Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Review

Biology of high single doses of IORT: RBE, 5 R’s, and other biological aspects

Authors: Carsten Herskind, Lin Ma, Qi Liu, Bo Zhang, Frank Schneider, Marlon R. Veldwijk, Frederik Wenz

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Intraoperative radiotherapy differs from conventional, fractionated radiotherapy in several aspects that may influence its biological effect. The radiation quality influences the relative biologic effectiveness (RBE), and the role of the five R’s of radiotherapy (reassortment, repair, reoxygenation, repopulation, radiosensitivity) is different. Furthermore, putative special biological effects and the small volume receiving a high single dose may be important. The present review focuses on RBE, repair, and repopulation, and gives an overview of the other factors that potentially contribute to the efficacy. The increased RBE should be taken into account for low-energy X-rays while evidence of RBE < 1 for high-energy electrons at higher doses is presented. Various evidence supports a hypothesis that saturation of the primary DNA double-strand break (DSB) repair mechanisms leads to increasing use of an error-prone backup repair system leading to genomic instability that may contribute to inactivate tumour cells at high single doses. Furthermore, the elimination of repopulation of residual tumour cells in the tumour bed implies that some patients are likely to have very few residual tumour cells which may be cured even by low doses to the tumour bed. The highly localised dose distribution of IORT has the potential to inactivate tumour cells while sparing normal tissue by minimising the volume exposed to high doses. Whether special effects of high single doses also contribute to the efficacy will require further experimental and clinical studies.
Appendix
Available only for authorised users
Footnotes
1
After acceptance of the present manuscript, an analysis of the effect of overall treatment time has been published by the START Trial Management Group [150]. Based on the combined cohorts of all three START trials (START pilot, START A, and START B), the effect of overall treatment time on loco-regional control was estimated at 0.60 Gy/day. Although independent validation of this observation is needed, the time effect is higher than the rough estimate made here suggesting that the potential benefit of IORT in eliminating the repopulation associated with fractionated WBRT might be even larger than 28 Gy.
 
Literature
1.
go back to reference Calvo FA, Sole CV, Gonzalez ME, Tangco ED, Lopez-Tarjuelo J, Koubychine I, et al. Research opportunities in intraoperative radiation therapy: the next decade 2013–2023. Clin Transl Oncol. 2013;15(9):683–90.PubMedCrossRef Calvo FA, Sole CV, Gonzalez ME, Tangco ED, Lopez-Tarjuelo J, Koubychine I, et al. Research opportunities in intraoperative radiation therapy: the next decade 2013–2023. Clin Transl Oncol. 2013;15(9):683–90.PubMedCrossRef
2.
go back to reference Debenham BJ, Hu KS, Harrison LB. Present status and future directions of intraoperative radiotherapy. Lancet Oncol. 2013;14(11):e457–64.PubMedCrossRef Debenham BJ, Hu KS, Harrison LB. Present status and future directions of intraoperative radiotherapy. Lancet Oncol. 2013;14(11):e457–64.PubMedCrossRef
3.
go back to reference Maluta S, Dall’Oglio S, Goer DA, Marciai N. Intraoperative Electron Radiotherapy (IOERT) as an Alternative to Standard Whole Breast Irradiation: Only for Low-Risk Subgroups? Breast Care. 2014;9(2):102–6.PubMedPubMedCentralCrossRef Maluta S, Dall’Oglio S, Goer DA, Marciai N. Intraoperative Electron Radiotherapy (IOERT) as an Alternative to Standard Whole Breast Irradiation: Only for Low-Risk Subgroups? Breast Care. 2014;9(2):102–6.PubMedPubMedCentralCrossRef
4.
go back to reference Wenz F, Sedlmayer F, Herskind C, Welzel G, Sperk E, Neumaier C, et al. Accelerated Partial Breast Irradiation in Clinical Practice. Breast Care. 2015;10(4):247–52.PubMedPubMedCentralCrossRef Wenz F, Sedlmayer F, Herskind C, Welzel G, Sperk E, Neumaier C, et al. Accelerated Partial Breast Irradiation in Clinical Practice. Breast Care. 2015;10(4):247–52.PubMedPubMedCentralCrossRef
5.
go back to reference Withers HR. The four R’s of radiotherapy. In: Lett JT, Adler H, editors. Advances in Radiation Biology, Vol. 5. New York: Academic Press; 1975. p. 241–71. Withers HR. The four R’s of radiotherapy. In: Lett JT, Adler H, editors. Advances in Radiation Biology, Vol. 5. New York: Academic Press; 1975. p. 241–71.
6.
go back to reference Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiat Biol. 1989;56(6):1045–8.PubMedCrossRef Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiat Biol. 1989;56(6):1045–8.PubMedCrossRef
7.
go back to reference Kalakota K, Small Jr W. Intraoperative radiation therapy techniques and options for breast cancer. Expert Rev Med Devices. 2014;11(3):265–73.PubMedCrossRef Kalakota K, Small Jr W. Intraoperative radiation therapy techniques and options for breast cancer. Expert Rev Med Devices. 2014;11(3):265–73.PubMedCrossRef
8.
go back to reference Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.
9.
go back to reference Herskind C, Wenz F. Radiobiological aspects of intraoperative tumour-bed irradiation with low-energy X-rays (LEX-IORT). Transl Cancer Res. 2014;3(1):3–17. Herskind C, Wenz F. Radiobiological aspects of intraoperative tumour-bed irradiation with low-energy X-rays (LEX-IORT). Transl Cancer Res. 2014;3(1):3–17.
11.
go back to reference Goodhead DT, Thacker J, Cox R. Weiss Lecture. Effects of radiations of different qualities on cells: molecular mechanisms of damage and repair. Int J Radiat Biol. 1993;63(5):543–56.PubMedCrossRef Goodhead DT, Thacker J, Cox R. Weiss Lecture. Effects of radiations of different qualities on cells: molecular mechanisms of damage and repair. Int J Radiat Biol. 1993;63(5):543–56.PubMedCrossRef
12.
go back to reference Nikjoo H, Lindborg L. RBE of low energy electrons and photons. Phys Med Biol. 2010;55(10):R65–109.PubMedCrossRef Nikjoo H, Lindborg L. RBE of low energy electrons and photons. Phys Med Biol. 2010;55(10):R65–109.PubMedCrossRef
13.
go back to reference Liu Q, Schneider F, Ma L, Wenz F, Herskind C. Relative Biologic Effectiveness (RBE) of 50 kV X-rays Measured in a Phantom for Intraoperative Tumor-Bed Irradiation. Int J Radiat Oncol Biol Phys. 2013;85(4):1127–33.PubMedCrossRef Liu Q, Schneider F, Ma L, Wenz F, Herskind C. Relative Biologic Effectiveness (RBE) of 50 kV X-rays Measured in a Phantom for Intraoperative Tumor-Bed Irradiation. Int J Radiat Oncol Biol Phys. 2013;85(4):1127–33.PubMedCrossRef
14.
go back to reference Bistrovic M, Biscan M, Viculin T. RBE of 20 kV and 70 kV X-rays determined for survival of V 79 cells. Radiother Oncol. 1986;7(2):175–80.PubMedCrossRef Bistrovic M, Biscan M, Viculin T. RBE of 20 kV and 70 kV X-rays determined for survival of V 79 cells. Radiother Oncol. 1986;7(2):175–80.PubMedCrossRef
15.
go back to reference Hoshi M, Antoku S, Nakamura N, Russell WJ, Miller RC, Sawada S, et al. Soft X-ray dosimetry and RBE for survival of Chinese hamster V79 cells. Int J Radiat Biol. 1988;54(4):577–91.PubMedCrossRef Hoshi M, Antoku S, Nakamura N, Russell WJ, Miller RC, Sawada S, et al. Soft X-ray dosimetry and RBE for survival of Chinese hamster V79 cells. Int J Radiat Biol. 1988;54(4):577–91.PubMedCrossRef
16.
go back to reference Raju MR, Carpenter SG, Chmielewski JJ, Schillaci ME, Wilder ME, Freyer JP, et al. Radiobiology of ultrasoft X rays. I. Cultured hamster cells (V79). Radiat Res. 1987;110(3):396–412.PubMedCrossRef Raju MR, Carpenter SG, Chmielewski JJ, Schillaci ME, Wilder ME, Freyer JP, et al. Radiobiology of ultrasoft X rays. I. Cultured hamster cells (V79). Radiat Res. 1987;110(3):396–412.PubMedCrossRef
17.
go back to reference Spadinger I, Palcic B. The relative biological effectiveness of 60Co gamma-rays, 55 kVp X- rays, 250 kVp X-rays, and 11 MeV electrons at low doses. Int J Radiat Biol. 1992;61(3):345–53.PubMedCrossRef Spadinger I, Palcic B. The relative biological effectiveness of 60Co gamma-rays, 55 kVp X- rays, 250 kVp X-rays, and 11 MeV electrons at low doses. Int J Radiat Biol. 1992;61(3):345–53.PubMedCrossRef
18.
go back to reference Astor MB, Hilaris BS, Gruerio A, Varricchione T, Smith D. Preclinical studies with the photon radiosurgery system (PRS). Int J Radiat Oncol Biol Phys. 2000;47(3):809–13.PubMedCrossRef Astor MB, Hilaris BS, Gruerio A, Varricchione T, Smith D. Preclinical studies with the photon radiosurgery system (PRS). Int J Radiat Oncol Biol Phys. 2000;47(3):809–13.PubMedCrossRef
19.
go back to reference Denekamp J, Waites T, Fowler JF. Predicting realistic RBE values for clinically relevant radiotherapy schedules. Int J Radiat Biol. 1997;71(6):681–94.PubMedCrossRef Denekamp J, Waites T, Fowler JF. Predicting realistic RBE values for clinically relevant radiotherapy schedules. Int J Radiat Biol. 1997;71(6):681–94.PubMedCrossRef
20.
go back to reference Joiner MC. Linear energy transfer and relative biological effectiveness. In: Joiner M, Van der Kogel A, editors. Basic Clinical Radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 68–77.CrossRef Joiner MC. Linear energy transfer and relative biological effectiveness. In: Joiner M, Van der Kogel A, editors. Basic Clinical Radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 68–77.CrossRef
21.
go back to reference Shridhar R, Estabrook W, Yudelev M, Rakowski J, Burmeister J, Wilson GD, et al. Characteristic 8 keV X rays possess radiobiological properties of higher-LET radiation. Radiat Res. 2010;173(3):290–7.PubMedCrossRef Shridhar R, Estabrook W, Yudelev M, Rakowski J, Burmeister J, Wilson GD, et al. Characteristic 8 keV X rays possess radiobiological properties of higher-LET radiation. Radiat Res. 2010;173(3):290–7.PubMedCrossRef
22.
go back to reference Fayard B, Touati A, Abel F, Herve du Penhoat MA, Despiney-Bailly I, Gobert F, et al. Cell inactivation and double-strand breaks: the role of core ionizations, as probed by ultrasoft X rays. Radiat Res. 2002;157(2):128–40.PubMedCrossRef Fayard B, Touati A, Abel F, Herve du Penhoat MA, Despiney-Bailly I, Gobert F, et al. Cell inactivation and double-strand breaks: the role of core ionizations, as probed by ultrasoft X rays. Radiat Res. 2002;157(2):128–40.PubMedCrossRef
23.
go back to reference Sasaki MS, Kobayashi K, Hieda K, Yamada T, Ejima Y, Maezawa H, et al. Induction of chromosome aberrations in human lymphocytes by monochromatic X-rays of quantum energy between 4.8 and 14.6 keV. Int J Radiat Biol. 1989;56(6):975–88.PubMedCrossRef Sasaki MS, Kobayashi K, Hieda K, Yamada T, Ejima Y, Maezawa H, et al. Induction of chromosome aberrations in human lymphocytes by monochromatic X-rays of quantum energy between 4.8 and 14.6 keV. Int J Radiat Biol. 1989;56(6):975–88.PubMedCrossRef
24.
go back to reference Yokoya A, Cunniffe SM, Watanabe R, Kobayashi K, O’Neill P. Induction of DNA strand breaks, base lesions and clustered damage sites in hydrated plasmid DNA films by ultrasoft X rays around the phosphorus K edge. Radiat Res. 2009;172(3):296–305.PubMedCrossRef Yokoya A, Cunniffe SM, Watanabe R, Kobayashi K, O’Neill P. Induction of DNA strand breaks, base lesions and clustered damage sites in hydrated plasmid DNA films by ultrasoft X rays around the phosphorus K edge. Radiat Res. 2009;172(3):296–305.PubMedCrossRef
25.
go back to reference Brenner DJ, Leu CS, Beatty JF, Shefer RE. Clinical relative biological effectiveness of low-energy x-rays emitted by miniature x-ray devices. Phys Med Biol. 1999;44(2):323–33.PubMedCrossRef Brenner DJ, Leu CS, Beatty JF, Shefer RE. Clinical relative biological effectiveness of low-energy x-rays emitted by miniature x-ray devices. Phys Med Biol. 1999;44(2):323–33.PubMedCrossRef
26.
go back to reference Curtis SB. Lethal and potentially lethal lesions induced by radiation--a unified repair model. Radiat Res. 1986;106(2):252–70.PubMedCrossRef Curtis SB. Lethal and potentially lethal lesions induced by radiation--a unified repair model. Radiat Res. 1986;106(2):252–70.PubMedCrossRef
28.
go back to reference Goodhead DT. Saturable repair models of radiation action in mammalian cells. Radiat Res Suppl. 1985;8:S58–67.PubMedCrossRef Goodhead DT. Saturable repair models of radiation action in mammalian cells. Radiat Res Suppl. 1985;8:S58–67.PubMedCrossRef
29.
go back to reference Joiner MC. Quantifying cell kill and cell survival. In: Joiner M, Van der Kogel A, editors. Basic Clinical Radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 41–55.CrossRef Joiner MC. Quantifying cell kill and cell survival. In: Joiner M, Van der Kogel A, editors. Basic Clinical Radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 41–55.CrossRef
30.
go back to reference Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, et al. Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J. 2011;30(6):1079–92.PubMedPubMedCentralCrossRef Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, et al. Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J. 2011;30(6):1079–92.PubMedPubMedCentralCrossRef
31.
go back to reference Shibata A, Jeggo PA. DNA double-strand break repair in a cellular context. Clin Oncol. 2014;26(5):243–9.CrossRef Shibata A, Jeggo PA. DNA double-strand break repair in a cellular context. Clin Oncol. 2014;26(5):243–9.CrossRef
32.
go back to reference Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol. 2013;3:113.PubMedPubMedCentralCrossRef Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol. 2013;3:113.PubMedPubMedCentralCrossRef
33.
go back to reference Rothkamm K, Kruger I, Thompson LH, Lobrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 2003;23(16):5706–15.PubMedPubMedCentralCrossRef Rothkamm K, Kruger I, Thompson LH, Lobrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 2003;23(16):5706–15.PubMedPubMedCentralCrossRef
34.
go back to reference Geuting V, Reul C, Lobrich M. ATM release at resected double-strand breaks provides heterochromatin reconstitution to facilitate homologous recombination. PLoS Genet. 2013;9(8):e1003667.PubMedPubMedCentralCrossRef Geuting V, Reul C, Lobrich M. ATM release at resected double-strand breaks provides heterochromatin reconstitution to facilitate homologous recombination. PLoS Genet. 2013;9(8):e1003667.PubMedPubMedCentralCrossRef
35.
go back to reference Jeggo PA, Geuting V, Lobrich M. The role of homologous recombination in radiation-induced double-strand break repair. Radiother Oncol. 2011;101(1):7–12.PubMedCrossRef Jeggo PA, Geuting V, Lobrich M. The role of homologous recombination in radiation-induced double-strand break repair. Radiother Oncol. 2011;101(1):7–12.PubMedCrossRef
36.
go back to reference Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A. 2003;100(9):5057–62.PubMedPubMedCentralCrossRef Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A. 2003;100(9):5057–62.PubMedPubMedCentralCrossRef
37.
go back to reference Costes SV, Boissiere A, Ravani S, Romano R, Parvin B, Barcellos-Hoff MH. Imaging features that discriminate between foci induced by high- and low-LET radiation in human fibroblasts. Radiat Res. 2006;165(5):505–15.PubMedCrossRef Costes SV, Boissiere A, Ravani S, Romano R, Parvin B, Barcellos-Hoff MH. Imaging features that discriminate between foci induced by high- and low-LET radiation in human fibroblasts. Radiat Res. 2006;165(5):505–15.PubMedCrossRef
38.
go back to reference MacPhail SH, Banath JP, Yu TY, Chu EH, Lambur H, Olive PL. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol. 2003;79(5):351–8.PubMedCrossRef MacPhail SH, Banath JP, Yu TY, Chu EH, Lambur H, Olive PL. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol. 2003;79(5):351–8.PubMedCrossRef
39.
go back to reference Wilson PF, Nham PB, Urbin SS, Hinz JM, Jones IM, Thompson LH. Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation. Mutat Res. 2010;683(1–2):91–7.PubMedCrossRef Wilson PF, Nham PB, Urbin SS, Hinz JM, Jones IM, Thompson LH. Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation. Mutat Res. 2010;683(1–2):91–7.PubMedCrossRef
40.
go back to reference Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat Res. 2010;704(1–3):78–87.PubMedPubMedCentralCrossRef Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat Res. 2010;704(1–3):78–87.PubMedPubMedCentralCrossRef
41.
go back to reference Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, et al. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res. 2004;104(1–4):14–20.PubMedCrossRef Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, et al. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res. 2004;104(1–4):14–20.PubMedCrossRef
42.
go back to reference Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 2008;36(17):5678–94.PubMedPubMedCentralCrossRef Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 2008;36(17):5678–94.PubMedPubMedCentralCrossRef
43.
go back to reference Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9(4):662–9.PubMedCrossRef Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9(4):662–9.PubMedCrossRef
44.
go back to reference Stenerlow B, Karlsson KH, Cooper B, Rydberg B. Measurement of prompt DNA double-strand breaks in mammalian cells without including heat-labile sites: results for cells deficient in nonhomologous end joining. Radiat Res. 2003;159(4):502–10.PubMedCrossRef Stenerlow B, Karlsson KH, Cooper B, Rydberg B. Measurement of prompt DNA double-strand breaks in mammalian cells without including heat-labile sites: results for cells deficient in nonhomologous end joining. Radiat Res. 2003;159(4):502–10.PubMedCrossRef
45.
go back to reference Wang H, Zeng ZC, Bui TA, Sonoda E, Takata M, Takeda S, et al. Efficient rejoining of radiation-induced DNA double-strand breaks in vertebrate cells deficient in genes of the RAD52 epistasis group. Oncogene. 2001;20(18):2212–24.PubMedCrossRef Wang H, Zeng ZC, Bui TA, Sonoda E, Takata M, Takeda S, et al. Efficient rejoining of radiation-induced DNA double-strand breaks in vertebrate cells deficient in genes of the RAD52 epistasis group. Oncogene. 2001;20(18):2212–24.PubMedCrossRef
46.
go back to reference Barnard S, Bouffler S, Rothkamm K. The shape of the radiation dose response for DNA double-strand break induction and repair. Genome Integr. 2013;4(1):1.PubMedPubMedCentralCrossRef Barnard S, Bouffler S, Rothkamm K. The shape of the radiation dose response for DNA double-strand break induction and repair. Genome Integr. 2013;4(1):1.PubMedPubMedCentralCrossRef
47.
go back to reference Lorat Y, Schanz S, Schuler N, Wennemuth G, Rube C, Rube CE. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy. PLoS One. 2012;7(5):e38165.PubMedPubMedCentralCrossRef Lorat Y, Schanz S, Schuler N, Wennemuth G, Rube C, Rube CE. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy. PLoS One. 2012;7(5):e38165.PubMedPubMedCentralCrossRef
48.
go back to reference Rube CE, Lorat Y, Schuler N, Schanz S, Wennemuth G, Rube C. DNA repair in the context of chromatin: new molecular insights by the nanoscale detection of DNA repair complexes using transmission electron microscopy. DNA Repair (Amst). 2011;10(4):427–37.CrossRef Rube CE, Lorat Y, Schuler N, Schanz S, Wennemuth G, Rube C. DNA repair in the context of chromatin: new molecular insights by the nanoscale detection of DNA repair complexes using transmission electron microscopy. DNA Repair (Amst). 2011;10(4):427–37.CrossRef
49.
go back to reference Neumaier T, Swenson J, Pham C, Polyzos A, Lo AT, Yang P, et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci U S A. 2012;109(2):443–8.PubMedCrossRef Neumaier T, Swenson J, Pham C, Polyzos A, Lo AT, Yang P, et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci U S A. 2012;109(2):443–8.PubMedCrossRef
50.
go back to reference Iliakis G, Murmann T, Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. Mutat Res Genet Toxicol Environ Mutagen. 2015;793:166–75.PubMedCrossRef Iliakis G, Murmann T, Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. Mutat Res Genet Toxicol Environ Mutagen. 2015;793:166–75.PubMedCrossRef
51.
go back to reference Soni A, Siemann M, Grabos M, Murmann T, Pantelias GE, Iliakis G. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining. Nucleic Acids Res. 2014;42(10):6380–92.PubMedPubMedCentralCrossRef Soni A, Siemann M, Grabos M, Murmann T, Pantelias GE, Iliakis G. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining. Nucleic Acids Res. 2014;42(10):6380–92.PubMedPubMedCentralCrossRef
52.
go back to reference Simsek D, Jasin M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol. 2010;17(4):410–6.PubMedPubMedCentralCrossRef Simsek D, Jasin M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol. 2010;17(4):410–6.PubMedPubMedCentralCrossRef
53.
go back to reference Weinstock DM, Brunet E, Jasin M. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat Cell Biol. 2007;9(8):978–81.PubMedPubMedCentralCrossRef Weinstock DM, Brunet E, Jasin M. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat Cell Biol. 2007;9(8):978–81.PubMedPubMedCentralCrossRef
54.
go back to reference Brenner DJ, Hlatky LR, Hahnfeldt PJ, Huang Y, Sachs RK. The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat Res. 1998;150(1):83–91.PubMedCrossRef Brenner DJ, Hlatky LR, Hahnfeldt PJ, Huang Y, Sachs RK. The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat Res. 1998;150(1):83–91.PubMedCrossRef
55.
go back to reference Thames HD. An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47(3):319–39.PubMedCrossRef Thames HD. An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47(3):319–39.PubMedCrossRef
56.
go back to reference Dale RG, Fowler JF, Jones B. A new incomplete-repair model based on a ‘reciprocal-time’ pattern of sublethal damage repair. Acta Oncol. 1999;38(7):919–29.PubMedCrossRef Dale RG, Fowler JF, Jones B. A new incomplete-repair model based on a ‘reciprocal-time’ pattern of sublethal damage repair. Acta Oncol. 1999;38(7):919–29.PubMedCrossRef
57.
go back to reference Huang Z, Mayr NA, Lo SS, Wang JZ, Jia G, Yuh WT, et al. A generalized linear-quadratic model incorporating reciprocal time pattern of radiation damage repair. Med Phys. 2012;39(1):224–30.PubMedCrossRef Huang Z, Mayr NA, Lo SS, Wang JZ, Jia G, Yuh WT, et al. A generalized linear-quadratic model incorporating reciprocal time pattern of radiation damage repair. Med Phys. 2012;39(1):224–30.PubMedCrossRef
58.
go back to reference Kreder NC, ten Cate R, Rodermond HM, van Bree C, Franken NA, Zdzienicka MZ, et al. Cellular response to pulsed low-dose rate irradiation in X-ray sensitive hamster mutant cell lines. J Radiat Res. 2004;45(3):385–91.PubMedCrossRef Kreder NC, ten Cate R, Rodermond HM, van Bree C, Franken NA, Zdzienicka MZ, et al. Cellular response to pulsed low-dose rate irradiation in X-ray sensitive hamster mutant cell lines. J Radiat Res. 2004;45(3):385–91.PubMedCrossRef
59.
go back to reference Liu M, Lee S, Liu B, Wang H, Dong L, Wang Y. Ku-dependent non-homologous end-joining as the major pathway contributes to sublethal damage repair in mammalian cells. Int J Radiat Biol. 2015;71(11):867–71. Liu M, Lee S, Liu B, Wang H, Dong L, Wang Y. Ku-dependent non-homologous end-joining as the major pathway contributes to sublethal damage repair in mammalian cells. Int J Radiat Biol. 2015;71(11):867–71.
60.
go back to reference Rao BS, Tano K, Takeda S, Utsumi H. Split dose recovery studies using homologous recombination deficient gene knockout chicken B lymphocyte cells. J Radiat Res. 2007;48(1):77–85.PubMedCrossRef Rao BS, Tano K, Takeda S, Utsumi H. Split dose recovery studies using homologous recombination deficient gene knockout chicken B lymphocyte cells. J Radiat Res. 2007;48(1):77–85.PubMedCrossRef
61.
go back to reference Utsumi H, Elkind MM. Requirement for repair of DNA double-strand breaks by homologous recombination in split-dose recovery. Radiat Res. 2001;155(5):680–6.PubMedCrossRef Utsumi H, Elkind MM. Requirement for repair of DNA double-strand breaks by homologous recombination in split-dose recovery. Radiat Res. 2001;155(5):680–6.PubMedCrossRef
62.
go back to reference Ling CC, Gerweck LE, Zaider M, Yorke E. Dose-rate effects in external beam radiotherapy redux. Radiother Oncol. 2010;95(3):261–8.PubMedCrossRef Ling CC, Gerweck LE, Zaider M, Yorke E. Dose-rate effects in external beam radiotherapy redux. Radiother Oncol. 2010;95(3):261–8.PubMedCrossRef
63.
go back to reference Joiner MC, Bentzen SM. Fractionation: the linear-quadratic approach. In: Joiner M, Van der Kogel A, editors. Basic Clinical Radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 102–19.CrossRef Joiner MC, Bentzen SM. Fractionation: the linear-quadratic approach. In: Joiner M, Van der Kogel A, editors. Basic Clinical Radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 102–19.CrossRef
64.
go back to reference Millar WT, Van Den Aardweg GJ, Hopewell JW, Canney PA. Repair kinetics in pig epidermis: an analysis based on two separate rates of repair. Int J Radiat Biol. 1996;69(1):123–40.PubMedCrossRef Millar WT, Van Den Aardweg GJ, Hopewell JW, Canney PA. Repair kinetics in pig epidermis: an analysis based on two separate rates of repair. Int J Radiat Biol. 1996;69(1):123–40.PubMedCrossRef
65.
go back to reference Turesson I, Thames HD. Repair capacity and kinetics of human skin during fractionated radiotherapy: erythema, desquamation, and telangiectasia after 3 and 5 year’s follow-up. Radiother Oncol. 1989;15(2):169–88.PubMedCrossRef Turesson I, Thames HD. Repair capacity and kinetics of human skin during fractionated radiotherapy: erythema, desquamation, and telangiectasia after 3 and 5 year’s follow-up. Radiother Oncol. 1989;15(2):169–88.PubMedCrossRef
66.
go back to reference van den Aardweg GJ, Hopewell JW. The kinetics of repair for sublethal radiation-induced damage in the pig epidermis: an interpretation based on a fast and a slow component of repair. Radiother Oncol. 1992;23(2):94–104.PubMedCrossRef van den Aardweg GJ, Hopewell JW. The kinetics of repair for sublethal radiation-induced damage in the pig epidermis: an interpretation based on a fast and a slow component of repair. Radiother Oncol. 1992;23(2):94–104.PubMedCrossRef
67.
go back to reference van Rongen E, Thames Jr HD, Travis EL. Recovery from radiation damage in mouse lung: interpretation in terms of two rates of repair. Radiat Res. 1993;133(2):225–33.PubMedCrossRef van Rongen E, Thames Jr HD, Travis EL. Recovery from radiation damage in mouse lung: interpretation in terms of two rates of repair. Radiat Res. 1993;133(2):225–33.PubMedCrossRef
68.
go back to reference Steel GG. Recovery kinetics deduced from continuous low dose-rate experiments. Radiother Oncol. 1989;14(4):337–43.PubMedCrossRef Steel GG. Recovery kinetics deduced from continuous low dose-rate experiments. Radiother Oncol. 1989;14(4):337–43.PubMedCrossRef
69.
go back to reference Wang JZ, Rhee JG, Shi P, Stewart RD, Allen LX. In vitro determination of radiation sensitivity parameters for DU-145 prostate cancer cells. Int J Radiat Biol. 2008;84(6):515–22.PubMedCrossRef Wang JZ, Rhee JG, Shi P, Stewart RD, Allen LX. In vitro determination of radiation sensitivity parameters for DU-145 prostate cancer cells. Int J Radiat Biol. 2008;84(6):515–22.PubMedCrossRef
70.
go back to reference Herskind C, Steil V, Kraus-Tiefenbacher U, Wenz F. Radiobiological aspects of intraoperative radiotherapy (IORT) with isotropic low-energy X rays for early-stage breast cancer. Radiat Res. 2005;163(2):208–15.PubMedCrossRef Herskind C, Steil V, Kraus-Tiefenbacher U, Wenz F. Radiobiological aspects of intraoperative radiotherapy (IORT) with isotropic low-energy X rays for early-stage breast cancer. Radiat Res. 2005;163(2):208–15.PubMedCrossRef
71.
go back to reference Herskind C, Griebel J, Kraus-Tiefenbacher U, Wenz F. Sphere of equivalence--a novel target volume concept for intraoperative radiotherapy using low-energy X rays. Int J Radiat Oncol Biol Phys. 2008;72(5):1575–81.PubMedCrossRef Herskind C, Griebel J, Kraus-Tiefenbacher U, Wenz F. Sphere of equivalence--a novel target volume concept for intraoperative radiotherapy using low-energy X rays. Int J Radiat Oncol Biol Phys. 2008;72(5):1575–81.PubMedCrossRef
72.
go back to reference Haviland JS, Owen JR, Dewar JA, Agrawal RK, Barrett J, Barrett-Lee PJ, et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013;14(11):1086–94.PubMedCrossRef Haviland JS, Owen JR, Dewar JA, Agrawal RK, Barrett J, Barrett-Lee PJ, et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013;14(11):1086–94.PubMedCrossRef
73.
go back to reference Nahum AE. The radiobiology of hypofractionation. Clin Oncol. 2015;27(5):260–9.CrossRef Nahum AE. The radiobiology of hypofractionation. Clin Oncol. 2015;27(5):260–9.CrossRef
74.
go back to reference Ray KJ, Sibson NR, Kiltie AE. Treatment of Breast and Prostate Cancer by Hypofractionated Radiotherapy: Potential Risks and Benefits. Clin Oncol. 2015;27(7):420–6.CrossRef Ray KJ, Sibson NR, Kiltie AE. Treatment of Breast and Prostate Cancer by Hypofractionated Radiotherapy: Potential Risks and Benefits. Clin Oncol. 2015;27(7):420–6.CrossRef
75.
go back to reference Wenz F, Welzel G, Keller A, Blank E, Vorodi F, Herskind C, et al. Early initiation of external beam radiotherapy (EBRT) may increase the risk of long-term toxicity in patients undergoing intraoperative radiotherapy (IORT) as a boost for breast cancer. Breast. 2008;17(6):617–22.PubMedCrossRef Wenz F, Welzel G, Keller A, Blank E, Vorodi F, Herskind C, et al. Early initiation of external beam radiotherapy (EBRT) may increase the risk of long-term toxicity in patients undergoing intraoperative radiotherapy (IORT) as a boost for breast cancer. Breast. 2008;17(6):617–22.PubMedCrossRef
76.
go back to reference Chen Z, King W, Pearcey R, Kerba M, Mackillop WJ. The relationship between waiting time for radiotherapy and clinical outcomes: a systematic review of the literature. Radiother Oncol. 2008;87(1):3–16.PubMedCrossRef Chen Z, King W, Pearcey R, Kerba M, Mackillop WJ. The relationship between waiting time for radiotherapy and clinical outcomes: a systematic review of the literature. Radiother Oncol. 2008;87(1):3–16.PubMedCrossRef
77.
go back to reference Huang J, Barbera L, Brouwers M, Browman G, Mackillop WJ. Does delay in starting treatment affect the outcomes of radiotherapy? A systematic review. J Clin Oncol. 2003;21(3):555–63.PubMedCrossRef Huang J, Barbera L, Brouwers M, Browman G, Mackillop WJ. Does delay in starting treatment affect the outcomes of radiotherapy? A systematic review. J Clin Oncol. 2003;21(3):555–63.PubMedCrossRef
78.
go back to reference Vaidya JS, Wenz F, Bulsara M, Tobias JS, Joseph DJ, Keshtgar M, et al. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial. Lancet. 2014;383(9917):603–13.PubMedCrossRef Vaidya JS, Wenz F, Bulsara M, Tobias JS, Joseph DJ, Keshtgar M, et al. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial. Lancet. 2014;383(9917):603–13.PubMedCrossRef
79.
go back to reference Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M. Cancer stem cells as a predictive factor in radiotherapy. Semin Radiat Oncol. 2012;22(2):151–74.PubMedCrossRef Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M. Cancer stem cells as a predictive factor in radiotherapy. Semin Radiat Oncol. 2012;22(2):151–74.PubMedCrossRef
80.
go back to reference Veldwijk MR, Zhang B, Wenz F, Herskind C. The biological effect of large single doses: a possible role for non-targeted effects in cell inactivation. PLoS One. 2014;9(1):e84991.PubMedPubMedCentralCrossRef Veldwijk MR, Zhang B, Wenz F, Herskind C. The biological effect of large single doses: a possible role for non-targeted effects in cell inactivation. PLoS One. 2014;9(1):e84991.PubMedPubMedCentralCrossRef
81.
go back to reference Guerrero M, Li XA. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol. 2004;49(20):4825–35.PubMedCrossRef Guerrero M, Li XA. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol. 2004;49(20):4825–35.PubMedCrossRef
82.
go back to reference Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18(4):240–3.PubMedCrossRef Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18(4):240–3.PubMedCrossRef
83.
go back to reference Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(3):847–52.PubMedCrossRef Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(3):847–52.PubMedCrossRef
84.
go back to reference Kavanagh BD, Newman F. Toward a unified survival curve: in regard to Park et al. (IntJ Radiat Oncol Biol Phys 2008;70:847–852) and Krueger et al. (Int J Radiat Oncol Biol Phys 2007;69:1262–1271). Int J Radiat Oncol Biol Phys. 2008;71(3):958–9.PubMedCrossRef Kavanagh BD, Newman F. Toward a unified survival curve: in regard to Park et al. (IntJ Radiat Oncol Biol Phys 2008;70:847–852) and Krueger et al. (Int J Radiat Oncol Biol Phys 2007;69:1262–1271). Int J Radiat Oncol Biol Phys. 2008;71(3):958–9.PubMedCrossRef
85.
go back to reference Wang JZ, Huang Z, Lo SS, Yuh WT, Mayr NA. A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med. 2010;2(39):39ra48.PubMedCrossRef Wang JZ, Huang Z, Lo SS, Yuh WT, Mayr NA. A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med. 2010;2(39):39ra48.PubMedCrossRef
86.
go back to reference Brenner DJ. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol. 2008;18(4):234–9.PubMedPubMedCentralCrossRef Brenner DJ. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol. 2008;18(4):234–9.PubMedPubMedCentralCrossRef
87.
go back to reference Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys. 2014;88(2):254–62.PubMedPubMedCentralCrossRef Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys. 2014;88(2):254–62.PubMedPubMedCentralCrossRef
88.
go back to reference Iwata H, Matsufuji N, Toshito T, Akagi T, Otsuka S, Shibamoto Y. Compatibility of the repairable-conditionally repairable, multi-target and linear-quadratic models in converting hypofractionated radiation doses to single doses. J Radiat Res. 2013;54(2):367–73.PubMedCrossRef Iwata H, Matsufuji N, Toshito T, Akagi T, Otsuka S, Shibamoto Y. Compatibility of the repairable-conditionally repairable, multi-target and linear-quadratic models in converting hypofractionated radiation doses to single doses. J Radiat Res. 2013;54(2):367–73.PubMedCrossRef
89.
go back to reference Lindblom E, Dasu A, Lax I, Toma-Dasu I. Survival and tumour control probability in tumours with heterogeneous oxygenation: a comparison between the linear-quadratic and the universal survival curve models for high doses. Acta Oncol. 2014;53(8):1035–40.PubMedCrossRef Lindblom E, Dasu A, Lax I, Toma-Dasu I. Survival and tumour control probability in tumours with heterogeneous oxygenation: a comparison between the linear-quadratic and the universal survival curve models for high doses. Acta Oncol. 2014;53(8):1035–40.PubMedCrossRef
90.
go back to reference McKenna FW, Ahmad S. Fitting techniques of cell survival curves in high-dose region for use in stereotactic body radiation therapy. Phys Med Biol. 2009;54(6):1593–608.PubMedCrossRef McKenna FW, Ahmad S. Fitting techniques of cell survival curves in high-dose region for use in stereotactic body radiation therapy. Phys Med Biol. 2009;54(6):1593–608.PubMedCrossRef
91.
go back to reference Herskind C. Radiobiological aspects of IORT in breast cancer. In: Wenz F, Kraus-Tiefenbacher U, editors. Intraoperative Radiotherapy for Breast Cancer. Bremen: UNI-MED Verlag AG; 2011. p. 21–35. Herskind C. Radiobiological aspects of IORT in breast cancer. In: Wenz F, Kraus-Tiefenbacher U, editors. Intraoperative Radiotherapy for Breast Cancer. Bremen: UNI-MED Verlag AG; 2011. p. 21–35.
92.
go back to reference Dorr W, Trott KR. Do we need “biology-based” models to describe cell survival curves after exposure to ionizing radiation? Z Med Phys. 2015;25(2):99–101.PubMedCrossRef Dorr W, Trott KR. Do we need “biology-based” models to describe cell survival curves after exposure to ionizing radiation? Z Med Phys. 2015;25(2):99–101.PubMedCrossRef
93.
go back to reference Hellweg CE. The Nuclear Factor kappaB pathway: a link to the immune system in the radiation response. Cancer Lett. 2015;368(2):275–89.PubMedCrossRef Hellweg CE. The Nuclear Factor kappaB pathway: a link to the immune system in the radiation response. Cancer Lett. 2015;368(2):275–89.PubMedCrossRef
94.
go back to reference Herskind C, Bamberg M, Rodemann HP. The role of cytokines in the development of normal-tissue reactions after radiotherapy. Strahlenther Onkol. 1998;174 Suppl 3:12–5.PubMed Herskind C, Bamberg M, Rodemann HP. The role of cytokines in the development of normal-tissue reactions after radiotherapy. Strahlenther Onkol. 1998;174 Suppl 3:12–5.PubMed
95.
go back to reference Belletti B, Vaidya JS, D’Andrea S, Entschladen F, Roncadin M, Lovat F, et al. Targeted intraoperative radiotherapy impairs the stimulation of breast cancer cell proliferation and invasion caused by surgical wounding. Clin Cancer Res. 2008;14(5):1325–32.PubMedCrossRef Belletti B, Vaidya JS, D’Andrea S, Entschladen F, Roncadin M, Lovat F, et al. Targeted intraoperative radiotherapy impairs the stimulation of breast cancer cell proliferation and invasion caused by surgical wounding. Clin Cancer Res. 2008;14(5):1325–32.PubMedCrossRef
96.
go back to reference Veldwijk M, Neumaier C, Gerhardt G, Giordano FA, Sütterlin M, Herskind C, et al. Comparison of the proliferative and clonogenic growth capacity of wound fluid from breast cancer patients treated with and without intra-operative radiotherapy. Transl Cancer Res. 2015;4(2):173–7. Veldwijk M, Neumaier C, Gerhardt G, Giordano FA, Sütterlin M, Herskind C, et al. Comparison of the proliferative and clonogenic growth capacity of wound fluid from breast cancer patients treated with and without intra-operative radiotherapy. Transl Cancer Res. 2015;4(2):173–7.
97.
go back to reference Maeda A, Leung MK, Conroy L, Chen Y, Bu J, Lindsay PE, et al. In vivo optical imaging of tumor and microvascular response to ionizing radiation. PLoS One. 2012;7(8):e42133.PubMedPubMedCentralCrossRef Maeda A, Leung MK, Conroy L, Chen Y, Bu J, Lindsay PE, et al. In vivo optical imaging of tumor and microvascular response to ionizing radiation. PLoS One. 2012;7(8):e42133.PubMedPubMedCentralCrossRef
98.
go back to reference Wang J, Boerma M, Fu Q, Hauer-Jensen M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J Gastroenterol. 2007;13(22):3047–55.PubMedPubMedCentral Wang J, Boerma M, Fu Q, Hauer-Jensen M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J Gastroenterol. 2007;13(22):3047–55.PubMedPubMedCentral
99.
go back to reference Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 2012;177(3):311–27.PubMedCrossRef Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 2012;177(3):311–27.PubMedCrossRef
101.
102.
go back to reference Ch’ang HJ, Maj JG, Paris F, Xing HR, Zhang J, Truman JP, et al. ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med. 2005;11(5):484–90.PubMedCrossRef Ch’ang HJ, Maj JG, Paris F, Xing HR, Zhang J, Truman JP, et al. ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med. 2005;11(5):484–90.PubMedCrossRef
103.
go back to reference Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293(5528):293–7.PubMedCrossRef Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293(5528):293–7.PubMedCrossRef
104.
go back to reference Rotolo J, Stancevic B, Zhang J, Hua G, Fuller J, Yin X, et al. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest. 2012;122(5):1786–90.PubMedPubMedCentralCrossRef Rotolo J, Stancevic B, Zhang J, Hua G, Fuller J, Yin X, et al. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest. 2012;122(5):1786–90.PubMedPubMedCentralCrossRef
105.
go back to reference Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8(2):89–91.PubMedCrossRef Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8(2):89–91.PubMedCrossRef
106.
go back to reference Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300(5622):1155–9.PubMedCrossRef Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300(5622):1155–9.PubMedCrossRef
107.
go back to reference Rotolo JA, Mesicek J, Maj J, Truman JP, Haimovitz-Friedman A, Kolesnick R, et al. Regulation of ceramide synthase-mediated crypt epithelium apoptosis by DNA damage repair enzymes. Cancer Res. 2010;70(3):957–67.PubMedPubMedCentralCrossRef Rotolo JA, Mesicek J, Maj J, Truman JP, Haimovitz-Friedman A, Kolesnick R, et al. Regulation of ceramide synthase-mediated crypt epithelium apoptosis by DNA damage repair enzymes. Cancer Res. 2010;70(3):957–67.PubMedPubMedCentralCrossRef
108.
go back to reference Hendry JH, Dorr W, Hill RP, Potten CS. No apoptotic endothelial cells in irradiated intestine: regarding Schuller et al. (Int J Radiat Oncol Biol Phys 2007;68:205–210). Int J Radiat Oncol Biol Phys. 2008;70(3):801–2. author reply 3.PubMedCrossRef Hendry JH, Dorr W, Hill RP, Potten CS. No apoptotic endothelial cells in irradiated intestine: regarding Schuller et al. (Int J Radiat Oncol Biol Phys 2007;68:205–210). Int J Radiat Oncol Biol Phys. 2008;70(3):801–2. author reply 3.PubMedCrossRef
109.
go back to reference Schuller BW, Binns PJ, Riley KJ, Ma L, Hawthorne MF, Coderre JA. Selective irradiation of the vascular endothelium has no effect on the survival of murine intestinal crypt stem cells. Proc Natl Acad Sci U S A. 2006;103(10):3787–92.PubMedPubMedCentralCrossRef Schuller BW, Binns PJ, Riley KJ, Ma L, Hawthorne MF, Coderre JA. Selective irradiation of the vascular endothelium has no effect on the survival of murine intestinal crypt stem cells. Proc Natl Acad Sci U S A. 2006;103(10):3787–92.PubMedPubMedCentralCrossRef
110.
go back to reference Schuller BW, Rogers AB, Cormier KS, Riley KJ, Binns PJ, Julius R, et al. No significant endothelial apoptosis in the radiation-induced gastrointestinal syndrome. Int J Radiat Oncol Biol Phys. 2007;68(1):205–10.PubMedCrossRef Schuller BW, Rogers AB, Cormier KS, Riley KJ, Binns PJ, Julius R, et al. No significant endothelial apoptosis in the radiation-induced gastrointestinal syndrome. Int J Radiat Oncol Biol Phys. 2007;68(1):205–10.PubMedCrossRef
111.
go back to reference Nairz O, Deutschmann H, Kopp M, Wurstbauer K, Kametriser G, Fastner G, et al. A dosimetric comparison of IORT techniques in limited-stage breast cancer. Strahlenther Onkol. 2006;182(6):342–8.PubMedCrossRef Nairz O, Deutschmann H, Kopp M, Wurstbauer K, Kametriser G, Fastner G, et al. A dosimetric comparison of IORT techniques in limited-stage breast cancer. Strahlenther Onkol. 2006;182(6):342–8.PubMedCrossRef
112.
go back to reference Clausen S, Schneider F, Jahnke L, Fleckenstein J, Hesser J, Glatting G, et al. A Monte Carlo based source model for dose calculation of endovaginal TARGIT brachytherapy with INTRABEAM and a cylindrical applicator. Z Med Phys. 2012;22(3):197–204.PubMedCrossRef Clausen S, Schneider F, Jahnke L, Fleckenstein J, Hesser J, Glatting G, et al. A Monte Carlo based source model for dose calculation of endovaginal TARGIT brachytherapy with INTRABEAM and a cylindrical applicator. Z Med Phys. 2012;22(3):197–204.PubMedCrossRef
113.
go back to reference Goubert M, Parent L. Dosimetric characterization of INTRABEAM(R) miniature accelerator flat and surface applicators for dermatologic applications. Phys Med. 2015;31(3):224–32.PubMedCrossRef Goubert M, Parent L. Dosimetric characterization of INTRABEAM(R) miniature accelerator flat and surface applicators for dermatologic applications. Phys Med. 2015;31(3):224–32.PubMedCrossRef
114.
go back to reference Schneider F, Clausen S, Tholking J, Wenz F, Abo-Madyan Y. A novel approach for superficial intraoperative radiotherapy (IORT) using a 50 kV X-ray source: a technical and case report. J Appl Clin Med Phys. 2014;15(1):4502.PubMed Schneider F, Clausen S, Tholking J, Wenz F, Abo-Madyan Y. A novel approach for superficial intraoperative radiotherapy (IORT) using a 50 kV X-ray source: a technical and case report. J Appl Clin Med Phys. 2014;15(1):4502.PubMed
115.
go back to reference Schneider F, Fuchs H, Lorenz F, Steil V, Ziglio F, Kraus-Tiefenbacher U, et al. A novel device for intravaginal electronic brachytherapy. Int J Radiat Oncol Biol Phys. 2009;74(4):1298–305.PubMedCrossRef Schneider F, Fuchs H, Lorenz F, Steil V, Ziglio F, Kraus-Tiefenbacher U, et al. A novel device for intravaginal electronic brachytherapy. Int J Radiat Oncol Biol Phys. 2009;74(4):1298–305.PubMedCrossRef
116.
go back to reference Herskind C, Ma L, Liu Q, Wenz F. Biological Effect of Single, Very Large Dose Fractions as used in Intraoperative Radiotherapy (IORT). O. Dössel and W.C. Schlegel, editors. WC2009, IFMBE Proceedings, Springer 2009; 25/III: 18-21. Herskind C, Ma L, Liu Q, Wenz F. Biological Effect of Single, Very Large Dose Fractions as used in Intraoperative Radiotherapy (IORT). O. Dössel and W.C. Schlegel, editors. WC2009, IFMBE Proceedings, Springer 2009; 25/III: 18-21.
117.
go back to reference Huang JJ, Lin MC, Bai YX, da Jing D, Wong BC, Han SW, et al. Ectopic expression of a COOH-terminal fragment of the human telomerase reverse transcriptase leads to telomere dysfunction and reduction of growth and tumorigenicity in HeLa cells. Cancer Res. 2002;62(11):3226–32.PubMed Huang JJ, Lin MC, Bai YX, da Jing D, Wong BC, Han SW, et al. Ectopic expression of a COOH-terminal fragment of the human telomerase reverse transcriptase leads to telomere dysfunction and reduction of growth and tumorigenicity in HeLa cells. Cancer Res. 2002;62(11):3226–32.PubMed
118.
go back to reference Vaidya JS, Vyas JJ, Chinoy RF, Merchant N, Sharma OP, Mittra I. Multicentricity of breast cancer: whole-organ analysis and clinical implications. Br J Cancer. 1996;74(5):820–4.PubMedPubMedCentralCrossRef Vaidya JS, Vyas JJ, Chinoy RF, Merchant N, Sharma OP, Mittra I. Multicentricity of breast cancer: whole-organ analysis and clinical implications. Br J Cancer. 1996;74(5):820–4.PubMedPubMedCentralCrossRef
119.
go back to reference Veronesi U, Marubini E, Del Vecchio M, Manzari A, Andreola S, Greco M, et al. Local recurrences and distant metastases after conservative breast cancer treatments: partly independent events. J Natl Cancer Inst. 1995;87(1):19–27.PubMedCrossRef Veronesi U, Marubini E, Del Vecchio M, Manzari A, Andreola S, Greco M, et al. Local recurrences and distant metastases after conservative breast cancer treatments: partly independent events. J Natl Cancer Inst. 1995;87(1):19–27.PubMedCrossRef
120.
go back to reference Leonardi MC, Maisonneuve P, Mastropasqua MG, Morra A, Lazzari R, Dell’Acqua V, et al. Accelerated partial breast irradiation with intraoperative electrons: using GEC-ESTRO recommendations as guidance for patient selection. Radiother Oncol. 2013;106(1):21–7.PubMedCrossRef Leonardi MC, Maisonneuve P, Mastropasqua MG, Morra A, Lazzari R, Dell’Acqua V, et al. Accelerated partial breast irradiation with intraoperative electrons: using GEC-ESTRO recommendations as guidance for patient selection. Radiother Oncol. 2013;106(1):21–7.PubMedCrossRef
121.
go back to reference Silverstein MJ, Fastner G, Maluta S, Reitsamer R, Goer DA, Vicini F, et al. Intraoperative radiation therapy: a critical analysis of the ELIOT and TARGIT trials. Part 1--ELIOT. Ann Surg Oncol. 2014;21(12):3787–92.PubMedPubMedCentralCrossRef Silverstein MJ, Fastner G, Maluta S, Reitsamer R, Goer DA, Vicini F, et al. Intraoperative radiation therapy: a critical analysis of the ELIOT and TARGIT trials. Part 1--ELIOT. Ann Surg Oncol. 2014;21(12):3787–92.PubMedPubMedCentralCrossRef
122.
go back to reference Silverstein MJ, Fastner G, Maluta S, Reitsamer R, Goer DA, Vicini F, et al. Intraoperative radiation therapy: a critical analysis of the ELIOT and TARGIT trials. Part 2--TARGIT. Ann Surg Oncol. 2014;21(12):3793–9.PubMedPubMedCentralCrossRef Silverstein MJ, Fastner G, Maluta S, Reitsamer R, Goer DA, Vicini F, et al. Intraoperative radiation therapy: a critical analysis of the ELIOT and TARGIT trials. Part 2--TARGIT. Ann Surg Oncol. 2014;21(12):3793–9.PubMedPubMedCentralCrossRef
123.
go back to reference Veronesi U, Orecchia R, Maisonneuve P, Viale G, Rotmensz N, Sangalli C, et al. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): a randomised controlled equivalence trial. Lancet Oncol. 2013;14(13):1269–77.PubMedCrossRef Veronesi U, Orecchia R, Maisonneuve P, Viale G, Rotmensz N, Sangalli C, et al. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): a randomised controlled equivalence trial. Lancet Oncol. 2013;14(13):1269–77.PubMedCrossRef
124.
go back to reference Blank E, Kraus-Tiefenbacher U, Welzel G, Keller A, Bohrer M, Sutterlin M, et al. Single-center long-term follow-up after intraoperative radiotherapy as a boost during breast-conserving surgery using low-kilovoltage x-rays. Ann Surg Oncol. 2010;17 Suppl 3:352–8.PubMedCrossRef Blank E, Kraus-Tiefenbacher U, Welzel G, Keller A, Bohrer M, Sutterlin M, et al. Single-center long-term follow-up after intraoperative radiotherapy as a boost during breast-conserving surgery using low-kilovoltage x-rays. Ann Surg Oncol. 2010;17 Suppl 3:352–8.PubMedCrossRef
125.
go back to reference Fastner G, Reitsamer R, Ziegler I, Zehentmayr F, Fussl C, Kopp P, et al. IOERT as anticipated tumor bed boost during breast-conserving surgery after neoadjuvant chemotherapy in locally advanced breast cancer--results of a case series after 5-year follow-up. Int J Cancer. 2015;136(5):1193–201.PubMedCrossRef Fastner G, Reitsamer R, Ziegler I, Zehentmayr F, Fussl C, Kopp P, et al. IOERT as anticipated tumor bed boost during breast-conserving surgery after neoadjuvant chemotherapy in locally advanced breast cancer--results of a case series after 5-year follow-up. Int J Cancer. 2015;136(5):1193–201.PubMedCrossRef
126.
go back to reference Fastner G, Sedlmayer F, Merz F, Deutschmann H, Reitsamer R, Menzel C, et al. IORT with electrons as boost strategy during breast conserving therapy in limited stage breast cancer: long term results of an ISIORT pooled analysis. Radiother Oncol. 2013;108(2):279–86.PubMedCrossRef Fastner G, Sedlmayer F, Merz F, Deutschmann H, Reitsamer R, Menzel C, et al. IORT with electrons as boost strategy during breast conserving therapy in limited stage breast cancer: long term results of an ISIORT pooled analysis. Radiother Oncol. 2013;108(2):279–86.PubMedCrossRef
127.
go back to reference Vaidya JS, Baum M, Tobias JS, Wenz F, Massarut S, Keshtgar M, et al. Long-term Results of Targeted Intraoperative Radiotherapy (Targit) Boost during Breast-conserving Surgery. Int J Radiat Oncol Biol Phys. 2011;81(4):1091–7.PubMedCrossRef Vaidya JS, Baum M, Tobias JS, Wenz F, Massarut S, Keshtgar M, et al. Long-term Results of Targeted Intraoperative Radiotherapy (Targit) Boost during Breast-conserving Surgery. Int J Radiat Oncol Biol Phys. 2011;81(4):1091–7.PubMedCrossRef
128.
go back to reference Herskind C, Wenz F. Radiobiological comparison of hypofractionated accelerated partial-breast irradiation (APBI) and single-dose intraoperative radiotherapy (IORT) with 50-kV X-rays. Strahlenther Onkol. 2010;186(8):444–51.PubMedCrossRef Herskind C, Wenz F. Radiobiological comparison of hypofractionated accelerated partial-breast irradiation (APBI) and single-dose intraoperative radiotherapy (IORT) with 50-kV X-rays. Strahlenther Onkol. 2010;186(8):444–51.PubMedCrossRef
129.
go back to reference Dörr W, van der Kogel AJ. The volume effect in radiotherapy. In: Joiner M, van der Kogel AJ, editors. Basic Clinical Radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 191–206.CrossRef Dörr W, van der Kogel AJ. The volume effect in radiotherapy. In: Joiner M, van der Kogel AJ, editors. Basic Clinical Radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 191–206.CrossRef
130.
go back to reference Flickinger JC, Kondziolka D, Lunsford LD. Radiobiological analysis of tissue responses following radiosurgery. Technol Cancer Res Treat. 2003;2(2):87–92.PubMedCrossRef Flickinger JC, Kondziolka D, Lunsford LD. Radiobiological analysis of tissue responses following radiosurgery. Technol Cancer Res Treat. 2003;2(2):87–92.PubMedCrossRef
131.
go back to reference Mukesh MB, Harris E, Collette S, Coles CE, Bartelink H, Wilkinson J, et al. Normal tissue complication probability (NTCP) parameters for breast fibrosis: pooled results from two randomised trials. Radiother Oncol. 2013;108(2):293–8.PubMedCrossRef Mukesh MB, Harris E, Collette S, Coles CE, Bartelink H, Wilkinson J, et al. Normal tissue complication probability (NTCP) parameters for breast fibrosis: pooled results from two randomised trials. Radiother Oncol. 2013;108(2):293–8.PubMedCrossRef
132.
go back to reference Sperk E, Welzel G, Keller A, Kraus-Tiefenbacher U, Gerhardt A, Sutterlin M, et al. Late radiation toxicity after intraoperative radiotherapy (IORT) for breast cancer: results from the randomized phase III trial TARGIT A. Breast Cancer Res Treat. 2012;135(1):253–60.PubMedCrossRef Sperk E, Welzel G, Keller A, Kraus-Tiefenbacher U, Gerhardt A, Sutterlin M, et al. Late radiation toxicity after intraoperative radiotherapy (IORT) for breast cancer: results from the randomized phase III trial TARGIT A. Breast Cancer Res Treat. 2012;135(1):253–60.PubMedCrossRef
133.
go back to reference Tuschy B, Berlit S, Romero S, Sperk E, Wenz F, Kehl S, et al. Clinical aspects of intraoperative radiotherapy in early breast cancer: short-term complications after IORT in women treated with low energy x-rays. Radiat Oncol. 2013;8:95.PubMedPubMedCentralCrossRef Tuschy B, Berlit S, Romero S, Sperk E, Wenz F, Kehl S, et al. Clinical aspects of intraoperative radiotherapy in early breast cancer: short-term complications after IORT in women treated with low energy x-rays. Radiat Oncol. 2013;8:95.PubMedPubMedCentralCrossRef
134.
go back to reference Bartelink H, Maingon P, Poortmans P, Weltens C, Fourquet A, Jager J, et al. Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. Lancet Oncol. 2015;16(1):47–56.PubMedCrossRef Bartelink H, Maingon P, Poortmans P, Weltens C, Fourquet A, Jager J, et al. Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. Lancet Oncol. 2015;16(1):47–56.PubMedCrossRef
135.
go back to reference Poortmans PM, Collette L, Bartelink H, Struikmans H, Van den Bogaert WF, Fourquet A, et al. The addition of a boost dose on the primary tumour bed after lumpectomy in breast conserving treatment for breast cancer. A summary of the results of EORTC 22881-10882 “boost versus no boost” trial. Cancer Radiother. 2008;12(6–7):565–70.PubMedCrossRef Poortmans PM, Collette L, Bartelink H, Struikmans H, Van den Bogaert WF, Fourquet A, et al. The addition of a boost dose on the primary tumour bed after lumpectomy in breast conserving treatment for breast cancer. A summary of the results of EORTC 22881-10882 “boost versus no boost” trial. Cancer Radiother. 2008;12(6–7):565–70.PubMedCrossRef
136.
go back to reference Poortmans PM, Collette L, Horiot JC, Van den Bogaert WF, Fourquet A, Kuten A, et al. Impact of the boost dose of 10 Gy versus 26 Gy in patients with early stage breast cancer after a microscopically incomplete lumpectomy: 10-year results of the randomised EORTC boost trial. Radiother Oncol. 2009;90(1):80–5.PubMedCrossRef Poortmans PM, Collette L, Horiot JC, Van den Bogaert WF, Fourquet A, Kuten A, et al. Impact of the boost dose of 10 Gy versus 26 Gy in patients with early stage breast cancer after a microscopically incomplete lumpectomy: 10-year results of the randomised EORTC boost trial. Radiother Oncol. 2009;90(1):80–5.PubMedCrossRef
137.
go back to reference Engel D, Schnitzer A, Brade J, Blank E, Wenz F, Suetterlin M, et al. Are mammographic changes in the tumor bed more pronounced after intraoperative radiotherapy for breast cancer? Subgroup analysis from a randomized trial (TARGIT-A). Breast J. 2013;19(1):92–5.PubMedCrossRef Engel D, Schnitzer A, Brade J, Blank E, Wenz F, Suetterlin M, et al. Are mammographic changes in the tumor bed more pronounced after intraoperative radiotherapy for breast cancer? Subgroup analysis from a randomized trial (TARGIT-A). Breast J. 2013;19(1):92–5.PubMedCrossRef
138.
go back to reference Wasser K, Schoeber C, Kraus-Tiefenbacher U, Bauer L, Brade J, Teubner J, et al. Early mammographic and sonographic findings after intraoperative radiotherapy (IORT) as a boost in patients with breast cancer. Eur Radiol. 2007;17(7):1865–74.PubMedCrossRef Wasser K, Schoeber C, Kraus-Tiefenbacher U, Bauer L, Brade J, Teubner J, et al. Early mammographic and sonographic findings after intraoperative radiotherapy (IORT) as a boost in patients with breast cancer. Eur Radiol. 2007;17(7):1865–74.PubMedCrossRef
139.
go back to reference Hershko D, Abdah-Bortnyak R, Nevelsky A, Gez E, Fried G, Kuten A. Breast-conserving surgery and intraoperative electron radiotherapy in early breast cancer: experience at the Rambam Health Care Campus. Isr Med Assoc J. 2012;14(9):550–4.PubMed Hershko D, Abdah-Bortnyak R, Nevelsky A, Gez E, Fried G, Kuten A. Breast-conserving surgery and intraoperative electron radiotherapy in early breast cancer: experience at the Rambam Health Care Campus. Isr Med Assoc J. 2012;14(9):550–4.PubMed
140.
go back to reference Flickinger JC. An integrated logistic formula for prediction of complications from radiosurgery. Int J Radiat Oncol Biol Phys. 1989;17(4):879–85.PubMedCrossRef Flickinger JC. An integrated logistic formula for prediction of complications from radiosurgery. Int J Radiat Oncol Biol Phys. 1989;17(4):879–85.PubMedCrossRef
141.
go back to reference Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S20–7.PubMedPubMedCentralCrossRef Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S20–7.PubMedPubMedCentralCrossRef
142.
go back to reference Giordano FA, Brehmer S, Abo-Madyan Y, Welzel G, Sperk E, Keller A, et al. INTRAGO: intraoperative radiotherapy in glioblastoma multiforme-a phase I/II dose escalation study. BMC Cancer. 2014;14:992.PubMedPubMedCentralCrossRef Giordano FA, Brehmer S, Abo-Madyan Y, Welzel G, Sperk E, Keller A, et al. INTRAGO: intraoperative radiotherapy in glioblastoma multiforme-a phase I/II dose escalation study. BMC Cancer. 2014;14:992.PubMedPubMedCentralCrossRef
143.
go back to reference Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996–1001.PubMedCrossRef Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996–1001.PubMedCrossRef
144.
go back to reference Flickinger JC, Kondziolka D, Pollock BE, Maitz AH, Lunsford LD. Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys. 1997;38(3):485–90.PubMedCrossRef Flickinger JC, Kondziolka D, Pollock BE, Maitz AH, Lunsford LD. Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys. 1997;38(3):485–90.PubMedCrossRef
145.
go back to reference Korytko T, Radivoyevitch T, Colussi V, Wessels BW, Pillai K, Maciunas RJ, et al. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys. 2006;64(2):419–24.PubMedCrossRef Korytko T, Radivoyevitch T, Colussi V, Wessels BW, Pillai K, Maciunas RJ, et al. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys. 2006;64(2):419–24.PubMedCrossRef
146.
go back to reference Bentzen SM, Overgaard M. Relationship between early and late normal-tissue injury after postmastectomy radiotherapy. Radiother Oncol. 1991;20(3):159–65.PubMedCrossRef Bentzen SM, Overgaard M. Relationship between early and late normal-tissue injury after postmastectomy radiotherapy. Radiother Oncol. 1991;20(3):159–65.PubMedCrossRef
147.
go back to reference Bentzen SM, Joiner MC. The linear-quadratic approach in clincal practice. In: Joiner M, Van der Kogel A, editors. Basic Clinical Radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 120–34.CrossRef Bentzen SM, Joiner MC. The linear-quadratic approach in clincal practice. In: Joiner M, Van der Kogel A, editors. Basic Clinical Radiobiology. 4th ed. London: Hodder Arnold; 2009. p. 120–34.CrossRef
148.
go back to reference Bentzen SM, Skoczylas JZ, Bernier J. Quantitative clinical radiobiology of early and late lung reactions. Int J Radiat Biol. 2000;76(4):453–62.PubMedCrossRef Bentzen SM, Skoczylas JZ, Bernier J. Quantitative clinical radiobiology of early and late lung reactions. Int J Radiat Biol. 2000;76(4):453–62.PubMedCrossRef
149.
go back to reference Dubray B, Henry-Amar M, Meerwaldt JH, Noordijk EM, Dixon DO, Cosset JM, et al. Radiation-induced lung damage after thoracic irradiation for Hodgkin’s disease: the role of fractionation. Radiother Oncol. 1995;36(3):211–7.PubMedCrossRef Dubray B, Henry-Amar M, Meerwaldt JH, Noordijk EM, Dixon DO, Cosset JM, et al. Radiation-induced lung damage after thoracic irradiation for Hodgkin’s disease: the role of fractionation. Radiother Oncol. 1995;36(3):211–7.PubMedCrossRef
150.
go back to reference Haviland JS, Bentzen SM, Bliss JM, Yarnold JR. Prolongation of overall treatment time as a cause of treatment failure in early breast cancer: An analysis of the UK START (Standardisation of Breast Radiotherapy) trials of radiotherapy fractionation. Radiother Oncol. 2016; 121(3):420-30 Haviland JS, Bentzen SM, Bliss JM, Yarnold JR. Prolongation of overall treatment time as a cause of treatment failure in early breast cancer: An analysis of the UK START (Standardisation of Breast Radiotherapy) trials of radiotherapy fractionation. Radiother Oncol. 2016; 121(3):420-30
Metadata
Title
Biology of high single doses of IORT: RBE, 5 R’s, and other biological aspects
Authors
Carsten Herskind
Lin Ma
Qi Liu
Bo Zhang
Frank Schneider
Marlon R. Veldwijk
Frederik Wenz
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0750-3

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue