Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation

Authors: Carmen Klein, Ivana Dokic, Andrea Mairani, Stewart Mein, Stephan Brons, Peter Häring, Thomas Haberer, Oliver Jäkel, Astrid Zimmermann, Frank Zenke, Andree Blaukat, Jürgen Debus, Amir Abdollahi

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Hypoxia-induced radioresistance constitutes a major obstacle for a curative treatment of cancer. The aim of this study was to investigate effects of photon and carbon ion irradiation in combination with inhibitors of DNA-Damage Response (DDR) on tumor cell radiosensitivity under hypoxic conditions.

Methods

Human non-small cell lung cancer (NSCLC) models, A549 and H1437, were irradiated with dose series of photon and carbon ions under hypoxia (1% O2) vs. normoxic conditions (21% O2). Clonogenic survival was studied after dual combinations of radiotherapy with inhibitors of DNA-dependent Protein Kinase (DNAPKi, M3814) and ATM serine/threonine kinase (ATMi).

Results

The OER at 30% survival for photon irradiation of A549 cells was 1.4. The maximal oxygen effect measured as survival ratio was 2.34 at 8 Gy photon irradiation of A549 cells. In contrast, no significant oxygen effect was found after carbon ion irradiation. Accordingly, the relative effect of 6 Gy carbon ions was determined as 3.8 under normoxia and. 4.11 under hypoxia. ATM and DNA-PK inhibitors dose dependently sensitized tumor cells for both radiation qualities. For 100 nM DNAPKi the survival ratio at 4 Gy more than doubled from 1.59 under normoxia to 3.3 under hypoxia revealing a strong radiosensitizing effect under hypoxic conditions. In contrast, this ratio only moderately increased after photon irradiation and ATMi under hypoxia. The most effective treatment was combined carbon ion irradiation and DNA damage repair inhibition.

Conclusions

Carbon ions efficiently eradicate hypoxic tumor cells. Both, ATMi and DNAPKi elicit radiosensitizing effects. DNAPKi preferentially sensitizes hypoxic cells to radiotherapy.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Tawk B, Schwager C, Deffaa O, et al. Comparative analysis of transcriptomics based hypoxia signatures in head- and neck squamous cell carcinoma. Radiother Oncol. 2016;118(2):350–8.CrossRefPubMed Tawk B, Schwager C, Deffaa O, et al. Comparative analysis of transcriptomics based hypoxia signatures in head- and neck squamous cell carcinoma. Radiother Oncol. 2016;118(2):350–8.CrossRefPubMed
3.
go back to reference Vera P, Thureau S, Chaumet-Riffaud P, et al. Phase II study of a radiotherapy total dose increase in hypoxic lesions identified by 18F-misonidazole PET/CT in patients with non–small cell lung carcinoma (RTEP5 study). J Nucl Med. 2017;58:1045–53.CrossRefPubMed Vera P, Thureau S, Chaumet-Riffaud P, et al. Phase II study of a radiotherapy total dose increase in hypoxic lesions identified by 18F-misonidazole PET/CT in patients with non–small cell lung carcinoma (RTEP5 study). J Nucl Med. 2017;58:1045–53.CrossRefPubMed
4.
go back to reference Eschmann SM, Paulsen F, Reimold M, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005;46:253–60.PubMed Eschmann SM, Paulsen F, Reimold M, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005;46:253–60.PubMed
5.
go back to reference Quintiliani M. The oxygen effect in radiation inactivation of DNA and enzymes. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;50(4):573–94.CrossRefPubMed Quintiliani M. The oxygen effect in radiation inactivation of DNA and enzymes. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;50(4):573–94.CrossRefPubMed
6.
go back to reference Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125.CrossRefPubMed Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125.CrossRefPubMed
7.
go back to reference Gray LH, Conger AD, Ebert M, Hornsey S, OCA S. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26(312):638–48.CrossRefPubMed Gray LH, Conger AD, Ebert M, Hornsey S, OCA S. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26(312):638–48.CrossRefPubMed
9.
go back to reference Antonovic L, Brahme A, Furusawa Y, Toma-Dasu I. Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions. J Radiat Res. 2013;54(1):18–26.CrossRefPubMed Antonovic L, Brahme A, Furusawa Y, Toma-Dasu I. Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions. J Radiat Res. 2013;54(1):18–26.CrossRefPubMed
10.
go back to reference Scifoni E, Tinganelli W, Kraft-Weyrather W, et al. Including oxygen enhancement ratio in ion beam treatment planning: model implementation and experimental verification. Phys Med Biol. 2013;58(11):3871.CrossRefPubMed Scifoni E, Tinganelli W, Kraft-Weyrather W, et al. Including oxygen enhancement ratio in ion beam treatment planning: model implementation and experimental verification. Phys Med Biol. 2013;58(11):3871.CrossRefPubMed
11.
go back to reference Toulany M, Rodemann HP. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol. 2015;35:180–90.CrossRefPubMed Toulany M, Rodemann HP. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol. 2015;35:180–90.CrossRefPubMed
12.
go back to reference Darzynkiewicz Z, Traganos F, Wlodkowic D. Impaired DNA damage response--an Achilles’ heel sensitizing cancer to chemotherapy and radiotherapy. Eur J Pharmacol 2009;625(1–3):143–50. Darzynkiewicz Z, Traganos F, Wlodkowic D. Impaired DNA damage response--an Achilles’ heel sensitizing cancer to chemotherapy and radiotherapy. Eur J Pharmacol 2009;625(1–3):143–50.
13.
go back to reference Curtis SB. Calculated LET distributions of heavy ion beams. Int J Radiat Oncol Biol Phys. 1977;3:87–91.CrossRefPubMed Curtis SB. Calculated LET distributions of heavy ion beams. Int J Radiat Oncol Biol Phys. 1977;3:87–91.CrossRefPubMed
14.
go back to reference Dokic I, Mairani A, Niklas M, et al. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget. 2016;7(35):56676–89.CrossRefPubMedPubMedCentral Dokic I, Mairani A, Niklas M, et al. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget. 2016;7(35):56676–89.CrossRefPubMedPubMedCentral
15.
go back to reference Wenzl T, Wilkens JJ. Modelling of the oxygen enhancement ratio for ion beam radiation therapy. Phys Med Biol. 2011;56(11):3251–68.CrossRefPubMed Wenzl T, Wilkens JJ. Modelling of the oxygen enhancement ratio for ion beam radiation therapy. Phys Med Biol. 2011;56(11):3251–68.CrossRefPubMed
16.
go back to reference Wang H, Huang S, Shou J, et al. Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data. BMC Genomics. 2006;7:166.CrossRefPubMedPubMedCentral Wang H, Huang S, Shou J, et al. Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data. BMC Genomics. 2006;7:166.CrossRefPubMedPubMedCentral
17.
go back to reference Krämer M, Jäkel O, Haberer T, Kraft G, Schardt D, Weber U. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys Med Biol. 2000;45(11):3299–317.CrossRefPubMed Krämer M, Jäkel O, Haberer T, Kraft G, Schardt D, Weber U. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys Med Biol. 2000;45(11):3299–317.CrossRefPubMed
18.
go back to reference Tessonnier T, Marcelos T, Mairani A, et al. Phase space generation for proton and carbon ion beams for external Users' applications at the Heidelberg ion therapy Center. Front Oncol. 2016;5:297.CrossRefPubMedPubMedCentral Tessonnier T, Marcelos T, Mairani A, et al. Phase space generation for proton and carbon ion beams for external Users' applications at the Heidelberg ion therapy Center. Front Oncol. 2016;5:297.CrossRefPubMedPubMedCentral
19.
go back to reference Brun R, Rademakers F. ROOT — an object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997;389(1–2):81–6.CrossRef Brun R, Rademakers F. ROOT — an object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997;389(1–2):81–6.CrossRef
20.
go back to reference Damstrup L, Zimmerman A, Sirrenberg C, Zenke FT, Vassilev L. M3814, a DNA-dependent protein Kinase inhibitor (DNA-PKi), potentiates the effect of ionizing radiation (IR) in Xenotransplanted Tumors in nude mice. Int J Rad Onc. 2016;94(4):940–1.CrossRef Damstrup L, Zimmerman A, Sirrenberg C, Zenke FT, Vassilev L. M3814, a DNA-dependent protein Kinase inhibitor (DNA-PKi), potentiates the effect of ionizing radiation (IR) in Xenotransplanted Tumors in nude mice. Int J Rad Onc. 2016;94(4):940–1.CrossRef
21.
go back to reference Zenke FT, Zimmermann A, Sirrenberg C et al. Abstract 1658: M3814, a novel investigational DNA-PK inhibitor: enhancing the effect of fractionated radiotherapy leading to complete regression of tumors in mice. July 2016 Proceedings: AACR 107th Annual Meeting 2016;16–20, 2016; New Orleans, LA. Zenke FT, Zimmermann A, Sirrenberg C et al. Abstract 1658: M3814, a novel investigational DNA-PK inhibitor: enhancing the effect of fractionated radiotherapy leading to complete regression of tumors in mice. July 2016 Proceedings: AACR 107th Annual Meeting 2016;16–20, 2016; New Orleans, LA.
22.
go back to reference Bopp C, Hirayama R, Inaniwa T, et al. Adaptation of the microdosimetric kinetic model to hypoxia. Phys Med Biol. 2016;61(21):7586–99.CrossRefPubMed Bopp C, Hirayama R, Inaniwa T, et al. Adaptation of the microdosimetric kinetic model to hypoxia. Phys Med Biol. 2016;61(21):7586–99.CrossRefPubMed
23.
go back to reference Tinganelli W, Durante M, Hirayama R, et al. Kill-painting of hypoxic tumours in charged particle therapy. Scientific Reports. 2015;5:17016. Tinganelli W, Durante M, Hirayama R, et al. Kill-painting of hypoxic tumours in charged particle therapy. Scientific Reports. 2015;5:17016.
24.
go back to reference Wouters BG, Brown JM. Cells at intermediate oxygen levels can be more important than the ‘hypoxic fraction’ in determining tumor response to fractionated radiotherapy. Radiat Res. 1997;147(5):541.CrossRefPubMed Wouters BG, Brown JM. Cells at intermediate oxygen levels can be more important than the ‘hypoxic fraction’ in determining tumor response to fractionated radiotherapy. Radiat Res. 1997;147(5):541.CrossRefPubMed
25.
go back to reference Bussink J, Kaanders JHAM, van der Kogel AJ. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol. 2003;67(1):3–15.CrossRefPubMed Bussink J, Kaanders JHAM, van der Kogel AJ. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol. 2003;67(1):3–15.CrossRefPubMed
26.
go back to reference Tinganelli W, Ma N-Y, Von Neubeck C, et al. Influence of acute hypoxia and radiation quality on cell survival. J Radiat Res. 2013;54(suppl 1):i23–30.CrossRefPubMedPubMedCentral Tinganelli W, Ma N-Y, Von Neubeck C, et al. Influence of acute hypoxia and radiation quality on cell survival. J Radiat Res. 2013;54(suppl 1):i23–30.CrossRefPubMedPubMedCentral
27.
go back to reference Toulany M, Mihatsch J, Holler M, Chaachouay H, Rodemann HP. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition. Radiother Oncol. 2014;111(2):228–36.CrossRefPubMed Toulany M, Mihatsch J, Holler M, Chaachouay H, Rodemann HP. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition. Radiother Oncol. 2014;111(2):228–36.CrossRefPubMed
28.
go back to reference Sunada S, Kanai H, Lee Y, et al. Nontoxic concentration of DNA-PK inhibitor NU7441 radio-sensitizes lung tumor cells with little effect on double strand break repair. Cancer Sci. 2016;107(9):1250–5.CrossRefPubMedPubMedCentral Sunada S, Kanai H, Lee Y, et al. Nontoxic concentration of DNA-PK inhibitor NU7441 radio-sensitizes lung tumor cells with little effect on double strand break repair. Cancer Sci. 2016;107(9):1250–5.CrossRefPubMedPubMedCentral
29.
go back to reference Batey MA, Zhao Y, Kyle S, et al. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol Cancer Ther. 2013;12(6):959–67.CrossRefPubMedPubMedCentral Batey MA, Zhao Y, Kyle S, et al. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol Cancer Ther. 2013;12(6):959–67.CrossRefPubMedPubMedCentral
30.
go back to reference Ciszewski WM, Tavecchio M, Dastych J, Curtin NJ. DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin. Breast Cancer Res Treat. 2014;143(1):47–55.CrossRefPubMed Ciszewski WM, Tavecchio M, Dastych J, Curtin NJ. DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin. Breast Cancer Res Treat. 2014;143(1):47–55.CrossRefPubMed
31.
go back to reference Lindquist KE, Cran JD, Kordic K, et al. Selective radiosensitization of hypoxic cells using BCCA621C: a novel hypoxia activated prodrug targeting DNA-dependent protein kinase. Tumor Microenvironment and Therapy. 2013;03:46–55. Lindquist KE, Cran JD, Kordic K, et al. Selective radiosensitization of hypoxic cells using BCCA621C: a novel hypoxia activated prodrug targeting DNA-dependent protein kinase. Tumor Microenvironment and Therapy. 2013;03:46–55.
33.
go back to reference Sørensen BS, Horsman MR, Alsner J, et al. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncol. 2015;54(9):1623–30.CrossRefPubMed Sørensen BS, Horsman MR, Alsner J, et al. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncol. 2015;54(9):1623–30.CrossRefPubMed
Metadata
Title
Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation
Authors
Carmen Klein
Ivana Dokic
Andrea Mairani
Stewart Mein
Stephan Brons
Peter Häring
Thomas Haberer
Oliver Jäkel
Astrid Zimmermann
Frank Zenke
Andree Blaukat
Jürgen Debus
Amir Abdollahi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0939-0

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue