Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

A novel model to correlate hydrogel spacer placement, perirectal space creation, and rectum dosimetry in prostate stereotactic body radiotherapy

Authors: Mark E Hwang, Paul J Black, Carl D Elliston, Brian A Wolthuis, Deborah R Smith, Cheng-Chia Wu, Sven Wenske, Israel Deutsch

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

The SpaceOAR hydrogel is employed to limit rectal radiation dose during prostate radiotherapy. We identified a novel parameter – the product of angle θ and hydrogel volume – to quantify hydrogel placement. This parameter predicted rectum dosimetry and acute rectal toxicity in prostate cancer patients treated with stereotactic body radiotherapy to 36.25 Gy in 5 fractions.

Methods

Twenty men with low- and intermediate-risk prostate cancer underwent hydrogel placement from 2015 to 2017. Hydrogel symmetry was assessed on the CT simulation scan in 3 axial slices (midgland, 1 cm above midgland, 1 cm below midgland). Two novel parameters quantifying hydrogel placement – hydrogel volume and angle θ formed by the prostate, hydrogel, and rectum – were measured, and the normalized product of θ and hydrogel volume calculated. These were then correlated with perirectal distance, rectum maximum 1–3 cc point doses (rDmax 1–3 cc), and rectum volumes receiving 80–95% of the prescription dose (rV80–95%). Acute rectal toxicity was recorded per RTOG criteria.

Results

In 50% of patients, hydrogel placement was symmetric bilaterally to within 1 cm of midline in all three CT simulation scan axial slices. Lateral hydrogel asymmetry < 2 cm in any one axial slice did not affect rectum dosimetry, but absence of hydrogel in the inferior axial slice resulted in a mean increase of 171 cGy in the rDmax 1 cc (p < 0.005). The perirectal distance measured at prostate midgland, midline (mean 9.1 ± 4.3 mm) correlated strongly with rV95 (R2 0.6, p < 0.001). The mean hydrogel volume and θ were 10.3 ± 4.5 cc and 70 ± 49°, respectively. Perirectal distance, rV95 and rDmax 1 cc correlated with hydrogel angle θ (p < 0.01), and yet more strongly with the novel metric θ*hydrogel volume (p < 0.001). With a median follow up of 14 months, no rectal toxicity >grade 2 was observed. Low grade rectal toxicity was observed in a third of men and resolved within 1 month of SBRT. Men who had these symptoms had higher rDmax 1 cc and smaller θ*hydrogel volume measurements.

Conclusions

Optimal hydrogel placement occurs at prostate midgland, midline. The novel parameter θ*hydrogel volume describes a large proportion of rectum dosimetric benefit derived from hydrogel placement, and can be used to assess the learning curve phenomenon for hydrogel placement.
Literature
1.
go back to reference Hegemann N-S, Guckenberger M, Belka C, Ganswindt U, Manapov F, Li M. Hypofractionated radiotherapy for prostate cancer. Radiat Oncol. 2014;9:275.CrossRef Hegemann N-S, Guckenberger M, Belka C, Ganswindt U, Manapov F, Li M. Hypofractionated radiotherapy for prostate cancer. Radiat Oncol. 2014;9:275.CrossRef
4.
go back to reference Lukka H, Stephanie P, Bruner D, Bahary JP, Lawton CAF, Efstathiou JA, et al. Patient-Reported Outcomes in NRG Oncology/RTOG 0938, a Randomized Phase 2 Study Evaluating 2 Ultrahypofractionated Regimens (UHRs) for Prostate Cancer. Int J Radiat Oncol. 2018;94:2.CrossRef Lukka H, Stephanie P, Bruner D, Bahary JP, Lawton CAF, Efstathiou JA, et al. Patient-Reported Outcomes in NRG Oncology/RTOG 0938, a Randomized Phase 2 Study Evaluating 2 Ultrahypofractionated Regimens (UHRs) for Prostate Cancer. Int J Radiat Oncol. 2018;94:2.CrossRef
5.
go back to reference Kim DWN, Cho LC, Straka C, Christie A, Lotan Y, Pistenmaa D, et al. Predictors of rectal tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy for prostate Cancer. Int J Radiat Oncol. 2014;89:509–17.CrossRef Kim DWN, Cho LC, Straka C, Christie A, Lotan Y, Pistenmaa D, et al. Predictors of rectal tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy for prostate Cancer. Int J Radiat Oncol. 2014;89:509–17.CrossRef
6.
go back to reference Susil RC, McNutt TR, DeWeese TL, Song D. Effects of prostate-rectum separation on rectal dose from external beam radiotherapy. Int J Radiat Oncol. 2010;76:1251–8.CrossRef Susil RC, McNutt TR, DeWeese TL, Song D. Effects of prostate-rectum separation on rectal dose from external beam radiotherapy. Int J Radiat Oncol. 2010;76:1251–8.CrossRef
7.
go back to reference Song DY, Herfarth KK, Uhl M, Eble MJ, Pinkawa M, van Triest B, et al. A multi-institutional clinical trial of rectal dose reduction via injected polyethylene-glycol hydrogel during intensity modulated radiation therapy for prostate Cancer: analysis of Dosimetric outcomes. Int J Radiat Oncol. 2013;87:81–7.CrossRef Song DY, Herfarth KK, Uhl M, Eble MJ, Pinkawa M, van Triest B, et al. A multi-institutional clinical trial of rectal dose reduction via injected polyethylene-glycol hydrogel during intensity modulated radiation therapy for prostate Cancer: analysis of Dosimetric outcomes. Int J Radiat Oncol. 2013;87:81–7.CrossRef
8.
go back to reference Hamstra DA, Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, et al. Continued benefit to rectal separation for prostate radiation therapy: final results of a phase III trial. Int J Radiat Oncol. 2017;97:976–85.CrossRef Hamstra DA, Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, et al. Continued benefit to rectal separation for prostate radiation therapy: final results of a phase III trial. Int J Radiat Oncol. 2017;97:976–85.CrossRef
9.
go back to reference Whalley D, Hruby G, Alfieri F, Kneebone A, Eade T. SpaceOAR hydrogel in dose-escalated prostate Cancer radiotherapy: rectal dosimetry and late toxicity. Clin Oncol. 2016;28:e148–54.CrossRef Whalley D, Hruby G, Alfieri F, Kneebone A, Eade T. SpaceOAR hydrogel in dose-escalated prostate Cancer radiotherapy: rectal dosimetry and late toxicity. Clin Oncol. 2016;28:e148–54.CrossRef
10.
go back to reference Hedrick SG, Fagundes M, Robison B, Blakey M, Renegar J, Artz M, et al. A comparison between hydrogel spacer and endorectal balloon: an analysis of intrafraction prostate motion during proton therapy. J Appl Clin Med Phys. 2017;18:106–12.CrossRef Hedrick SG, Fagundes M, Robison B, Blakey M, Renegar J, Artz M, et al. A comparison between hydrogel spacer and endorectal balloon: an analysis of intrafraction prostate motion during proton therapy. J Appl Clin Med Phys. 2017;18:106–12.CrossRef
11.
go back to reference Jones RT, Hassan Rezaeian N, Desai NB, Lotan Y, Jia X, Hannan R, et al. Dosimetric comparison of rectal-sparing capabilities of rectal balloon vs injectable spacer gel in stereotactic body radiation therapy for prostate cancer: lessons learned from prospective trials. Med Dosim. 2017;42:341–7.CrossRef Jones RT, Hassan Rezaeian N, Desai NB, Lotan Y, Jia X, Hannan R, et al. Dosimetric comparison of rectal-sparing capabilities of rectal balloon vs injectable spacer gel in stereotactic body radiation therapy for prostate cancer: lessons learned from prospective trials. Med Dosim. 2017;42:341–7.CrossRef
12.
go back to reference Müller A-C, Mischinger J, Klotz T, Gagel B, Habl G, Hatiboglu G, et al. Interdisciplinary consensus statement on indication and application of a hydrogel spacer for prostate radiotherapy based on experience in more than 250 patients. Radiol Oncol. 2016;50. https://doi.org/10.1515/raon-2016-0036.CrossRef Müller A-C, Mischinger J, Klotz T, Gagel B, Habl G, Hatiboglu G, et al. Interdisciplinary consensus statement on indication and application of a hydrogel spacer for prostate radiotherapy based on experience in more than 250 patients. Radiol Oncol. 2016;50. https://​doi.​org/​10.​1515/​raon-2016-0036.CrossRef
13.
go back to reference Ruggieri R, Naccarato S, Stavrev P, Stavreva N, Fersino S, Giaj Levra N, et al. Volumetric-modulated arc stereotactic body radiotherapy for prostate cancer: dosimetric impact of an increased near-maximum target dose and of a rectal spacer. Br J Radiol. 2015;88:20140736.CrossRef Ruggieri R, Naccarato S, Stavrev P, Stavreva N, Fersino S, Giaj Levra N, et al. Volumetric-modulated arc stereotactic body radiotherapy for prostate cancer: dosimetric impact of an increased near-maximum target dose and of a rectal spacer. Br J Radiol. 2015;88:20140736.CrossRef
14.
go back to reference Fischer-Valuck BW, Chundury A, Gay H, Bosch W, Michalski J. Hydrogel spacer distribution within the perirectal space in patients undergoing radiotherapy for prostate cancer: impact of spacer symmetry on rectal dose reduction and the clinical consequences of hydrogel infiltration into the rectal wall. Pract Radiat Oncol. 2017;7:195–202.CrossRef Fischer-Valuck BW, Chundury A, Gay H, Bosch W, Michalski J. Hydrogel spacer distribution within the perirectal space in patients undergoing radiotherapy for prostate cancer: impact of spacer symmetry on rectal dose reduction and the clinical consequences of hydrogel infiltration into the rectal wall. Pract Radiat Oncol. 2017;7:195–202.CrossRef
15.
go back to reference Cox JD, Stetz J, Pajak TF. Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31:1341–6.CrossRef Cox JD, Stetz J, Pajak TF. Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31:1341–6.CrossRef
16.
go back to reference Lee WR, Bare RL, Marshall MG, McCullough DL. Postimplant analysis of transperineal interstitial permanent prostate brachytherapy: evidence for a learning curve in the first year at a single institution. Int J Radiat Oncol Biol Phys. 2000;46:83–8.CrossRef Lee WR, Bare RL, Marshall MG, McCullough DL. Postimplant analysis of transperineal interstitial permanent prostate brachytherapy: evidence for a learning curve in the first year at a single institution. Int J Radiat Oncol Biol Phys. 2000;46:83–8.CrossRef
17.
go back to reference Zaorsky NG, Davis BJ, Nguyen PL, Showalter TN, Hoskin PJ, Yoshioka Y, et al. The evolution of brachytherapy for prostate cancer. Nat Rev Urol. 2017;14:415–39.CrossRef Zaorsky NG, Davis BJ, Nguyen PL, Showalter TN, Hoskin PJ, Yoshioka Y, et al. The evolution of brachytherapy for prostate cancer. Nat Rev Urol. 2017;14:415–39.CrossRef
18.
go back to reference Thompson SR, Delaney GP, Gabriel GS, Izard MA, Hruby G, Jagavkar R, et al. Prostate brachytherapy in New South Wales: patterns of care study and impact of caseload on treatment quality. J Contemp Brachytherapy. 2014;4:344–9.CrossRef Thompson SR, Delaney GP, Gabriel GS, Izard MA, Hruby G, Jagavkar R, et al. Prostate brachytherapy in New South Wales: patterns of care study and impact of caseload on treatment quality. J Contemp Brachytherapy. 2014;4:344–9.CrossRef
19.
go back to reference Pinkawa M, Klotz J, Djukic V, Schubert C, Escobar-Corral N, Caffaro M, et al. Learning curve in the application of a hydrogel spacer to protect the Rectal Wall during radiotherapy of localized prostate Cancer. Urology. 2013;82:963–8.CrossRef Pinkawa M, Klotz J, Djukic V, Schubert C, Escobar-Corral N, Caffaro M, et al. Learning curve in the application of a hydrogel spacer to protect the Rectal Wall during radiotherapy of localized prostate Cancer. Urology. 2013;82:963–8.CrossRef
20.
go back to reference Acher P, Popert R, Nichol J, Potters L, Morris S, Beaney R. Permanent prostate brachytherapy: Dosimetric results and analysis of a learning curve with a dynamic dose-feedback technique. Int J Radiat Oncol. 2006;65:694–8.CrossRef Acher P, Popert R, Nichol J, Potters L, Morris S, Beaney R. Permanent prostate brachytherapy: Dosimetric results and analysis of a learning curve with a dynamic dose-feedback technique. Int J Radiat Oncol. 2006;65:694–8.CrossRef
23.
go back to reference Uhl M, Herfarth K, Eble MJ, Pinkawa M, van Triest B, Kalisvaart R, et al. Absorbable hydrogel spacer use in men undergoing prostate cancer radiotherapy: 12 month toxicity and proctoscopy results of a prospective multicenter phase II trial. Radiat Oncol. 2014;9:96.CrossRef Uhl M, Herfarth K, Eble MJ, Pinkawa M, van Triest B, Kalisvaart R, et al. Absorbable hydrogel spacer use in men undergoing prostate cancer radiotherapy: 12 month toxicity and proctoscopy results of a prospective multicenter phase II trial. Radiat Oncol. 2014;9:96.CrossRef
24.
go back to reference Alongi F, Cozzi L, Arcangeli S, Iftode C, Comito T, Villa E, et al. Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study. Radiat Oncol. 2013;8:171.CrossRef Alongi F, Cozzi L, Arcangeli S, Iftode C, Comito T, Villa E, et al. Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study. Radiat Oncol. 2013;8:171.CrossRef
25.
go back to reference Wilton L, Richardson M, Keats S, Legge K, Hanlon M-C, Arumugam S, et al. Rectal protection in prostate stereotactic radiotherapy: a retrospective exploratory analysis of two rectal displacement devices. J Med Radiat Sci. 2017;64:266–73.CrossRef Wilton L, Richardson M, Keats S, Legge K, Hanlon M-C, Arumugam S, et al. Rectal protection in prostate stereotactic radiotherapy: a retrospective exploratory analysis of two rectal displacement devices. J Med Radiat Sci. 2017;64:266–73.CrossRef
26.
go back to reference Hutchinson RC, Sundaram V, Folkert M, Lotan Y. Decision analysis model evaluating the cost of a temporary hydrogel rectal spacer before prostate radiation therapy to reduce the incidence of rectal complications. Urol Oncol Semin Orig Investig. 2016;34:291.e19–26.CrossRef Hutchinson RC, Sundaram V, Folkert M, Lotan Y. Decision analysis model evaluating the cost of a temporary hydrogel rectal spacer before prostate radiation therapy to reduce the incidence of rectal complications. Urol Oncol Semin Orig Investig. 2016;34:291.e19–26.CrossRef
Metadata
Title
A novel model to correlate hydrogel spacer placement, perirectal space creation, and rectum dosimetry in prostate stereotactic body radiotherapy
Authors
Mark E Hwang
Paul J Black
Carl D Elliston
Brian A Wolthuis
Deborah R Smith
Cheng-Chia Wu
Sven Wenske
Israel Deutsch
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1135-6

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue