Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Methodology

Dosimetrical and radiobiological approach to manage the dosimetric shift in the transition of dose calculation algorithm in radiation oncology: how to improve high quality treatment and avoid unexpected outcomes?

Authors: Abdulhamid Chaikh, Jarkko Ojala, Catherine Khamphan, Robin Garcia, Jean Yves Giraud, Juliette Thariat, Jacques Balosso

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

For a given prescribed dose of radiotherapy, with the successive generations of dose calculation algorithms, more monitor units (MUs) are generally needed. This is due to the implementation of successive improvements in dose calculation: better heterogeneity correction and more accurate estimation of secondary electron transport contribution. More recently, there is the possibility to report the dose-to-medium, physically more accurate compared to the dose-to-water as the reference one. This last point is a recent concern and the main focus of this study.

Methods

In this paper, we propose steps for a general analysis procedure to estimate the dosimetric alterations, and the potential clinical changes, between a reference algorithm and a new one. This includes dosimetric parameters, gamma index, radiobiology indices based on equivalent uniform dose concept and statistics with bootstrap simulation. Finally, we provide a general recommendation on the clinical use of new algorithms regarding the dose prescription or dose limits to the organs at risks.

Results

The dosimetrical and radiobiological data showed a significant effect, which might exceed 5–10%, of the calculation method on the dose the distribution and clinical outcomes for lung cancer patients. Wilcoxon signed rank paired comparisons indicated that the delivered dose in MUs was significantly increased (> 2%) using more advanced dose calculation methods as compared to the reference one.

Conclusion

This paper illustrates and explains the use of dosimetrical, radiobiologcal and statistical tests for dosimetric comparisons in radiotherapy. The change of dose calculation algorithm may induce a dosimetric shift, which has to be evaluated by the physicists and the oncologists. This includes the impact on tumor control and on the risk of toxicity based on normal tissue dose constraints. In fact, the alteration in dose distribution makes it hard to keep exactly the same tumor control probability along with the same normal tissue complication probability.
Literature
1.
go back to reference Liu H, Keall P. Dm rather than Dw should be used in Monte Carlo treatment planning. Med Phys. 2002;29:922–4.CrossRefPubMed Liu H, Keall P. Dm rather than Dw should be used in Monte Carlo treatment planning. Med Phys. 2002;29:922–4.CrossRefPubMed
2.
go back to reference Ma C, Li J. Dose specification for radiation therapy: dose to water or dose to medium? Phys Med Biol. 2011;56:3073–89.CrossRefPubMed Ma C, Li J. Dose specification for radiation therapy: dose to water or dose to medium? Phys Med Biol. 2011;56:3073–89.CrossRefPubMed
3.
go back to reference Andreo P. Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate. Phys Med Biol. 2015;60:309–37.CrossRefPubMed Andreo P. Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate. Phys Med Biol. 2015;60:309–37.CrossRefPubMed
4.
go back to reference Chetty IJ, et al. Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.CrossRefPubMed Chetty IJ, et al. Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.CrossRefPubMed
5.
go back to reference Smilowitz JB, et al. AAPM medical physics practice guideline 5.A.: commissioning and QA of treatment planning dose calculations — megavoltage photon and Electron beams. J Appl Clin Med Phys. 2016;17(1) Smilowitz JB, et al. AAPM medical physics practice guideline 5.A.: commissioning and QA of treatment planning dose calculations — megavoltage photon and Electron beams. J Appl Clin Med Phys. 2016;17(1)
6.
go back to reference Chaikh A, Balosso J. Should the dose prescription be readjusted when using tissues density corrections algorithms for radiation oncology? J Case Rep Onc Ther. 2014;1(1):01018. Chaikh A, Balosso J. Should the dose prescription be readjusted when using tissues density corrections algorithms for radiation oncology? J Case Rep Onc Ther. 2014;1(1):01018.
7.
go back to reference Chaikh A, Khamphan C, Kumar T, Garcia R, Balosso J. What should we know about photon dose calculation algorithms used for radiotherapy? Their impact on dose distribution and medical decisions based on TCP/NTCP. Int J Cancer Ther Oncol. 2016;4(4):4418. Chaikh A, Khamphan C, Kumar T, Garcia R, Balosso J. What should we know about photon dose calculation algorithms used for radiotherapy? Their impact on dose distribution and medical decisions based on TCP/NTCP. Int J Cancer Ther Oncol. 2016;4(4):4418.
8.
go back to reference Ojala JJ, Kapanen MK, Hyödynmaa SJ, et al. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys. 2014;15(2):4–18.CrossRefPubMedCentral Ojala JJ, Kapanen MK, Hyödynmaa SJ, et al. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys. 2014;15(2):4–18.CrossRefPubMedCentral
9.
10.
go back to reference Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol. 2000;45:983–95.CrossRefPubMed Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol. 2000;45:983–95.CrossRefPubMed
11.
go back to reference Ojala J. The accuracy of the Acuros XB algorithm in external beam radiotherapy–a comprehensive review. Int J Cancer Ther Oncol. 2014;2(4):020417.CrossRef Ojala J. The accuracy of the Acuros XB algorithm in external beam radiotherapy–a comprehensive review. Int J Cancer Ther Oncol. 2014;2(4):020417.CrossRef
12.
go back to reference Rana S. Clinical dosimetric impact of Acuros XB and analytical anisotropic algorithm (AAA) on real lung cancer treatment plans: review. Int J Cancer Ther Oncol. 2014;2:02019.CrossRef Rana S. Clinical dosimetric impact of Acuros XB and analytical anisotropic algorithm (AAA) on real lung cancer treatment plans: review. Int J Cancer Ther Oncol. 2014;2:02019.CrossRef
14.
go back to reference Ojala J, Kapanen M. Quantification of dose differences between two versions of Acuros XB algorithm compared to Monte Carlo simulations — the effect on clinical patient treatment planning. J Appl Clin Med Phys. 2015;16(6):213–25.CrossRefPubMedPubMedCentral Ojala J, Kapanen M. Quantification of dose differences between two versions of Acuros XB algorithm compared to Monte Carlo simulations — the effect on clinical patient treatment planning. J Appl Clin Med Phys. 2015;16(6):213–25.CrossRefPubMedPubMedCentral
15.
go back to reference Chaikh A, Giraud JY, Balosso J. A method to quantify and assess the dosimetric and clinical impact resulting from the heterogeneity correction in radiotherapy for lung cancer. Int J Cancer Ther Oncol. 2014;2(1):020110. 14CrossRef Chaikh A, Giraud JY, Balosso J. A method to quantify and assess the dosimetric and clinical impact resulting from the heterogeneity correction in radiotherapy for lung cancer. Int J Cancer Ther Oncol. 2014;2(1):020110. 14CrossRef
16.
go back to reference ICRU Report 50. Prescribing, Recording and Reporting Photon Beam Therapy. 1993. ICRU Report 50. Prescribing, Recording and Reporting Photon Beam Therapy. 1993.
17.
go back to reference ICRU Report 62. Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). 1999. ICRU Report 62. Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). 1999.
18.
go back to reference ICRU Report 83. Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT) 2010; 10(1). ICRU Report 83. Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT) 2010; 10(1).
19.
go back to reference Chaikh A, Balosso J. Statistic and dosimetric criteria to assess the shift of the prescribed dose for lung radiotherapy plans when integrating point kernel models in medical physics: are we ready? Transl Lung Cancer Res. 2016;5(6):681–7.CrossRefPubMedPubMedCentral Chaikh A, Balosso J. Statistic and dosimetric criteria to assess the shift of the prescribed dose for lung radiotherapy plans when integrating point kernel models in medical physics: are we ready? Transl Lung Cancer Res. 2016;5(6):681–7.CrossRefPubMedPubMedCentral
20.
go back to reference Spezi E, Lewis DG. γ histograms for radiotherapy plan evaluation. Radiother Oncol. 2006;79:224–30.CrossRefPubMed Spezi E, Lewis DG. γ histograms for radiotherapy plan evaluation. Radiother Oncol. 2006;79:224–30.CrossRefPubMed
21.
go back to reference Chaikh A, Balosso J, Giraud JY. A 3D quantitative evaluation for assessing the changes of treatment planning system and irradiation techniques in radiotherapy. Int J Cancer Ther Oncol. 2014;2(3):02033.CrossRef Chaikh A, Balosso J, Giraud JY. A 3D quantitative evaluation for assessing the changes of treatment planning system and irradiation techniques in radiotherapy. Int J Cancer Ther Oncol. 2014;2(3):02033.CrossRef
22.
go back to reference Chaikh A, Desgranges C, Balosso J. The use of gamma indices with medical imaging as quality assurance tool to validate the dose calculation algorithm in the modern practice of medical physics. Nucl Med Biomed Imaging. 2016;1(2):31–4. Chaikh A, Desgranges C, Balosso J. The use of gamma indices with medical imaging as quality assurance tool to validate the dose calculation algorithm in the modern practice of medical physics. Nucl Med Biomed Imaging. 2016;1(2):31–4.
23.
go back to reference Baptiste B, David M. The delta envelope: a technique for dose distribution comparison. Med Phys. 2009;36(3):797–808.CrossRef Baptiste B, David M. The delta envelope: a technique for dose distribution comparison. Med Phys. 2009;36(3):797–808.CrossRef
24.
go back to reference Bakai A, Alber M, Nusslin F. A revision of the gamma-evaluation concept for the comparison of dose distributions. Phys Med Biol. 2003;48:3543–53.CrossRefPubMed Bakai A, Alber M, Nusslin F. A revision of the gamma-evaluation concept for the comparison of dose distributions. Phys Med Biol. 2003;48:3543–53.CrossRefPubMed
25.
go back to reference Graves YJ, Jia X, Jiang BS. Effect of statistical fluctuation in Monte Carlo based photon beam dose calculation on gamma index evaluation. Phys Med Biol. 2013;58:1839–53.CrossRefPubMed Graves YJ, Jia X, Jiang BS. Effect of statistical fluctuation in Monte Carlo based photon beam dose calculation on gamma index evaluation. Phys Med Biol. 2013;58:1839–53.CrossRefPubMed
26.
go back to reference Chaikh A, Balosso J. The use of radiobiological TCP and NTCP models to validate the dose calculation algorithm and readjust the prescribed dose. Radiother Oncol. 2016;118(1):S24.CrossRef Chaikh A, Balosso J. The use of radiobiological TCP and NTCP models to validate the dose calculation algorithm and readjust the prescribed dose. Radiother Oncol. 2016;118(1):S24.CrossRef
27.
go back to reference Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24(1):103–10.CrossRefPubMed Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24(1):103–10.CrossRefPubMed
28.
go back to reference Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Physica Medica. 2007;23:115–25.CrossRefPubMed Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Physica Medica. 2007;23:115–25.CrossRefPubMed
29.
go back to reference Emami B, Lyman J, Brown A, Coia L, Goiten M, Munzenride JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic radiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.CrossRefPubMed Emami B, Lyman J, Brown A, Coia L, Goiten M, Munzenride JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic radiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.CrossRefPubMed
30.
go back to reference Burman C, Kijtcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21(1):123–35.CrossRefPubMed Burman C, Kijtcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21(1):123–35.CrossRefPubMed
31.
go back to reference Allen Li X, Alber M, Deasy JO, Jackson A, Ken Jee KW, Marks LB, Martel MK, Mayo C, Moiseenko V, Nahum AE, Niemierko A, Semenenko VA, Yorke ED. The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM. Med Phys. 2012;39(3):1386–409. https://doi.org/10.1118/1.3685447. Allen Li X, Alber M, Deasy JO, Jackson A, Ken Jee KW, Marks LB, Martel MK, Mayo C, Moiseenko V, Nahum AE, Niemierko A, Semenenko VA, Yorke ED. The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM. Med Phys. 2012;39(3):1386–409. https://​doi.​org/​10.​1118/​1.​3685447.
32.
go back to reference Chaikh A, Giraud JY, Perrin E, Bresciani JP, Balosso J. The choice of statistical methods for comparisons of dosimetric data in radiotherapy. Radiat Oncol. 2014;9:205.CrossRefPubMedPubMedCentral Chaikh A, Giraud JY, Perrin E, Bresciani JP, Balosso J. The choice of statistical methods for comparisons of dosimetric data in radiotherapy. Radiat Oncol. 2014;9:205.CrossRefPubMedPubMedCentral
33.
go back to reference Xiao Y, Papiez L, Paulus R. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: stereotactic body radiation therapy of inoperable stage I/II non-small cell lung Cancer. Int J Radiat Oncol Biol Phys. 2009;73(4):1235–42.CrossRefPubMedPubMedCentral Xiao Y, Papiez L, Paulus R. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: stereotactic body radiation therapy of inoperable stage I/II non-small cell lung Cancer. Int J Radiat Oncol Biol Phys. 2009;73(4):1235–42.CrossRefPubMedPubMedCentral
34.
go back to reference Herman TLF, Hibbitts K, Herman T, Ahmad S. Evaluation of pencil beam convolution and anisotropic analytical algorithms in stereotactic lung irradiation. J Med Phys. 2011;36(4):234–8.CrossRefPubMedPubMedCentral Herman TLF, Hibbitts K, Herman T, Ahmad S. Evaluation of pencil beam convolution and anisotropic analytical algorithms in stereotactic lung irradiation. J Med Phys. 2011;36(4):234–8.CrossRefPubMedPubMedCentral
35.
go back to reference Okunieff P, Morgan D, Niemierko A, Suit HD. Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys. 1995;32(4):1227–37.CrossRefPubMed Okunieff P, Morgan D, Niemierko A, Suit HD. Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys. 1995;32(4):1227–37.CrossRefPubMed
36.
go back to reference Niemierko A. Biological optimization. In: Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer DE, editors. Image-guided IMRT. Berlin: Springer-Verlag; 2006. p. 199–216.CrossRef Niemierko A. Biological optimization. In: Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer DE, editors. Image-guided IMRT. Berlin: Springer-Verlag; 2006. p. 199–216.CrossRef
37.
go back to reference Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3):S10–9.CrossRefPubMedPubMedCentral Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3):S10–9.CrossRefPubMedPubMedCentral
38.
go back to reference Noël G, Antoni D, Barillot I, Chauvet B. Delineation of organs at risk and dose constraints. Cancer Radiothér. 2016;20S:S36–60.CrossRef Noël G, Antoni D, Barillot I, Chauvet B. Delineation of organs at risk and dose constraints. Cancer Radiothér. 2016;20S:S36–60.CrossRef
39.
go back to reference Hedin E, Bäck A. Influence of different dose calculation algorithms on the estimate of NTCP for lung complications. J Appl Clin Med Phys. 2013;14(5):127–39.CrossRefPubMedPubMedCentral Hedin E, Bäck A. Influence of different dose calculation algorithms on the estimate of NTCP for lung complications. J Appl Clin Med Phys. 2013;14(5):127–39.CrossRefPubMedPubMedCentral
40.
go back to reference Chapet O, Kong FM, Leeb JS, Haymana JA, Hakena R. Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer. Radiother Oncol. 2005;77:176–81.CrossRefPubMed Chapet O, Kong FM, Leeb JS, Haymana JA, Hakena R. Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer. Radiother Oncol. 2005;77:176–81.CrossRefPubMed
Metadata
Title
Dosimetrical and radiobiological approach to manage the dosimetric shift in the transition of dose calculation algorithm in radiation oncology: how to improve high quality treatment and avoid unexpected outcomes?
Authors
Abdulhamid Chaikh
Jarkko Ojala
Catherine Khamphan
Robin Garcia
Jean Yves Giraud
Juliette Thariat
Jacques Balosso
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1005-2

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue