Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

A novel CBCT-based method for derivation of CTV-PTV margins for prostate and pelvic lymph nodes treated with stereotactic ablative radiotherapy

Authors: Ciara A. Lyons, Raymond B. King, Sarah O.S. Osman, Stephen J. McMahon, Joe M. O’Sullivan, Alan R. Hounsell, Suneil Jain, Conor K. McGarry

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Traditional CTV-PTV margin recipes are not generally applicable in the situation of stereotactic ablative radiotherapy (SABR) treatments of multiple target volumes with a single isocentre. In this work, we present a novel geometric method of margin derivation based on CBCT-derived anatomical data.

Methods

Twenty patients with high-risk localized prostate cancer were selected for retrospective review. Individual volumes of interest (prostate, prostate and seminal vesicles and pelvic lymph nodes) were delineated on five representative CBCTs and registered to the planning CT using two registration protocols: bone match or prostate-based soft tissue match. Margins were incrementally expanded around composite CTV structures until 95% overlap was achieved.

Results

CTV-PTV margins of 5.2, 6.5 and 7.6 mm were required for prostate, prostate and seminal vesicles and pelvic lymph nodes respectively using a prostate matching protocol. For the prostate and seminal vesicle structures, margins calculated using our method displayed good agreement with a conventional margin recipe (within ±1.0 mm).

Conclusions

We have presented an alternative method of CTV-PTV margin derivation that is applicable to SABR treatments with more than one isocentric target. These results have informed an institutional trial of prostate and pelvic nodal SABR in men with high-risk localized prostate cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kirkbride P, Cooper T. Stereotactic Body Radiotherapy. Guidelines for Commissioners, Providers and Clinicians: a National Report. Clin Oncol. 2011;23(3);163-4.CrossRef Kirkbride P, Cooper T. Stereotactic Body Radiotherapy. Guidelines for Commissioners, Providers and Clinicians: a National Report. Clin Oncol. 2011;23(3);163-4.CrossRef
2.
go back to reference Fowler JF, Toma-Dasu I, Dasu A. Is the α/β ratio for prostate tumours really low and does it vary with the level of risk at diagnosis? Anticancer Res. 2013;33(3):1009–11.PubMed Fowler JF, Toma-Dasu I, Dasu A. Is the α/β ratio for prostate tumours really low and does it vary with the level of risk at diagnosis? Anticancer Res. 2013;33(3):1009–11.PubMed
3.
go back to reference Vogelius I, Bentzen SM. Meta-analysis of the α/β-ratio for prostate cancer in the presence of an overall time factor: bad news, good news or no news? Int J Radiat Oncol. 2011;81(2):S404.CrossRef Vogelius I, Bentzen SM. Meta-analysis of the α/β-ratio for prostate cancer in the presence of an overall time factor: bad news, good news or no news? Int J Radiat Oncol. 2011;81(2):S404.CrossRef
4.
go back to reference Miralbell R, S a R, Zubizarreta E, Hendry JH. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9-2.2) Gy. Int J Radiat Oncol Biol Phys. 2012;82(1):e17–24.CrossRefPubMed Miralbell R, S a R, Zubizarreta E, Hendry JH. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9-2.2) Gy. Int J Radiat Oncol Biol Phys. 2012;82(1):e17–24.CrossRefPubMed
5.
go back to reference Zelefsky MJ, Levin EJ, Hunt M, Yamada Y, Shippy AM, Jackson A, et al. Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70(4):1124–9.CrossRefPubMed Zelefsky MJ, Levin EJ, Hunt M, Yamada Y, Shippy AM, Jackson A, et al. Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70(4):1124–9.CrossRefPubMed
6.
go back to reference Engels B, Soete G, Verellen D, Storme G. Conformal arc radiotherapy for prostate cancer: increased biochemical failure in patients with distended rectum on the planning computed tomogram despite image guidance by implanted markers. Int J Radiat Oncol Biol Phys. 2009;74(2):388–91.CrossRefPubMed Engels B, Soete G, Verellen D, Storme G. Conformal arc radiotherapy for prostate cancer: increased biochemical failure in patients with distended rectum on the planning computed tomogram despite image guidance by implanted markers. Int J Radiat Oncol Biol Phys. 2009;74(2):388–91.CrossRefPubMed
7.
go back to reference Engels B, Soete G, Gevaert T, Storme G, Michielsen D, De Ridder M. Impact of planning target volume margins and rectal distension on biochemical failure in image-guided radiotherapy of prostate cancer. Radiother Oncol. 2014;111(1):106–9.CrossRefPubMed Engels B, Soete G, Gevaert T, Storme G, Michielsen D, De Ridder M. Impact of planning target volume margins and rectal distension on biochemical failure in image-guided radiotherapy of prostate cancer. Radiother Oncol. 2014;111(1):106–9.CrossRefPubMed
8.
go back to reference Morris DE, Emami B, Mauch PM, Konski AA, Tao ML, Ng AK, et al. Evidence-based review of three-dimensional conformal radiotherapy for localized prostate cancer: an ASTRO outcomes initiative. Int J Radiat Oncol Biol Phys. 2005;62(1):3–19.CrossRefPubMed Morris DE, Emami B, Mauch PM, Konski AA, Tao ML, Ng AK, et al. Evidence-based review of three-dimensional conformal radiotherapy for localized prostate cancer: an ASTRO outcomes initiative. Int J Radiat Oncol Biol Phys. 2005;62(1):3–19.CrossRefPubMed
10.
go back to reference Dearnaley DP, Jovic G, Syndikus I, Khoo V, Cowan RA, Graham JD, et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2007;8(6):475–87.CrossRefPubMed Dearnaley DP, Jovic G, Syndikus I, Khoo V, Cowan RA, Graham JD, et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2007;8(6):475–87.CrossRefPubMed
11.
go back to reference Lawton CA, DeSilvio M, Roach M, Uhl V, Kirsch R, Seider M, et al. An Update of the Phase III Trial Comparing Whole Pelvic to Prostate Only Radiotherapy and Neoadjuvant Total Androgen Suppression: Updated Analysis of RTOG 94–13, With Emphassis on Unexpected Hormone/Radiation Interactions. Int J Radiat Oncol Biol Phys. 2007;69(3):646–55.CrossRefPubMedPubMedCentral Lawton CA, DeSilvio M, Roach M, Uhl V, Kirsch R, Seider M, et al. An Update of the Phase III Trial Comparing Whole Pelvic to Prostate Only Radiotherapy and Neoadjuvant Total Androgen Suppression: Updated Analysis of RTOG 94–13, With Emphassis on Unexpected Hormone/Radiation Interactions. Int J Radiat Oncol Biol Phys. 2007;69(3):646–55.CrossRefPubMedPubMedCentral
12.
go back to reference Musunuru HB, Davidson MT, D’Alimonte L, Ho L, Cheung P, Vesprini D, et al. Phase 1-2 study of stereotactic ablative radiation therapy including regional lymph node irradiation for patients with high-risk prostate cancer (SATURN). Int J Radiat Oncol Biol Phys. 2015;93(3):E222.CrossRef Musunuru HB, Davidson MT, D’Alimonte L, Ho L, Cheung P, Vesprini D, et al. Phase 1-2 study of stereotactic ablative radiation therapy including regional lymph node irradiation for patients with high-risk prostate cancer (SATURN). Int J Radiat Oncol Biol Phys. 2015;93(3):E222.CrossRef
14.
go back to reference Wang Z, Wang K, Lerma FA, Liu B, Amin P, Yi B, et al. Planning margins to CTV for image-guided whole pelvis prostate cancer intensity-modulated radiotherapy. Int J Med Physics, Clinical Eng Radiat Oncol. 2012;1(2):23–31.CrossRef Wang Z, Wang K, Lerma FA, Liu B, Amin P, Yi B, et al. Planning margins to CTV for image-guided whole pelvis prostate cancer intensity-modulated radiotherapy. Int J Med Physics, Clinical Eng Radiat Oncol. 2012;1(2):23–31.CrossRef
15.
go back to reference Hinton BK, Fiveash JB, Wu X, Dobelbower MC, Kim RY, Jacob R. Optimal planning target volume margins for elective pelvic lymphatic radiotherapy in high-risk prostate cancer patients. ISRN Oncol. 2013;2013:941269.PubMedPubMedCentral Hinton BK, Fiveash JB, Wu X, Dobelbower MC, Kim RY, Jacob R. Optimal planning target volume margins for elective pelvic lymphatic radiotherapy in high-risk prostate cancer patients. ISRN Oncol. 2013;2013:941269.PubMedPubMedCentral
16.
go back to reference Ferjani S, Huang G, Shang Q, Stephans KL, Zhong Y, Qi P, et al. Alignment focus of daily image guidance for concurrent treatment of prostate and pelvic lymph nodes. Int J Radiat Oncol Biol Phys. 2013;87(2):383–9.CrossRefPubMed Ferjani S, Huang G, Shang Q, Stephans KL, Zhong Y, Qi P, et al. Alignment focus of daily image guidance for concurrent treatment of prostate and pelvic lymph nodes. Int J Radiat Oncol Biol Phys. 2013;87(2):383–9.CrossRefPubMed
17.
go back to reference Kishan AU, Lamb JM, Jani SS, Kang JJ, Steinberg ML, King CR. Pelvic nodal dosing with registration to the prostate: implications for high-risk prostate cancer patients receiving stereotactic body radiation therapy. Int J Radiat Oncol. 2015;91(4):832–9.CrossRef Kishan AU, Lamb JM, Jani SS, Kang JJ, Steinberg ML, King CR. Pelvic nodal dosing with registration to the prostate: implications for high-risk prostate cancer patients receiving stereotactic body radiation therapy. Int J Radiat Oncol. 2015;91(4):832–9.CrossRef
18.
go back to reference van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1121–35.CrossRefPubMed van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1121–35.CrossRefPubMed
19.
go back to reference Harris V, Staffurth J, Naismith O, Esmail A, Gulliford S, Khoo V, et al. Consensus Guidelines and Contouring Atlas for Pelvic Node Delineation in Prostate and Pelvic Node Intensity-modulated Radiotherapy. Int J Radiat Oncol. 2015;92(4):874–83.CrossRef Harris V, Staffurth J, Naismith O, Esmail A, Gulliford S, Khoo V, et al. Consensus Guidelines and Contouring Atlas for Pelvic Node Delineation in Prostate and Pelvic Node Intensity-modulated Radiotherapy. Int J Radiat Oncol. 2015;92(4):874–83.CrossRef
20.
go back to reference Henderson DR, Tree AC, van As NJ. Stereotactic body radiotherapy for prostate cancer. Clin Oncol (R Coll Radiol). 2015;27(5):270–9.CrossRef Henderson DR, Tree AC, van As NJ. Stereotactic body radiotherapy for prostate cancer. Clin Oncol (R Coll Radiol). 2015;27(5):270–9.CrossRef
21.
go back to reference Herschtal A, Foroudi F, Silva L, Gill S, Kron T. Calculating geometric margins for hypofractionated radioatherapy. Phys Med Biol. 2013;58:319–33.CrossRefPubMed Herschtal A, Foroudi F, Silva L, Gill S, Kron T. Calculating geometric margins for hypofractionated radioatherapy. Phys Med Biol. 2013;58:319–33.CrossRefPubMed
22.
go back to reference Gordon JJ, Siebers JV. Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors. Phys Med Biol. 2007;52:1967–90.CrossRefPubMed Gordon JJ, Siebers JV. Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors. Phys Med Biol. 2007;52:1967–90.CrossRefPubMed
23.
go back to reference Mak D, Gill S, Paul R, Stillie A, Haworth A, Kron T, et al. Seminal vesicle interfraction displacement and margins in image guided radiotherapy for prostate cancer. Radiat Oncol. 2012;7(1):139.CrossRefPubMedPubMedCentral Mak D, Gill S, Paul R, Stillie A, Haworth A, Kron T, et al. Seminal vesicle interfraction displacement and margins in image guided radiotherapy for prostate cancer. Radiat Oncol. 2012;7(1):139.CrossRefPubMedPubMedCentral
24.
go back to reference Oehler C, Lang S, Dimmerling P, Bolesch C, Kloeck S, Tini A, et al. PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat Oncol. BioMed Central. 2014;9(1):229.CrossRef Oehler C, Lang S, Dimmerling P, Bolesch C, Kloeck S, Tini A, et al. PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat Oncol. BioMed Central. 2014;9(1):229.CrossRef
25.
go back to reference Morikawa LK, Roach M. Pelvic nodal radiotherapy in patients with unfavorable intermediate and high-risk prostate cancer: evidence, rationale, and future directions. Int J Radiat Oncol Biol Phys. 2011;80(1):6–16.CrossRefPubMed Morikawa LK, Roach M. Pelvic nodal radiotherapy in patients with unfavorable intermediate and high-risk prostate cancer: evidence, rationale, and future directions. Int J Radiat Oncol Biol Phys. 2011;80(1):6–16.CrossRefPubMed
26.
go back to reference Mohler JL, Kantoff PW, Armstrong AJ, Bahnson RR, Cohen M, D'Amico AV, et al. NCCN clinical practice guidelines in oncology: prostate cancer, version 2.2014. J Natl Compr Canc Netw. 2014;12:686–718.CrossRefPubMed Mohler JL, Kantoff PW, Armstrong AJ, Bahnson RR, Cohen M, D'Amico AV, et al. NCCN clinical practice guidelines in oncology: prostate cancer, version 2.2014. J Natl Compr Canc Netw. 2014;12:686–718.CrossRefPubMed
27.
28.
go back to reference Bissonnette J-P, Balter PA, Dong L, Langen KM, Lovelock DM, Miften M, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med phys. Am Association Physi Med. 2012;39(4):1946–63. Bissonnette J-P, Balter PA, Dong L, Langen KM, Lovelock DM, Miften M, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med phys. Am Association Physi Med. 2012;39(4):1946–63.
29.
go back to reference Quon H, Loblaw DA, Cheung PC, Holden L, Tang C, Pang G, et al. Intra-fraction motion during extreme hypofractionated radiotherapy of the prostate using pre- and post-treatment imaging. Clin Oncol (R Coll Radiol). 2012;24(9):640–5.CrossRef Quon H, Loblaw DA, Cheung PC, Holden L, Tang C, Pang G, et al. Intra-fraction motion during extreme hypofractionated radiotherapy of the prostate using pre- and post-treatment imaging. Clin Oncol (R Coll Radiol). 2012;24(9):640–5.CrossRef
30.
go back to reference Gladwish A, Pang G, Cheung P, D’Alimonte L, Deabreu A, Loblaw A. Prostatic displacement during extreme hypofractionated radiotherapy using volumetric modulated arc therapy (VMAT). Radiat Oncol BioMed Central. 2014;9(1):262.CrossRef Gladwish A, Pang G, Cheung P, D’Alimonte L, Deabreu A, Loblaw A. Prostatic displacement during extreme hypofractionated radiotherapy using volumetric modulated arc therapy (VMAT). Radiat Oncol BioMed Central. 2014;9(1):262.CrossRef
31.
go back to reference Snir JA, Battista JJ, Bauman G, Yartsev S. Evaluation of inter-fraction prostate motion using kilovoltage cone beam computed tomography during radiotherapy. Clin Oncol (R Coll Radiol). 2011;23(9):625–31.CrossRef Snir JA, Battista JJ, Bauman G, Yartsev S. Evaluation of inter-fraction prostate motion using kilovoltage cone beam computed tomography during radiotherapy. Clin Oncol (R Coll Radiol). 2011;23(9):625–31.CrossRef
32.
go back to reference White EA, Brock KK, Jaffray DA, Catton CN. Inter-observer variability of prostate delineation on cone beam computerised tomography images. Clin Oncol (R Coll Radiol) R Coll Radiol. 2009;21(1):32–8.CrossRef White EA, Brock KK, Jaffray DA, Catton CN. Inter-observer variability of prostate delineation on cone beam computerised tomography images. Clin Oncol (R Coll Radiol) R Coll Radiol. 2009;21(1):32–8.CrossRef
33.
go back to reference Choi HJ, Kim YS, Lee SH, Lee YS, Park G, Jung JH, et al. Inter- and intra-observer variability in contouring of the prostate gland on planning computed tomography and cone beam computed tomography. Acta Oncol. 2011;50(4):539–46.CrossRefPubMed Choi HJ, Kim YS, Lee SH, Lee YS, Park G, Jung JH, et al. Inter- and intra-observer variability in contouring of the prostate gland on planning computed tomography and cone beam computed tomography. Acta Oncol. 2011;50(4):539–46.CrossRefPubMed
34.
go back to reference Lütgendorf-Caucig C, Fotina I, Stock M, Pötter R, Goldner G, Georg D. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol. 2011;98(2):154–61.CrossRefPubMed Lütgendorf-Caucig C, Fotina I, Stock M, Pötter R, Goldner G, Georg D. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol. 2011;98(2):154–61.CrossRefPubMed
35.
go back to reference Gao Z, Wilkins D, Eapen L, Morash C, Wassef Y, Gerig L. A study of prostate delineation referenced against a gold standard created from the visible human data. Radiother Oncol. 2007;85(2):239–46.CrossRefPubMed Gao Z, Wilkins D, Eapen L, Morash C, Wassef Y, Gerig L. A study of prostate delineation referenced against a gold standard created from the visible human data. Radiother Oncol. 2007;85(2):239–46.CrossRefPubMed
36.
go back to reference Fotina I, Lütgendorf-Caucig C, Stock M, Pötter R, Georg D. Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy. Strahlenther Onkol. 2012;188(2):160–7.CrossRefPubMed Fotina I, Lütgendorf-Caucig C, Stock M, Pötter R, Georg D. Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy. Strahlenther Onkol. 2012;188(2):160–7.CrossRefPubMed
37.
go back to reference Hatton J, Mccurdy B, Greer PB. Cone beam computerized tomography: the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy. Phys Med Biol. 2009;54:329–46.CrossRef Hatton J, Mccurdy B, Greer PB. Cone beam computerized tomography: the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy. Phys Med Biol. 2009;54:329–46.CrossRef
38.
go back to reference Rossi PJ, Schreibmann E, Jani AB, Master VA, Johnstone PAS. Boost first, eliminate systematic error, and individualize CTV to PTV margin when treating lymph nodes in high-risk prostate cancer. Radiother Oncol. 2009;90(3):353–8.CrossRefPubMed Rossi PJ, Schreibmann E, Jani AB, Master VA, Johnstone PAS. Boost first, eliminate systematic error, and individualize CTV to PTV margin when treating lymph nodes in high-risk prostate cancer. Radiother Oncol. 2009;90(3):353–8.CrossRefPubMed
39.
go back to reference Chung HT, Xia P, Chan LW, Park-Somers E, Roach M. Does image-guided radiotherapy improve toxicity profile in whole pelvic-treated high-risk prostate cancer? Comparison between IG-IMRT and IMRT. Int J Radiat Oncol Biol Phys. 2009;73(1):53–60.CrossRefPubMed Chung HT, Xia P, Chan LW, Park-Somers E, Roach M. Does image-guided radiotherapy improve toxicity profile in whole pelvic-treated high-risk prostate cancer? Comparison between IG-IMRT and IMRT. Int J Radiat Oncol Biol Phys. 2009;73(1):53–60.CrossRefPubMed
Metadata
Title
A novel CBCT-based method for derivation of CTV-PTV margins for prostate and pelvic lymph nodes treated with stereotactic ablative radiotherapy
Authors
Ciara A. Lyons
Raymond B. King
Sarah O.S. Osman
Stephen J. McMahon
Joe M. O’Sullivan
Alan R. Hounsell
Suneil Jain
Conor K. McGarry
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0859-z

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue