Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Commentary

The dose-response relationship for cardiovascular disease is not necessarily linear

Authors: Uwe Schneider, Marina Ernst, Matthias Hartmann

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

The probability for a complication after radiotherapy is usually a function of dose and volume in the organ or tissue of interest. In most epidemiological studies the risk for a complication is stratified in terms of dose, but not irradiated volume. We show that the obtained risk cannot generally be applied to radiotherapy patients.The epidemiological data of Darby et al. (N Engl J Med 368:2527, 2013) who found a linear relationship between the excess relative risk of major coronary events as function of mean heart dose in patients treated with tangential breast irradiation are analyzed. We have used the relative seriality model for a partly irradiated heart (“a lot to a little”) which models radiation therapy using two tangential fields. The relative seriality model was then used to predict NTCP of cardiovascular disease for a homogenously irradiated heart (“a little to a lot”). The relative seriality model was fitted to the data of Darby et al. (N Engl J Med 368:2527, 2013) for tangential breast irradiation. For the situation “a little to a lot” it was found that the dose-response relationship is sigmoidal and contradicts the findings of Darby et al. (N Engl J Med 368:2527, 2013). It was shown in this work that epidemiological studies which predict a linear dose-response relationship for cardiovascular disease can be reproduced by bio-physical models for normal tissue complication. For irradiation situations which were not included in the epidemiological studies, e.g. a homogenous irradiation of the heart (“a little to a lot”) the dose-response curve can be different. This could have consequences whether or not IMRT should be used for treating breast cancer. We believe that the results of epidemiological studies should not be generally used to predict normal tissue complications. It is better to use such data to optimize bio-physical models which can then be applied (with caution) to general treatment situations.
Literature
1.
go back to reference Darby SC, Ewertz M, Hall P. Ischemic heart disease after breast cancer radiotherapy. N Engl J Med. 2013;368(26):2527.CrossRefPubMed Darby SC, Ewertz M, Hall P. Ischemic heart disease after breast cancer radiotherapy. N Engl J Med. 2013;368(26):2527.CrossRefPubMed
2.
go back to reference van den Bogaard VA, Ta BD, van der Schaaf A, Bouma AB, Middag AM, Bantema-Joppe EJ, van Dijk LV, van Dijk-Peters FB, Marteijn LA, de Bock GH, Burgerhof JG, Gietema JA, Langendijk JA, Maduro JH, Crijns AP. Validation and modification of a prediction model for acute cardiac events in patients with breast cancer treated with radiotherapy based on three-dimensional dose distributions to cardiac substructures. J Clin Oncol. 2017;35(11):1171–8.CrossRefPubMed van den Bogaard VA, Ta BD, van der Schaaf A, Bouma AB, Middag AM, Bantema-Joppe EJ, van Dijk LV, van Dijk-Peters FB, Marteijn LA, de Bock GH, Burgerhof JG, Gietema JA, Langendijk JA, Maduro JH, Crijns AP. Validation and modification of a prediction model for acute cardiac events in patients with breast cancer treated with radiotherapy based on three-dimensional dose distributions to cardiac substructures. J Clin Oncol. 2017;35(11):1171–8.CrossRefPubMed
3.
go back to reference Gagliardi G, Lax I, Ottolenghi A, et al. Long-term cardiac mortality after radiotherapy of breast cancer – application of the relative seriality model. Br J Radiol. 1996;69:839–46.CrossRefPubMed Gagliardi G, Lax I, Ottolenghi A, et al. Long-term cardiac mortality after radiotherapy of breast cancer – application of the relative seriality model. Br J Radiol. 1996;69:839–46.CrossRefPubMed
4.
go back to reference Källman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol. 1992;62:249–62.CrossRefPubMed Källman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol. 1992;62:249–62.CrossRefPubMed
5.
go back to reference Yamada M, Wong FL, Fujiwara S, Akahoshi M, Suzuki G. Noncancer disease incidence in atomic bomb survivors, 1958-1998. Radiat Res. 2004;161(6):622–32.CrossRefPubMed Yamada M, Wong FL, Fujiwara S, Akahoshi M, Suzuki G. Noncancer disease incidence in atomic bomb survivors, 1958-1998. Radiat Res. 2004;161(6):622–32.CrossRefPubMed
6.
go back to reference Adams MJ, Grant EJ, Kodama K, Shimizu Y, Kasagi F, Suyama A, Sakata R, Akahoshi M. Radiation dose associated with renal failure mortality: a potential pathway to partially explain increased cardiovascular disease mortality observed after whole-body irradiation. Radiat Res. 2012;177(2):220–8.CrossRefPubMed Adams MJ, Grant EJ, Kodama K, Shimizu Y, Kasagi F, Suyama A, Sakata R, Akahoshi M. Radiation dose associated with renal failure mortality: a potential pathway to partially explain increased cardiovascular disease mortality observed after whole-body irradiation. Radiat Res. 2012;177(2):220–8.CrossRefPubMed
7.
go back to reference Ghobadi G, van der Veen S, Bartelds B, de Boer RA, Dickinson MG, de Jong JR, Faber H, Niemantsverdriet M, Brandenburg S, Berger RM, Langendijk JA, Coppes RP, van Luijk P. Physiological interaction of heart and lung in thoracic irradiation. Int J Radiat Oncol Biol Phys. 2012;84(5):e639–46.CrossRefPubMed Ghobadi G, van der Veen S, Bartelds B, de Boer RA, Dickinson MG, de Jong JR, Faber H, Niemantsverdriet M, Brandenburg S, Berger RM, Langendijk JA, Coppes RP, van Luijk P. Physiological interaction of heart and lung in thoracic irradiation. Int J Radiat Oncol Biol Phys. 2012;84(5):e639–46.CrossRefPubMed
8.
go back to reference Zagar TM, Kaidar-Person O, Tang X, Jones EE, Matney J, Das SK, Green RL, Sheikh A, Khandani AH, McCartney WH, Oldan JD, Wong TZ, Marks LB. Utility of deep inspiration breath hold for left-sided breast radiation therapy in preventing early cardiac perfusion defects: a prospective study. Int J Radiat Oncol Biol Phys. 2017;97(5):903–9.CrossRefPubMed Zagar TM, Kaidar-Person O, Tang X, Jones EE, Matney J, Das SK, Green RL, Sheikh A, Khandani AH, McCartney WH, Oldan JD, Wong TZ, Marks LB. Utility of deep inspiration breath hold for left-sided breast radiation therapy in preventing early cardiac perfusion defects: a prospective study. Int J Radiat Oncol Biol Phys. 2017;97(5):903–9.CrossRefPubMed
Metadata
Title
The dose-response relationship for cardiovascular disease is not necessarily linear
Authors
Uwe Schneider
Marina Ernst
Matthias Hartmann
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0811-2

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue