Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Radiotherapy | Research

A step towards international prospective trials in carbon ion radiotherapy: investigation of factors influencing dose distribution in the facilities in operation based on a case of skull base chordoma

Authors: G. Vogin, A. Wambersie, M. Koto, T. Ohno, M. Uhl, P. Fossati, J. Balosso, on behalf of ULICE WP2 working group

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

Carbon ion radiotherapy (CIRT) has been delivered to more than 20,000 patients worldwide. International trials have been recommended in order to emphasize the actual benefits. The ULICE program (Union of Light Ion Centers in Europe) addressed the need for harmonization of CIRT practices. A comparative knowledge of the sources and magnitudes of uncertainties altering dose distribution and clinical effects during the whole CIRT procedure is required in that aim.

Methods

As part of ULICE WP2 task group, we sent a centrally reviewed questionnaire exploring candidate sources of uncertainties in dose deposition to the ten CIRT facilities in operation by February 2017. We aimed to explore native beam characterization, immobilization, anatomic data acquisition, target volumes and organs at risks delineation, treatment planning, dose delivery, quality assurance prior and during treatment. The responders had to consider the clinical case of a clival chordoma eligible for postoperative CIRT according to their clinical practice. With the results, our task group discussed ways to harmonize CIRT practices.

Results

We received 5 surveys from facilities that have treated 77% of the patients worldwide per November 2017. We pointed out the singularity of the facilities and beam delivery systems, a divergent definition of target volumes, the multiplicity of TPS and equieffective dose calculation approximations.

Conclusion

Multiple uncertainties affect equieffective dose definition, deposition and calculation in CIRT. Although it is not possible to harmonize all the steps of the CIRT planning between the centers, our working group proposed counter-measures addressing the improvable limitations.
Literature
1.
go back to reference Barendsen GW, Koot CJ, Van Kersen GR, Bewley DK, Field SB, Parnell CJ. The effect of oxygen on impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET. Int J Radiat Biol Relat Stud Phys Chem Med. 1966;10(4):317–27.PubMedCrossRef Barendsen GW, Koot CJ, Van Kersen GR, Bewley DK, Field SB, Parnell CJ. The effect of oxygen on impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET. Int J Radiat Biol Relat Stud Phys Chem Med. 1966;10(4):317–27.PubMedCrossRef
2.
go back to reference Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3) he-, (12) C- and (20) ne-ion beams. Radiat Res. 2000;154(5):485–96.PubMedCrossRef Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3) he-, (12) C- and (20) ne-ion beams. Radiat Res. 2000;154(5):485–96.PubMedCrossRef
4.
go back to reference ICRU. Prescribing, Recording, and Reporting Brachytherapy for Cancer of the Cervix (Report 89). J ICRU. 2013;13(1–2):NP. ICRU. Prescribing, Recording, and Reporting Brachytherapy for Cancer of the Cervix (Report 89). J ICRU. 2013;13(1–2):NP.
5.
go back to reference Combs SE, Ellerbrock M, Haberer T, Habermehl D, Hoess A, Jakel O, et al. Heidelberg Ion Therapy Center (HIT): Initial clinical experience in the first 80 patients. Acta Oncol. 2010;49(7):1132–40.PubMedCrossRef Combs SE, Ellerbrock M, Haberer T, Habermehl D, Hoess A, Jakel O, et al. Heidelberg Ion Therapy Center (HIT): Initial clinical experience in the first 80 patients. Acta Oncol. 2010;49(7):1132–40.PubMedCrossRef
6.
go back to reference Kamada T, Tsujii H, Blakely EA, Debus J, De Neve W, Durante M, et al. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol. 2015;16(2):e93–e100.PubMedCrossRef Kamada T, Tsujii H, Blakely EA, Debus J, De Neve W, Durante M, et al. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol. 2015;16(2):e93–e100.PubMedCrossRef
7.
go back to reference Pommier P, Lievens Y, Feschet F, Borras JM, Baron MH, Shtiliyanova A, et al. Simulating demand for innovative radiotherapies: an illustrative model based on carbon ion and proton radiotherapy. Radiother Oncol. 2010;96(2):243–9.PubMedCrossRef Pommier P, Lievens Y, Feschet F, Borras JM, Baron MH, Shtiliyanova A, et al. Simulating demand for innovative radiotherapies: an illustrative model based on carbon ion and proton radiotherapy. Radiother Oncol. 2010;96(2):243–9.PubMedCrossRef
8.
go back to reference Vanderstraeten B, Verstraete J, De Croock R, De Neve W, Lievens Y. In search of the economic sustainability of hadron therapy: the real cost of setting up and operating a hadron facility. Int J Radiat Oncol Biol Phys. 2014;89(1):152–60.PubMedCrossRef Vanderstraeten B, Verstraete J, De Croock R, De Neve W, Lievens Y. In search of the economic sustainability of hadron therapy: the real cost of setting up and operating a hadron facility. Int J Radiat Oncol Biol Phys. 2014;89(1):152–60.PubMedCrossRef
9.
go back to reference Peeters A, Grutters JP, Pijls-Johannesma M, Reimoser S, De Ruysscher D, Severens JL, et al. How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons. Radiother Oncol. 2010;95(1):45–53.PubMedCrossRef Peeters A, Grutters JP, Pijls-Johannesma M, Reimoser S, De Ruysscher D, Severens JL, et al. How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons. Radiother Oncol. 2010;95(1):45–53.PubMedCrossRef
10.
go back to reference IAEA. Dose reporting in ion-beam therapy. Vienna: IAEA; 2007. IAEA. Dose reporting in ion-beam therapy. Vienna: IAEA; 2007.
11.
go back to reference Combs SE, Djosanjh M, Potter R, Orrechia R, Haberer T, Durante M, et al. Towards clinical evidence in particle therapy: ENLIGHT, PARTNER, ULICE and beyond. J Radiat Res. 2013;54(Suppl 1):i6–12.PubMedPubMedCentralCrossRef Combs SE, Djosanjh M, Potter R, Orrechia R, Haberer T, Durante M, et al. Towards clinical evidence in particle therapy: ENLIGHT, PARTNER, ULICE and beyond. J Radiat Res. 2013;54(Suppl 1):i6–12.PubMedPubMedCentralCrossRef
12.
go back to reference Di Maio S, Temkin N, Ramanathan D, Sekhar LN. Current comprehensive management of cranial base chordomas: 10-year meta-analysis of observational studies. J Neurosurg. 2011;115(6):1094–105.PubMedCrossRef Di Maio S, Temkin N, Ramanathan D, Sekhar LN. Current comprehensive management of cranial base chordomas: 10-year meta-analysis of observational studies. J Neurosurg. 2011;115(6):1094–105.PubMedCrossRef
13.
go back to reference Fujisawa H, Genik PC, Kitamura H, Fujimori A, Uesaka M, Kato TA. Comparison of human chordoma cell-kill for 290 MeV/n carbon ions versus 70 MeV protons in vitro. Radiat Oncol. 2013;8:91.PubMedPubMedCentralCrossRef Fujisawa H, Genik PC, Kitamura H, Fujimori A, Uesaka M, Kato TA. Comparison of human chordoma cell-kill for 290 MeV/n carbon ions versus 70 MeV protons in vitro. Radiat Oncol. 2013;8:91.PubMedPubMedCentralCrossRef
14.
go back to reference Schulz-Ertner D, Karger CP, Feuerhake A, Nikoghosyan A, Combs SE, Jakel O, et al. Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int J Radiat Oncol Biol Phys. 2007;68(2):449–57.PubMedCrossRef Schulz-Ertner D, Karger CP, Feuerhake A, Nikoghosyan A, Combs SE, Jakel O, et al. Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int J Radiat Oncol Biol Phys. 2007;68(2):449–57.PubMedCrossRef
15.
go back to reference Uhl M, Mattke M, Welzel T, Roeder F, Oelmann J, Habl G, et al. Highly effective treatment of skull base chordoma with carbon ion irradiation using a raster scan technique in 155 patients: first long-term results. Cancer. 2014;120(21):3410–7.PubMedCrossRef Uhl M, Mattke M, Welzel T, Roeder F, Oelmann J, Habl G, et al. Highly effective treatment of skull base chordoma with carbon ion irradiation using a raster scan technique in 155 patients: first long-term results. Cancer. 2014;120(21):3410–7.PubMedCrossRef
16.
go back to reference Aydemir E, Bayrak OF, Sahin F, Atalay B, Kose GT, Ozen M, et al. Characterization of cancer stem-like cells in chordoma. J Neurosurg. 2012;116(4):810–20.PubMedCrossRef Aydemir E, Bayrak OF, Sahin F, Atalay B, Kose GT, Ozen M, et al. Characterization of cancer stem-like cells in chordoma. J Neurosurg. 2012;116(4):810–20.PubMedCrossRef
17.
go back to reference Mizoe JE. Review of carbon ion radiotherapy for skull base tumors (especially chordomas). Rep Pract Oncol Radiother. 2016;21(4):356–60.PubMedCrossRef Mizoe JE. Review of carbon ion radiotherapy for skull base tumors (especially chordomas). Rep Pract Oncol Radiother. 2016;21(4):356–60.PubMedCrossRef
18.
go back to reference Vogin G, Wambersie A, Pötter R, Beuve M, Combs S, Magrin G, et al. Concepts and terms for dose volume parameters in carbon-ion radiotherapy: recommendations of the ULICE taskforce. Cancer Radiother. 2018;22(8):802–9 (In press).PubMedCrossRef Vogin G, Wambersie A, Pötter R, Beuve M, Combs S, Magrin G, et al. Concepts and terms for dose volume parameters in carbon-ion radiotherapy: recommendations of the ULICE taskforce. Cancer Radiother. 2018;22(8):802–9 (In press).PubMedCrossRef
19.
go back to reference ULICE WP2 working group. DJRA 2.1: Harmonisation of concepts and terms for volume and dose parameters in photon, proton and carbon-ion therapy. 2011. ULICE WP2 working group. DJRA 2.1: Harmonisation of concepts and terms for volume and dose parameters in photon, proton and carbon-ion therapy. 2011.
20.
go back to reference ULICE WP2 working group. DJRA 2.4: Joint dosimetry protocol structure enabling intercomparison between centres, including modern dosimetric and microdosimetric approaches (e.g. selection of stopping powers). 2011. ULICE WP2 working group. DJRA 2.4: Joint dosimetry protocol structure enabling intercomparison between centres, including modern dosimetric and microdosimetric approaches (e.g. selection of stopping powers). 2011.
21.
go back to reference ULICE WP2 working group. DJRA 2.5: Harmonisation and recommendations for prescribing and reporting absorbed doses and dose volume histogrammes based on 3D and 4D concepts. 2012. ULICE WP2 working group. DJRA 2.5: Harmonisation and recommendations for prescribing and reporting absorbed doses and dose volume histogrammes based on 3D and 4D concepts. 2012.
22.
go back to reference ULICE WP2 working group. DJRA 2.7: Document on joint outcome assessment: disease control, recurrence assessment, morbidity assessment, Quality of Life. 2012. ULICE WP2 working group. DJRA 2.7: Document on joint outcome assessment: disease control, recurrence assessment, morbidity assessment, Quality of Life. 2012.
23.
go back to reference ULICE WP2 working group. DJRA 2.9: Integrated concept of 3D/4D absorbed dose and variations in biological effects with RBE, fractionation, overall time. 2014. ULICE WP2 working group. DJRA 2.9: Integrated concept of 3D/4D absorbed dose and variations in biological effects with RBE, fractionation, overall time. 2014.
24.
go back to reference ICRU. ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). J ICRU. 1999;os32(1):1–52. ICRU. ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). J ICRU. 1999;os32(1):1–52.
25.
go back to reference ICRU. Prescribing, recording, and reporting Electron beam therapy. J ICRU. 2004;4(1):5–9. ICRU. Prescribing, recording, and reporting Electron beam therapy. J ICRU. 2004;4(1):5–9.
26.
go back to reference ICRU. Prescribing, Recording, and Reporting Proton-Beam Therapy (Report 78). J ICRU. 2007;7(2). ICRU. Prescribing, Recording, and Reporting Proton-Beam Therapy (Report 78). J ICRU. 2007;7(2).
27.
go back to reference ICRU. Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT): Contents (report 83). J ICRU. 2010;10(1):NP. ICRU. Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT): Contents (report 83). J ICRU. 2010;10(1):NP.
28.
go back to reference Jones D. ICRU report 50—prescribing, recording and reporting photon beam therapy. Med Phys. 1994;21(6):833–4.CrossRef Jones D. ICRU report 50—prescribing, recording and reporting photon beam therapy. Med Phys. 1994;21(6):833–4.CrossRef
29.
go back to reference Nikoghosyan AV, Karapanagiotou-Schenkel I, Munter MW, Jensen AD, Combs SE, Debus J. Randomised trial of proton vs. carbon ion radiation therapy in patients with chordoma of the skull base, clinical phase III study HIT-1-Study. BMC Cancer. 2010;10:607.PubMedPubMedCentralCrossRef Nikoghosyan AV, Karapanagiotou-Schenkel I, Munter MW, Jensen AD, Combs SE, Debus J. Randomised trial of proton vs. carbon ion radiation therapy in patients with chordoma of the skull base, clinical phase III study HIT-1-Study. BMC Cancer. 2010;10:607.PubMedPubMedCentralCrossRef
30.
31.
go back to reference Erdem E, Angtuaco EC, Van Hemert R, Park JS, Al-Mefty O. Comprehensive review of intracranial chordoma. Radiographics. 2003;23(4):995–1009.PubMedCrossRef Erdem E, Angtuaco EC, Van Hemert R, Park JS, Al-Mefty O. Comprehensive review of intracranial chordoma. Radiographics. 2003;23(4):995–1009.PubMedCrossRef
32.
go back to reference ULICE WP10 working group. DNA 10.3: Imaging and contouring procedures for chordoma of the skull base at the Italian National Center for Hadrontherapy Oncology (CNAO). 2012. ULICE WP10 working group. DNA 10.3: Imaging and contouring procedures for chordoma of the skull base at the Italian National Center for Hadrontherapy Oncology (CNAO). 2012.
33.
go back to reference Engelsman M, Rosenthal SJ, Michaud SL, Adams JA, Schneider RJ, Bradley SG, et al. Intra- and interfractional patient motion for a variety of immobilization devices. Med Phys. 2005;32(11):3468–74.PubMedCrossRef Engelsman M, Rosenthal SJ, Michaud SL, Adams JA, Schneider RJ, Bradley SG, et al. Intra- and interfractional patient motion for a variety of immobilization devices. Med Phys. 2005;32(11):3468–74.PubMedCrossRef
34.
go back to reference Karger CP, Jakel O, Debus J, Kuhn S, Hartmann GH. Three-dimensional accuracy and interfractional reproducibility of patient fixation and positioning using a stereotactic head mask system. Int J Radiat Oncol Biol Phys. 2001;49(5):1493–504.PubMedCrossRef Karger CP, Jakel O, Debus J, Kuhn S, Hartmann GH. Three-dimensional accuracy and interfractional reproducibility of patient fixation and positioning using a stereotactic head mask system. Int J Radiat Oncol Biol Phys. 2001;49(5):1493–504.PubMedCrossRef
35.
go back to reference Jensen AD, Winter M, Kuhn SP, Debus J, Nairz O, Munter MW. Robotic-based carbon ion therapy and patient positioning in 6 degrees of freedom: setup accuracy of two standard immobilization devices used in carbon ion therapy and IMRT. Radiat Oncol. 2012;7:51.PubMedPubMedCentralCrossRef Jensen AD, Winter M, Kuhn SP, Debus J, Nairz O, Munter MW. Robotic-based carbon ion therapy and patient positioning in 6 degrees of freedom: setup accuracy of two standard immobilization devices used in carbon ion therapy and IMRT. Radiat Oncol. 2012;7:51.PubMedPubMedCentralCrossRef
36.
go back to reference Rietzel E, Schardt D, Haberer T. Range accuracy in carbon ion treatment planning based on CT-calibration with real tissue samples. Radiat Oncol. 2007;2:14.PubMedPubMedCentralCrossRef Rietzel E, Schardt D, Haberer T. Range accuracy in carbon ion treatment planning based on CT-calibration with real tissue samples. Radiat Oncol. 2007;2:14.PubMedPubMedCentralCrossRef
37.
go back to reference Matsufuji N, Kanai T, Kanematsu N, Miyamoto T, Baba M, Kamada T, et al. Specification of Carbon Ion Dose at the National Institute of Radiological Sciences (NIRS). J Radiat Res. 2007;48(Suppl A):A81–6.PubMedCrossRef Matsufuji N, Kanai T, Kanematsu N, Miyamoto T, Baba M, Kamada T, et al. Specification of Carbon Ion Dose at the National Institute of Radiological Sciences (NIRS). J Radiat Res. 2007;48(Suppl A):A81–6.PubMedCrossRef
38.
go back to reference Kanai T, Endo M, Minohara S, Miyahara N, Koyama-ito H, Tomura H, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44(1):201–10.PubMedCrossRef Kanai T, Endo M, Minohara S, Miyahara N, Koyama-ito H, Tomura H, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44(1):201–10.PubMedCrossRef
39.
go back to reference Inaniwa T, Furukawa T, Kase Y, Matsufuji N, Toshito T, Matsumoto Y, et al. Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol. 2010;55(22):6721–37.PubMedCrossRef Inaniwa T, Furukawa T, Kase Y, Matsufuji N, Toshito T, Matsumoto Y, et al. Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol. 2010;55(22):6721–37.PubMedCrossRef
40.
go back to reference Elsasser T, Kramer M, Scholz M. Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys. 2008;71(3):866–72.PubMedCrossRef Elsasser T, Kramer M, Scholz M. Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys. 2008;71(3):866–72.PubMedCrossRef
41.
go back to reference Kitagawa A, Fujita T, Muramatsu M, Biri S, Drentje AG. Review on heavy ion radiotherapy facilities and related ion sources (invited). Rev Sci Instrum. 2010;81(2):02B909.PubMedCrossRef Kitagawa A, Fujita T, Muramatsu M, Biri S, Drentje AG. Review on heavy ion radiotherapy facilities and related ion sources (invited). Rev Sci Instrum. 2010;81(2):02B909.PubMedCrossRef
42.
go back to reference Baroni G, Riboldi M, Spadea MF, Tagaste B, Garibaldi C, Orecchia R, et al. Integration of Enhanced Optical Tracking Techniques and Imaging in IGRT. J Radiat Res. 2007;48(Suppl A):A61–74.PubMedCrossRef Baroni G, Riboldi M, Spadea MF, Tagaste B, Garibaldi C, Orecchia R, et al. Integration of Enhanced Optical Tracking Techniques and Imaging in IGRT. J Radiat Res. 2007;48(Suppl A):A61–74.PubMedCrossRef
43.
44.
go back to reference Cheng C, Zhao L, Zhao Q, Moskvin V, Buchsbaum J, Das I. SU-E-T-295: Factors Affecting Accuracy in Proton Therapy. Med Phys. 2012;39(6Part14):3771.PubMedCrossRef Cheng C, Zhao L, Zhao Q, Moskvin V, Buchsbaum J, Das I. SU-E-T-295: Factors Affecting Accuracy in Proton Therapy. Med Phys. 2012;39(6Part14):3771.PubMedCrossRef
45.
go back to reference Fattori G, Riboldi M, Scifoni E, Kramer M, Pella A, Durante M, et al. Dosimetric effects of residual uncertainties in carbon ion treatment of head chordoma. Radiother Oncol. 2014;113(1):66–71.PubMedCrossRef Fattori G, Riboldi M, Scifoni E, Kramer M, Pella A, Durante M, et al. Dosimetric effects of residual uncertainties in carbon ion treatment of head chordoma. Radiother Oncol. 2014;113(1):66–71.PubMedCrossRef
46.
go back to reference ULICE WP10 working group. DNA 10.4: Immobilization Procedures in the Active Centers. 2013. ULICE WP10 working group. DNA 10.4: Immobilization Procedures in the Active Centers. 2013.
47.
go back to reference Lee AW, Ng WT, Pan JJ, Poh SS, Ahn YC, AlHussain H, et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother Oncol. 2018;126(1):25–36.PubMedCrossRef Lee AW, Ng WT, Pan JJ, Poh SS, Ahn YC, AlHussain H, et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother Oncol. 2018;126(1):25–36.PubMedCrossRef
48.
go back to reference Fagundes MA, Hug EB, Liebsch NJ, Daly W, Efird J, Munzenrider JE. Radiation therapy for chordomas of the base of skull and cervical spine: patterns of failure and outcome after relapse. Int J Radiat Oncol Biol Phys. 1995;33(3):579–84.PubMedCrossRef Fagundes MA, Hug EB, Liebsch NJ, Daly W, Efird J, Munzenrider JE. Radiation therapy for chordomas of the base of skull and cervical spine: patterns of failure and outcome after relapse. Int J Radiat Oncol Biol Phys. 1995;33(3):579–84.PubMedCrossRef
49.
go back to reference Vogin G, Calugaru V, Bolle S, George B, Oldrini G, Habrand JL, et al. Investigation of ectopic recurrent skull base and cervical chordomas: the Institut Curie's proton therapy center experience. Head Neck. 2016;38(Suppl 1):E1238–46.PubMedCrossRef Vogin G, Calugaru V, Bolle S, George B, Oldrini G, Habrand JL, et al. Investigation of ectopic recurrent skull base and cervical chordomas: the Institut Curie's proton therapy center experience. Head Neck. 2016;38(Suppl 1):E1238–46.PubMedCrossRef
50.
go back to reference Cabal GA, Jakel O. Dynamic target definition: a novel approach for PTV definition in ion beam therapy. Radiother Oncol. 2013;107(2):227–33.PubMedCrossRef Cabal GA, Jakel O. Dynamic target definition: a novel approach for PTV definition in ion beam therapy. Radiother Oncol. 2013;107(2):227–33.PubMedCrossRef
51.
go back to reference Ammazzalorso F, Graef S, Weber U, Wittig A, Engenhart-Cabillic R, Jelen U. Dosimetric consequences of intrafraction prostate motion in scanned ion beam radiotherapy. Radiother Oncol. 2014;112(1):100–5.PubMedCrossRef Ammazzalorso F, Graef S, Weber U, Wittig A, Engenhart-Cabillic R, Jelen U. Dosimetric consequences of intrafraction prostate motion in scanned ion beam radiotherapy. Radiother Oncol. 2014;112(1):100–5.PubMedCrossRef
52.
53.
go back to reference Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol. 2008;53(4):1043–56.PubMedCrossRef Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol. 2008;53(4):1043–56.PubMedCrossRef
54.
go back to reference Unkelbach J, Oelfke U. Incorporating organ movements in inverse planning: assessing dose uncertainties by Bayesian inference. Phys Med Biol. 2005;50(1):121–39.PubMedCrossRef Unkelbach J, Oelfke U. Incorporating organ movements in inverse planning: assessing dose uncertainties by Bayesian inference. Phys Med Biol. 2005;50(1):121–39.PubMedCrossRef
55.
go back to reference Maleike D, Unkelbach J, Oelfke U. Simulation and visualization of dose uncertainties due to interfractional organ motion. Phys Med Biol. 2006;51(9):2237–52.PubMedCrossRef Maleike D, Unkelbach J, Oelfke U. Simulation and visualization of dose uncertainties due to interfractional organ motion. Phys Med Biol. 2006;51(9):2237–52.PubMedCrossRef
56.
go back to reference ICRU. Fundamental quantities and units for ionizing radiation (report 85). J ICRU. 2011;11(1):1–31. ICRU. Fundamental quantities and units for ionizing radiation (report 85). J ICRU. 2011;11(1):1–31.
57.
go back to reference Wambersie A, Menzel HG, Andreo P, DeLuca PM Jr, Gahbauer R, Hendry JH, et al. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies. Radiat Prot Dosim. 2011;143(2–4):481–6.CrossRef Wambersie A, Menzel HG, Andreo P, DeLuca PM Jr, Gahbauer R, Hendry JH, et al. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies. Radiat Prot Dosim. 2011;143(2–4):481–6.CrossRef
58.
go back to reference BIPM (Bureau international des Poids et Mesures). Système international d’unités (SI), 7ème édition. France: Sèvres; 1998. BIPM (Bureau international des Poids et Mesures). Système international d’unités (SI), 7ème édition. France: Sèvres; 1998.
59.
go back to reference Bentzen SM, Dorr W, Gahbauer R, Howell RW, Joiner MC, Jones B, et al. Bioeffect modeling and equieffective dose concepts in radiation oncology--terminology, quantities and units. Radiother Oncol. 2012;105(2):266–8.PubMedCrossRef Bentzen SM, Dorr W, Gahbauer R, Howell RW, Joiner MC, Jones B, et al. Bioeffect modeling and equieffective dose concepts in radiation oncology--terminology, quantities and units. Radiother Oncol. 2012;105(2):266–8.PubMedCrossRef
60.
go back to reference Doolan PJ, Alshaikhi J, Rosenberg I, Ainsley CG, Gibson A, D'Souza D, et al. A comparison of the dose distributions from three proton treatment planning systems in the planning of meningioma patients with single-field uniform dose pencil beam scanning. J Appl Clin Med Phys. 2015;16(1):4996.PubMedCrossRef Doolan PJ, Alshaikhi J, Rosenberg I, Ainsley CG, Gibson A, D'Souza D, et al. A comparison of the dose distributions from three proton treatment planning systems in the planning of meningioma patients with single-field uniform dose pencil beam scanning. J Appl Clin Med Phys. 2015;16(1):4996.PubMedCrossRef
61.
go back to reference Gueulette J, Wambersie A. Comparison of the Methods of Specifying Carbon Ion Doses at NIRS and GSI. J Radiat Res. 2007;48(Suppl A):A97–A102.PubMedCrossRef Gueulette J, Wambersie A. Comparison of the Methods of Specifying Carbon Ion Doses at NIRS and GSI. J Radiat Res. 2007;48(Suppl A):A97–A102.PubMedCrossRef
62.
go back to reference Mairani A, Brons S, Cerutti F, Fasso A, Ferrari A, Kramer M, et al. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy. Phys Med Biol. 2010;55(15):4273–89.PubMedCrossRef Mairani A, Brons S, Cerutti F, Fasso A, Ferrari A, Kramer M, et al. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy. Phys Med Biol. 2010;55(15):4273–89.PubMedCrossRef
63.
go back to reference Uzawa A, Ando K, Koike S, Furusawa Y, Matsumoto Y, Takai N, et al. Comparison of biological effectiveness of carbon-ion beams in Japan and Germany. Int J Radiat Oncol Biol Phys. 2009;73(5):1545–51.PubMedCrossRef Uzawa A, Ando K, Koike S, Furusawa Y, Matsumoto Y, Takai N, et al. Comparison of biological effectiveness of carbon-ion beams in Japan and Germany. Int J Radiat Oncol Biol Phys. 2009;73(5):1545–51.PubMedCrossRef
64.
go back to reference Fossati P, Molinelli S, Matsufuji N, Ciocca M, Mirandola A, Mairani A, et al. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Phys Med Biol. 2012;57(22):7543–54.PubMedCrossRef Fossati P, Molinelli S, Matsufuji N, Ciocca M, Mirandola A, Mairani A, et al. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Phys Med Biol. 2012;57(22):7543–54.PubMedCrossRef
65.
go back to reference Molinelli S, Magro G, Mairani A, Matsufuji N, Kanematsu N, Inaniwa T, et al. Dose prescription in carbon ion radiotherapy: how to compare two different RBE-weighted dose calculation systems. Radiother Oncol. 2016;120(2):307–12.PubMedCrossRef Molinelli S, Magro G, Mairani A, Matsufuji N, Kanematsu N, Inaniwa T, et al. Dose prescription in carbon ion radiotherapy: how to compare two different RBE-weighted dose calculation systems. Radiother Oncol. 2016;120(2):307–12.PubMedCrossRef
66.
go back to reference Steinstrater O, Grun R, Scholz U, Friedrich T, Durante M, Scholz M. Mapping of RBE-weighted doses between HIMAC- and LEM-based treatment planning systems for carbon ion therapy. Int J Radiat Oncol Biol Phys. 2012;84(3):854–60.PubMedCrossRef Steinstrater O, Grun R, Scholz U, Friedrich T, Durante M, Scholz M. Mapping of RBE-weighted doses between HIMAC- and LEM-based treatment planning systems for carbon ion therapy. Int J Radiat Oncol Biol Phys. 2012;84(3):854–60.PubMedCrossRef
67.
go back to reference Jones B. A simpler energy transfer efficiency model to predict relative biological effect for protons and heavier ions. Front Oncol. 2015;5:184.PubMedPubMedCentral Jones B. A simpler energy transfer efficiency model to predict relative biological effect for protons and heavier ions. Front Oncol. 2015;5:184.PubMedPubMedCentral
68.
go back to reference Steinstrater O, Scholz U, Friedrich T, Kramer M, Grun R, Durante M, et al. Integration of a model-independent interface for RBE predictions in a treatment planning system for active particle beam scanning. Phys Med Biol. 2015;60(17):6811–31.PubMedCrossRef Steinstrater O, Scholz U, Friedrich T, Kramer M, Grun R, Durante M, et al. Integration of a model-independent interface for RBE predictions in a treatment planning system for active particle beam scanning. Phys Med Biol. 2015;60(17):6811–31.PubMedCrossRef
69.
go back to reference Jones B, Underwood TS, Carabe-Fernandez A, Timlin C, Dale RG. Fast neutron relative biological effects and implications for charged particle therapy. Br J Radiol. 2011;84(Spec 1):S11–8.PubMedCrossRef Jones B, Underwood TS, Carabe-Fernandez A, Timlin C, Dale RG. Fast neutron relative biological effects and implications for charged particle therapy. Br J Radiol. 2011;84(Spec 1):S11–8.PubMedCrossRef
70.
go back to reference Dreher C, Scholz C, Pommer M, Brons S, Prokesch H, Ecker S, et al. Optimization of carbon ion treatment plans by integrating tissue specific alpha/beta-values for patients with non-Resectable pancreatic Cancer. PLoS One. 2016;11(10):e0164473.PubMedPubMedCentralCrossRef Dreher C, Scholz C, Pommer M, Brons S, Prokesch H, Ecker S, et al. Optimization of carbon ion treatment plans by integrating tissue specific alpha/beta-values for patients with non-Resectable pancreatic Cancer. PLoS One. 2016;11(10):e0164473.PubMedPubMedCentralCrossRef
71.
go back to reference IAEA. TRS no. 398; absorbed dose determination in external beam radiotherapy. Vienna: IAEA; 2000. IAEA. TRS no. 398; absorbed dose determination in external beam radiotherapy. Vienna: IAEA; 2000.
72.
go back to reference ULICE WP2 working group. DJRA 2.10: Adaptation of the so far existing protocols (that will be provided by WP 10) within the facilities according to the needs as defined in this SOP for clinical trial design for hadron-therapy – in cooperation with WP 11. 2013. ULICE WP2 working group. DJRA 2.10: Adaptation of the so far existing protocols (that will be provided by WP 10) within the facilities according to the needs as defined in this SOP for clinical trial design for hadron-therapy – in cooperation with WP 11. 2013.
Metadata
Title
A step towards international prospective trials in carbon ion radiotherapy: investigation of factors influencing dose distribution in the facilities in operation based on a case of skull base chordoma
Authors
G. Vogin
A. Wambersie
M. Koto
T. Ohno
M. Uhl
P. Fossati
J. Balosso
on behalf of ULICE WP2 working group
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Radiotherapy
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1224-1

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue