Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy

Authors: Qian Li, Jongphil Kim, Yoganand Balagurunathan, Jin Qi, Ying Liu, Kujtim Latifi, Eduardo G. Moros, Matthew B. Schabath, Zhaoxiang Ye, Robert J. Gillies, Thomas J. Dilling

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Predicting recurrence after stereotactic body radiotherapy (SBRT) in non-small cell lung cancer (NSCLC) patients is problematic, but critical for the decision of following treatment. This study aims to investigate the association of imaging features derived from the first follow-up computed tomography (CT) on lung cancer patient outcomes following SBRT, and identify patients at high risk of recurrence.

Methods

Fifty nine biopsy-proven non-small cell lung cancer patients were qualified for this study. The first follow-up CTs were performed about 3 months after SBRT (median time: 91 days). Imaging features included 34 manually scored radiological features (semantics) describing the lesion, lung and thorax and 219 quantitative imaging features (radiomics) extracted automatically after delineation of the lesion. Cox proportional hazard models and Harrel’s C-index were used to explore predictors of overall survival (OS), recurrence-free survival (RFS), and loco-regional recurrence-free survival (LR-RFS). Five-fold cross validation was performed on the final prognostic model.

Results

The median follow-up time was 42 months. The model for OS contained Eastern Cooperative Oncology Group (ECOG) performance status (HR = 3.13, 95% CI: 1.17–8.41), vascular involvement (HR = 3.21, 95% CI: 1.29–8.03), lymphadenopathy (HR = 3.59, 95% CI: 1.58–8.16) and the 1st principle component of radiomic features (HR = 1.24, 95% CI: 1.02–1.51). The model for RFS contained vascular involvement (HR = 3.06, 95% CI: 1.40–6.70), vessel attachment (HR = 3.46, 95% CI: 1.65–7.25), pleural retraction (HR = 3.24, 95% CI: 1.41–7.42), lymphadenopathy (HR = 6.41, 95% CI: 2.58–15.90) and relative enhancement (HR = 1.40, 95% CI: 1.00–1.96). The model for LR-RFS contained vascular involvement (HR = 4.96, 95% CI: 2.23–11.03), lymphadenopathy (HR = 2.64, 95% CI: 1.19–5.82), circularity (F13, HR = 1.60, 95% CI: 1.10–2.32) and 3D Laws feature (F92, HR = 1.96, 95% CI: 1.35–2.83). Five-fold cross-validated the areas under the receiver operating characteristic curves (AUC) of these three models were all above 0.8.

Conclusions

Our analysis reveals disease progression could be prognosticated as early as 3 months after SBRT using CT imaging features, and these features would be helpful in clinical decision-making.
Appendix
Available only for authorised users
Literature
2.
go back to reference Grutters JPC, Kessels AGH, Pijls-Johannesma M, Ruysscher DD, Joore MA, Lambin P. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol. 2010;95:32–40.CrossRefPubMed Grutters JPC, Kessels AGH, Pijls-Johannesma M, Ruysscher DD, Joore MA, Lambin P. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol. 2010;95:32–40.CrossRefPubMed
3.
go back to reference Dahele M, Palma D, Lagerwaard F, Slotman B, Senan S. Radiological changes after stereotactic radiotherapy for stage I lung cancer. J Thorac Oncol. 2011;6:1221–8.CrossRefPubMed Dahele M, Palma D, Lagerwaard F, Slotman B, Senan S. Radiological changes after stereotactic radiotherapy for stage I lung cancer. J Thorac Oncol. 2011;6:1221–8.CrossRefPubMed
4.
go back to reference Matsuo Y, Nagata Y, Mizowaki T, Takayama K, Sakamoto T, Sakamoto M, et al. Evaluation of mass-like consolidation after stereotactic body radiation therapy for lung tumors. Int J Clin Oncol. 2007;12:356–62.CrossRefPubMed Matsuo Y, Nagata Y, Mizowaki T, Takayama K, Sakamoto T, Sakamoto M, et al. Evaluation of mass-like consolidation after stereotactic body radiation therapy for lung tumors. Int J Clin Oncol. 2007;12:356–62.CrossRefPubMed
5.
go back to reference Kato S, Nambu A, Onishi H, Saito A, Kuriyama K, Komiyama T, et al. Computed tomography appearances of local recurrence after stereotactic body radiation therapy for stage I non-small-cell lung carcinoma. Jpn J Radiol. 2010;28:259–65.CrossRefPubMed Kato S, Nambu A, Onishi H, Saito A, Kuriyama K, Komiyama T, et al. Computed tomography appearances of local recurrence after stereotactic body radiation therapy for stage I non-small-cell lung carcinoma. Jpn J Radiol. 2010;28:259–65.CrossRefPubMed
6.
go back to reference Chang JY, Liu H, Balter P, Komaki R, Liao Z, Welsh J, et al. Clinical outcome and predictors of survival and pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung cancer. Radiat Oncol. 2012;7:152.CrossRefPubMedPubMedCentral Chang JY, Liu H, Balter P, Komaki R, Liao Z, Welsh J, et al. Clinical outcome and predictors of survival and pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung cancer. Radiat Oncol. 2012;7:152.CrossRefPubMedPubMedCentral
7.
go back to reference Na F, Wang J, Li C, Deng L, Xue J, Lu Y. Primary tumor standardized uptake value measured on F18-Fluorodeoxyglucose positron emission tomography is of prediction value for survival and local control in non–small-cell lung cancer receiving radiotherapy: meta-analysis. J Thorac Oncol. 2014;9:834–42.CrossRefPubMedPubMedCentral Na F, Wang J, Li C, Deng L, Xue J, Lu Y. Primary tumor standardized uptake value measured on F18-Fluorodeoxyglucose positron emission tomography is of prediction value for survival and local control in non–small-cell lung cancer receiving radiotherapy: meta-analysis. J Thorac Oncol. 2014;9:834–42.CrossRefPubMedPubMedCentral
8.
go back to reference Clarke K, Taremi M, Dahele M, Freeman M, Fung S, Franks K, et al. Stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC): is FDG-PET a predictor of outcome? Radiother Oncol. 2012;104:62–6.CrossRefPubMed Clarke K, Taremi M, Dahele M, Freeman M, Fung S, Franks K, et al. Stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC): is FDG-PET a predictor of outcome? Radiother Oncol. 2012;104:62–6.CrossRefPubMed
9.
go back to reference Shultz DB, Trakul N, Abelson JA, Murphy JD, Maxim PG, Le Q-T, et al. Imaging features associated with disease progression after stereotactic ablative radiotherapy for stage I non–small-cell lung cancer. Clin Lung Cancer. 2014;15:294–301. e3CrossRefPubMed Shultz DB, Trakul N, Abelson JA, Murphy JD, Maxim PG, Le Q-T, et al. Imaging features associated with disease progression after stereotactic ablative radiotherapy for stage I non–small-cell lung cancer. Clin Lung Cancer. 2014;15:294–301. e3CrossRefPubMed
10.
go back to reference Zhang X, Liu H, Balter P, Allen PK, Komaki R, Pan T, et al. Positron emission tomography for assessing local failure after stereotactic body radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol. 2012;83:1558–65.CrossRef Zhang X, Liu H, Balter P, Allen PK, Komaki R, Pan T, et al. Positron emission tomography for assessing local failure after stereotactic body radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol. 2012;83:1558–65.CrossRef
11.
go back to reference Takeda A, Kunieda E, Fujii H, Yokosuka N, Aoki Y, Oooka Y, et al. Evaluation for local failure by 18 F-FDG PET/CT in comparison with CT findings after stereotactic body radiotherapy (SBRT) for localized non-small-cell lung cancer. Lung Cancer. 2013;79:248–53.CrossRefPubMed Takeda A, Kunieda E, Fujii H, Yokosuka N, Aoki Y, Oooka Y, et al. Evaluation for local failure by 18 F-FDG PET/CT in comparison with CT findings after stereotactic body radiotherapy (SBRT) for localized non-small-cell lung cancer. Lung Cancer. 2013;79:248–53.CrossRefPubMed
12.
go back to reference Vu CC, Matthews R, Kim B, Franceschi D, Bilfinger TV, Moore WH. Prognostic value of metabolic tumor volume and total lesion glycolysis from 18F-FDG PET/CT in patients undergoing stereotactic body radiation therapy for stage I non-small-cell lung cancer. Nucl Med Commun. 2013;34:959–63.CrossRefPubMed Vu CC, Matthews R, Kim B, Franceschi D, Bilfinger TV, Moore WH. Prognostic value of metabolic tumor volume and total lesion glycolysis from 18F-FDG PET/CT in patients undergoing stereotactic body radiation therapy for stage I non-small-cell lung cancer. Nucl Med Commun. 2013;34:959–63.CrossRefPubMed
13.
go back to reference Satoh Y, Nambu A, Onishi H, Sawada E, Tominaga L, Kuriyama K, et al. Value of dual time point F-18 FDG-PET/CT imaging for the evaluation of prognosis and risk factors for recurrence in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Eur J Radiol. 2012;81:3530–4.CrossRefPubMed Satoh Y, Nambu A, Onishi H, Sawada E, Tominaga L, Kuriyama K, et al. Value of dual time point F-18 FDG-PET/CT imaging for the evaluation of prognosis and risk factors for recurrence in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Eur J Radiol. 2012;81:3530–4.CrossRefPubMed
14.
go back to reference Burdick MJ, Stephans KL, Reddy CA, Djemil T, Srinivas SM, Videtic GM. Maximum standardized uptake value from staging FDG-PET/CT does not predict treatment outcome for early-stage non–small-cell lung cancer treated with stereotactic body radiotherapy. Int J Radiat Oncol. 2010;78:1033–9.CrossRef Burdick MJ, Stephans KL, Reddy CA, Djemil T, Srinivas SM, Videtic GM. Maximum standardized uptake value from staging FDG-PET/CT does not predict treatment outcome for early-stage non–small-cell lung cancer treated with stereotactic body radiotherapy. Int J Radiat Oncol. 2010;78:1033–9.CrossRef
15.
go back to reference Bollineni VR, Widder J, Pruim J, Langendijk JA, Wiegman EM. Residual 18F-FDG-PET uptake 12 weeks after stereotactic ablative radiotherapy for stage I non-small-cell lung cancer predicts local control. Int J Radiat Oncol. 2012;83:e551–5.CrossRef Bollineni VR, Widder J, Pruim J, Langendijk JA, Wiegman EM. Residual 18F-FDG-PET uptake 12 weeks after stereotactic ablative radiotherapy for stage I non-small-cell lung cancer predicts local control. Int J Radiat Oncol. 2012;83:e551–5.CrossRef
16.
go back to reference Huang K, Dahele M, Senan S, Guckenberger M, Rodrigues GB, Ward A, et al. Radiographic changes after lung stereotactic ablative radiotherapy (SABR)–can we distinguish recurrence from fibrosis? A systematic review of the literature. Radiother Oncol. 2012;102:335–42.CrossRefPubMed Huang K, Dahele M, Senan S, Guckenberger M, Rodrigues GB, Ward A, et al. Radiographic changes after lung stereotactic ablative radiotherapy (SABR)–can we distinguish recurrence from fibrosis? A systematic review of the literature. Radiother Oncol. 2012;102:335–42.CrossRefPubMed
17.
go back to reference Huang K, Senthi S, Palma DA, Spoelstra FO, Warner A, Slotman BJ, et al. High-risk CT features for detection of local recurrence after stereotactic ablative radiotherapy for lung cancer. Radiother Oncol. 2013;109:51–7.CrossRefPubMed Huang K, Senthi S, Palma DA, Spoelstra FO, Warner A, Slotman BJ, et al. High-risk CT features for detection of local recurrence after stereotactic ablative radiotherapy for lung cancer. Radiother Oncol. 2013;109:51–7.CrossRefPubMed
18.
go back to reference Halpenny D, Ridge CA, Hayes S, Zheng J, Moskowitz CS, Rimner A, et al. Computed tomographic features predictive of local recurrence in patients with early stage lung cancer treated with stereotactic body radiation therapy. Clin Imag. 2015;39:254–8.CrossRef Halpenny D, Ridge CA, Hayes S, Zheng J, Moskowitz CS, Rimner A, et al. Computed tomographic features predictive of local recurrence in patients with early stage lung cancer treated with stereotactic body radiation therapy. Clin Imag. 2015;39:254–8.CrossRef
19.
go back to reference Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77.CrossRefPubMed Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77.CrossRefPubMed
20.
go back to reference Mattonen SA, Palma DA, Haasbeek CJ, Senan S, Ward AD. Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer. Med Phys. 2014;41:033502.CrossRefPubMed Mattonen SA, Palma DA, Haasbeek CJ, Senan S, Ward AD. Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer. Med Phys. 2014;41:033502.CrossRefPubMed
21.
go back to reference Liu Y, Kim J, Qu F, Liu S, Wang H, Balagurunathan Y, et al. CT features associated with epidermal growth factor receptor mutation status in patients with lung Adenocarcinoma. Radiology. 2016;280:271–80. Liu Y, Kim J, Qu F, Liu S, Wang H, Balagurunathan Y, et al. CT features associated with epidermal growth factor receptor mutation status in patients with lung Adenocarcinoma. Radiology. 2016;280:271–80.
22.
go back to reference Baatz M, Zimmermann J, Blackmore CG. Automated analysis and detailed quantification of biomedical images using Definiens cognition network technology. Comb Chem High T Scr. 2009;12:908–16. Baatz M, Zimmermann J, Blackmore CG. Automated analysis and detailed quantification of biomedical images using Definiens cognition network technology. Comb Chem High T Scr. 2009;12:908–16.
23.
go back to reference Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Liu Y, et al. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging. 2014;27:805–23. Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Liu Y, et al. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging. 2014;27:805–23.
24.
go back to reference Gu Y, Kumar V, Hall LO, Goldgof DB, Li CY, Korn R, et al. Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Pattern Recogn. 2013;46:692–702.CrossRef Gu Y, Kumar V, Hall LO, Goldgof DB, Li CY, Korn R, et al. Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Pattern Recogn. 2013;46:692–702.CrossRef
25.
go back to reference Balagurunathan Y, Gu Y, Wang H, Kumar V, Grove O, Hawkins S, et al. Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol. 2014;7:72–87.CrossRefPubMedPubMedCentral Balagurunathan Y, Gu Y, Wang H, Kumar V, Grove O, Hawkins S, et al. Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol. 2014;7:72–87.CrossRefPubMedPubMedCentral
26.
go back to reference Abdi H, Williams LJ. Principal component analysis. WIREs Comp Stat. 2010;2:433–59.CrossRef Abdi H, Williams LJ. Principal component analysis. WIREs Comp Stat. 2010;2:433–59.CrossRef
27.
go back to reference Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.CrossRefPubMed Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.CrossRefPubMed
28.
go back to reference Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37:360–3.PubMed Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37:360–3.PubMed
29.
go back to reference Kessler R, Gasser B, Massard G, Roeslin N, Meyer P, Wihlm J-M, et al. Blood vessel invasion is a major prognostic factor in resected non-small cell lung cancer. Ann Thorac Surg. 1996;62:1489–93.CrossRefPubMed Kessler R, Gasser B, Massard G, Roeslin N, Meyer P, Wihlm J-M, et al. Blood vessel invasion is a major prognostic factor in resected non-small cell lung cancer. Ann Thorac Surg. 1996;62:1489–93.CrossRefPubMed
30.
go back to reference Ruffini E, Asioli S, Filosso PL, Buffoni L, Bruna MC, Mossetti C, et al. Significance of the presence of microscopic vascular invasion after complete resection of stage I–II pT1-T2N0 non-small cell lung cancer and its relation with T-size categories: did the 2009 7th edition of the TNM staging system miss something? J Thorac Oncol. 2011;6:319–26.CrossRefPubMed Ruffini E, Asioli S, Filosso PL, Buffoni L, Bruna MC, Mossetti C, et al. Significance of the presence of microscopic vascular invasion after complete resection of stage I–II pT1-T2N0 non-small cell lung cancer and its relation with T-size categories: did the 2009 7th edition of the TNM staging system miss something? J Thorac Oncol. 2011;6:319–26.CrossRefPubMed
31.
go back to reference Tsuchiya T, Akamine S, Muraoka M, Kamohara R, Tsuji K, Urabe S, et al. Stage IA non-small cell lung cancer: vessel invasion is a poor prognostic factor and a new target of adjuvant chemotherapy. Lung Cancer. 2007;56:341–8.CrossRefPubMed Tsuchiya T, Akamine S, Muraoka M, Kamohara R, Tsuji K, Urabe S, et al. Stage IA non-small cell lung cancer: vessel invasion is a poor prognostic factor and a new target of adjuvant chemotherapy. Lung Cancer. 2007;56:341–8.CrossRefPubMed
32.
go back to reference Macchiarini P, Fontanini G, Hardin J, Pingitore R, Angeletti C. Most peripheral, node-negative, non-small-cell lung cancers have low proliferative rates and no intratumoral and peritumoral blood and lymphatic vessel invasion. Rationale for treatment with wedge resection alone. J Thorac Cardiovasc Surg. 1992;104:892–9.PubMed Macchiarini P, Fontanini G, Hardin J, Pingitore R, Angeletti C. Most peripheral, node-negative, non-small-cell lung cancers have low proliferative rates and no intratumoral and peritumoral blood and lymphatic vessel invasion. Rationale for treatment with wedge resection alone. J Thorac Cardiovasc Surg. 1992;104:892–9.PubMed
33.
go back to reference Yi CA, Lee KS, Kim EA, Han J, Kim H, Kwon OJ, et al. Solitary pulmonary nodules: dynamic enhanced multi–detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology. 2004;233:191–9.CrossRefPubMed Yi CA, Lee KS, Kim EA, Han J, Kim H, Kwon OJ, et al. Solitary pulmonary nodules: dynamic enhanced multi–detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology. 2004;233:191–9.CrossRefPubMed
34.
go back to reference Yamashita K, Matsunobe S, Takahashi R, Tsuda T, Matsumoto K, Miki H, et al. Small peripheral lung carcinoma evaluated with incremental dynamic CT: radiologic-pathologic correlation. Radiology. 1995;196:401–8.CrossRefPubMed Yamashita K, Matsunobe S, Takahashi R, Tsuda T, Matsumoto K, Miki H, et al. Small peripheral lung carcinoma evaluated with incremental dynamic CT: radiologic-pathologic correlation. Radiology. 1995;196:401–8.CrossRefPubMed
35.
go back to reference Hwang SH, Yoo MR, Park CH, Jeon TJ, Kim SJ, Kim TH. Dynamic contrast-enhanced CT to assess metabolic response in patients with advanced non-small cell lung cancer and stable disease after chemotherapy or chemoradiotherapy. Eur Radiol. 2013;23:1573–81.CrossRefPubMed Hwang SH, Yoo MR, Park CH, Jeon TJ, Kim SJ, Kim TH. Dynamic contrast-enhanced CT to assess metabolic response in patients with advanced non-small cell lung cancer and stable disease after chemotherapy or chemoradiotherapy. Eur Radiol. 2013;23:1573–81.CrossRefPubMed
36.
go back to reference Wang H, Schabath MB, Liu Y, Berglund AE, Bloom GC, Kim J, et al. Semiquantitative computed tomography characteristics for lung adenocarcinoma and their association with lung cancer survival. Clin Lung Cancer. 2015;16:e141–63. Wang H, Schabath MB, Liu Y, Berglund AE, Bloom GC, Kim J, et al. Semiquantitative computed tomography characteristics for lung adenocarcinoma and their association with lung cancer survival. Clin Lung Cancer. 2015;16:e141–63.
37.
go back to reference Webb W, Gatsonis C, Zerhouni E, Heelan R, Glazer G, Francis I, et al. CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the radiologic diagnostic oncology group. Radiology. 1991;178:705–13.CrossRefPubMed Webb W, Gatsonis C, Zerhouni E, Heelan R, Glazer G, Francis I, et al. CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the radiologic diagnostic oncology group. Radiology. 1991;178:705–13.CrossRefPubMed
38.
go back to reference Gupta NC, Tamim WJ, Graeber GG, Bishop HA, Hobbs GR. Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging. Chest. 2001;120:521–7.CrossRefPubMed Gupta NC, Tamim WJ, Graeber GG, Bishop HA, Hobbs GR. Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging. Chest. 2001;120:521–7.CrossRefPubMed
39.
go back to reference Chang Y-L, Lin M-W, Shih J-Y, Wu C-T, Lee Y-C. The significance of visceral pleural surface invasion in 321 cases of non-small cell lung cancers with pleural retraction. Ann Surg Oncol. 2012;19:3057–64.CrossRefPubMed Chang Y-L, Lin M-W, Shih J-Y, Wu C-T, Lee Y-C. The significance of visceral pleural surface invasion in 321 cases of non-small cell lung cancers with pleural retraction. Ann Surg Oncol. 2012;19:3057–64.CrossRefPubMed
40.
go back to reference Laws KI. Textured image segmentation, in university od southern Califonia. Los Angeles: DTIC Document; 1980.CrossRef Laws KI. Textured image segmentation, in university od southern Califonia. Los Angeles: DTIC Document; 1980.CrossRef
Metadata
Title
CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy
Authors
Qian Li
Jongphil Kim
Yoganand Balagurunathan
Jin Qi
Ying Liu
Kujtim Latifi
Eduardo G. Moros
Matthew B. Schabath
Zhaoxiang Ye
Robert J. Gillies
Thomas J. Dilling
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0892-y

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue