ, Luo W, Lin SR, Sun Y, Li FM, Liu XQ, et al. Sparing normal oral tissues with individual dental stent in radiotherapy for primary nasopharyngeal carcinoma patients. Ai Zheng. 2007;26:285–9.PubMed
19.
go back to reference Wang RR, Olmsted LW. A direct method for fabricating tongue-shielding stent. J Prosthet Dent. 1995;74:171–3.CrossRef Wang RR, Olmsted LW. A direct method for fabricating tongue-shielding stent. J Prosthet Dent. 1995;74:171–3.CrossRef
20.
go back to reference Chen M, Chen Y, Chen Q, Lu W. Theoretical analysis of the thread effect in helical TomoTherapy. Med Phys. 2011;38:5945–60.CrossRef Chen M, Chen Y, Chen Q, Lu W. Theoretical analysis of the thread effect in helical TomoTherapy. Med Phys. 2011;38:5945–60.CrossRef
21.
go back to reference Sini C, Broggi S, Fiorino C, Cattaneo GM, Calandrino R. Accuracy of dose calculation algorithms for static and rotational IMRT of lung cancer: a phantom study. Phys Med. 2015;31:382–90.CrossRef Sini C, Broggi S, Fiorino C, Cattaneo GM, Calandrino R. Accuracy of dose calculation algorithms for static and rotational IMRT of lung cancer: a phantom study. Phys Med. 2015;31:382–90.CrossRef
22.
go back to reference Zhao Y, Qi G, Yin G, Wang X, Wang P, Li J, et al. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation. Radiat Oncol. 2014;9:287.CrossRef Zhao Y, Qi G, Yin G, Wang X, Wang P, Li J, et al. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation. Radiat Oncol. 2014;9:287.CrossRef
23.
go back to reference Schwartz DL, Hutcheson K, Barringer D, Tucker SL, Kies M, Holsinger FC, et al. Candidate dosimetric predictors of long-term swallowing dysfunction after oropharyngeal intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78:1356–65.CrossRef Schwartz DL, Hutcheson K, Barringer D, Tucker SL, Kies M, Holsinger FC, et al. Candidate dosimetric predictors of long-term swallowing dysfunction after oropharyngeal intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78:1356–65.CrossRef
24.
go back to reference Zhang L, Garden AS, Lo J, Ang KK, Ahamad A, Morrison WH, et al. Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2006;64:1559–69.CrossRef Zhang L, Garden AS, Lo J, Ang KK, Ahamad A, Morrison WH, et al. Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2006;64:1559–69.CrossRef
25.
go back to reference Chung Y, Yoon HI, Ha JS, Kim S, Lee IJ. A feasibility study of a tilted head position in helical Tomotherapy for fractionated stereotactic radiotherapy of intracranial malignancies. Technol Cancer Res Treat. 2015;14:475–82.CrossRef Chung Y, Yoon HI, Ha JS, Kim S, Lee IJ. A feasibility study of a tilted head position in helical Tomotherapy for fractionated stereotactic radiotherapy of intracranial malignancies. Technol Cancer Res Treat. 2015;14:475–82.CrossRef
Metadata
Title
Development of a semi-customized tongue displacement device using a 3D printer for head and neck IMRT
Authors
Chae-Seon Hong
Dongryul Oh
Sang Gyu Ju
Yong Chan Ahn
Cho Hee Na
Dong Yeol Kwon
Cheol Chong Kim
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1289-x

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue