Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Geometric changes of parotid glands caused by hydration during chemoradiotherapy

Authors: Petronella M. Kager, Sanne C. C. van Weerdenburg, Simon R. van Kranen, Suzanne van Beek, Elisabeth A. Lamers-Kuijper, Wilma D. Heemsbergen, Olga Hamming-Vrieze, Peter Remeijer

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

Plan adaptation during the course of (chemo)radiotherapy of H&N cancer requires repeat CT scanning to capture anatomy changes such as parotid gland shrinkage. Hydration, applied to prevent nephrotoxicity from cisplatin, could temporarily alter the hydrogen balance and hence the captured anatomy. The aim of this study was to determine geometric changes of parotid glands as function of hydration during chemoradiotherapy compared to a control group treated with radiotherapy only.

Methods

This study included an experimental group (n = 19) receiving chemoradiotherapy, and a control group (n = 19) receiving radiotherapy only. Chemoradiotherapy patients received cisplatin with 9 l of saline solution during hydration in the first, fourth and seventh week. The delineations of the parotid glands on the planning CT scan were automatically propagated to Cone Beam CT scans using deformable image registration. Relative volume and position of the parotid glands were determined at the second chemotherapy cycle (week four) and at fraction 35.

Results

When saline solution was administrated, the volume temporarily increased on the first day (7.2 %, p < 0.001), second day (10.8 %, p < 0.001) and third day (7.0 %, p = 0.016). The gland positions shifted lateral, the distance between glands increased on the first day with 1.5 mm (p < 0.001), on the second day 2.2 mm (p < 0.001). At fraction 35, with both groups the mean shrinkage was 24 % ± 11 % (1SD) and the mean medial distance between the parotid glands decreased by 0.47 cm ± 0.27 cm.

Conclusions

Hydration significantly modulates parotid gland geometry. Unless, in the context of adaptive RT, a repeat CT scan is timed during a chemotherapy cycle, these effects are of minor clinical relevance.
Literature
1.
go back to reference Bhide SA, Davies M, Burke K, McNair HA, Hansen V, Barbachano Y, et al. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: a prospective observational study. Int J Radiat Oncol Biol Phys. 2010;76:1360–8.CrossRefPubMed Bhide SA, Davies M, Burke K, McNair HA, Hansen V, Barbachano Y, et al. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: a prospective observational study. Int J Radiat Oncol Biol Phys. 2010;76:1360–8.CrossRefPubMed
2.
go back to reference Castadot P, Geets X, Lee JA, Christian N, Gregoire V. Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation. Radiother Oncol. 2010;95:209–17.CrossRefPubMed Castadot P, Geets X, Lee JA, Christian N, Gregoire V. Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation. Radiother Oncol. 2010;95:209–17.CrossRefPubMed
3.
go back to reference Duma MN, Kampfer S, Wilkens JJ, Schuster T, Molls M, Geinitz H. Comparative analysis of an image-guided versus a non-image-guided setup approach in terms of delivered dose to the parotid glands in head-and-neck cancer IMRT. Int J Radiat Oncol Biol Phys. 2010;77:1266–73.CrossRefPubMed Duma MN, Kampfer S, Wilkens JJ, Schuster T, Molls M, Geinitz H. Comparative analysis of an image-guided versus a non-image-guided setup approach in terms of delivered dose to the parotid glands in head-and-neck cancer IMRT. Int J Radiat Oncol Biol Phys. 2010;77:1266–73.CrossRefPubMed
5.
go back to reference Han C, Chen YJ, Liu A, Schultheiss TE, Wong JYC. Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:1256–62.CrossRefPubMed Han C, Chen YJ, Liu A, Schultheiss TE, Wong JYC. Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:1256–62.CrossRefPubMed
6.
go back to reference Lee C, Langen KM, Lu W, Haimerl J, Schnarr E, Ruchala KJ, et al. Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys. 2008;71:1563–71.CrossRefPubMed Lee C, Langen KM, Lu W, Haimerl J, Schnarr E, Ruchala KJ, et al. Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys. 2008;71:1563–71.CrossRefPubMed
7.
go back to reference Lee C, Langen KM, Lu W, Haimerl J, Schnarr E, Ruchala KJ, et al. Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Radiother Oncol. 2008;89:81–8.CrossRefPubMed Lee C, Langen KM, Lu W, Haimerl J, Schnarr E, Ruchala KJ, et al. Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Radiother Oncol. 2008;89:81–8.CrossRefPubMed
8.
go back to reference Vasquez Osorio EM, Hoogeman MS, Al-Mamgani A, Teguh DN, Levendag PC, Heijmen BJM. Local anatomic changes in parotid and submandibular glands during radiotherapy for oropharynx cancer and correlation with dose, studied in detail with nonrigid registration. Int J Radiat Oncol Biol Phys. 2008;70:875–82.CrossRefPubMed Vasquez Osorio EM, Hoogeman MS, Al-Mamgani A, Teguh DN, Levendag PC, Heijmen BJM. Local anatomic changes in parotid and submandibular glands during radiotherapy for oropharynx cancer and correlation with dose, studied in detail with nonrigid registration. Int J Radiat Oncol Biol Phys. 2008;70:875–82.CrossRefPubMed
9.
go back to reference Ricchetti F, Wu B, McNutt T, Wong J, Forastiere A, Marur S, et al. Volumetric change of selected organs at risk during IMRT for oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2011;80:161–8.CrossRefPubMed Ricchetti F, Wu B, McNutt T, Wong J, Forastiere A, Marur S, et al. Volumetric change of selected organs at risk during IMRT for oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2011;80:161–8.CrossRefPubMed
10.
go back to reference Fiorentino A, Cozzolino M, Caivano R, Pedicini P, Chiumento C, Oliviero C, et al. Cone-beam computed tomography dose monitoring during intensity-modulated radiotherapy in head and neck cancer: parotid glands. Clin Transl Oncol. 2013;15:412–5.CrossRefPubMed Fiorentino A, Cozzolino M, Caivano R, Pedicini P, Chiumento C, Oliviero C, et al. Cone-beam computed tomography dose monitoring during intensity-modulated radiotherapy in head and neck cancer: parotid glands. Clin Transl Oncol. 2013;15:412–5.CrossRefPubMed
11.
go back to reference Ahn PH, Chen CC, Ahn AI, Hong L, Scripes PG, Shen J, et al. Adaptive planning in intensity-modulated radiation therapy for head and neck cancers: single-institution experience and clinical implications. Int J Radiat Oncol Biol Phys. 2011;80:677–85.CrossRefPubMed Ahn PH, Chen CC, Ahn AI, Hong L, Scripes PG, Shen J, et al. Adaptive planning in intensity-modulated radiation therapy for head and neck cancers: single-institution experience and clinical implications. Int J Radiat Oncol Biol Phys. 2011;80:677–85.CrossRefPubMed
12.
go back to reference Schwartz DL, Garden AS, Thomas J, Chen Y, Zhang Y, Lewin J, et al. Adaptive radiotherapy for head-and-neck cancer: initial clinical outcomes from a prospective trial. Int J Radiat Oncol Biol Phys. 2012;83:986–93.PubMedCentralCrossRefPubMed Schwartz DL, Garden AS, Thomas J, Chen Y, Zhang Y, Lewin J, et al. Adaptive radiotherapy for head-and-neck cancer: initial clinical outcomes from a prospective trial. Int J Radiat Oncol Biol Phys. 2012;83:986–93.PubMedCentralCrossRefPubMed
13.
go back to reference Brouwer CL, Steenbakkers RJHM, Langendijk JA, Sijtsema NM. Identifying patients who may benefit from adaptive radiotherapy: Does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help? Radiother Oncol. 2015;115:285–94.CrossRefPubMed Brouwer CL, Steenbakkers RJHM, Langendijk JA, Sijtsema NM. Identifying patients who may benefit from adaptive radiotherapy: Does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help? Radiother Oncol. 2015;115:285–94.CrossRefPubMed
14.
go back to reference van Kranen S, van Beek S, Rasch C, van Herk M, Sonke JJ. Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance. Int J Radiat Oncol Biol Phys. 2009;73:1566–73.CrossRefPubMed van Kranen S, van Beek S, Rasch C, van Herk M, Sonke JJ. Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance. Int J Radiat Oncol Biol Phys. 2009;73:1566–73.CrossRefPubMed
15.
go back to reference Mencarelli A, van Kranen S, Hamming-Vrieze O, van Beek S, Nico Rasch C, van Herk M, et al. Deformable image registration for adaptive radiation therapy of head and neck cancer: accuracy and precision in the presence of tumor changes. Int J Radiat Oncol Biol Phys. 2014;90(3):680–7. doi:10.1016/j.ijrobp.2014.06.045.CrossRefPubMed Mencarelli A, van Kranen S, Hamming-Vrieze O, van Beek S, Nico Rasch C, van Herk M, et al. Deformable image registration for adaptive radiation therapy of head and neck cancer: accuracy and precision in the presence of tumor changes. Int J Radiat Oncol Biol Phys. 2014;90(3):680–7. doi:10.​1016/​j.​ijrobp.​2014.​06.​045.CrossRefPubMed
16.
go back to reference Bozzato A, Burger P, Zenk J, Uter W, Iro H. Salivary gland biometry in female patients with eating disorders. Eur Arch Otorhinolaryngol. 2008;265:1095–102.CrossRefPubMed Bozzato A, Burger P, Zenk J, Uter W, Iro H. Salivary gland biometry in female patients with eating disorders. Eur Arch Otorhinolaryngol. 2008;265:1095–102.CrossRefPubMed
17.
go back to reference Inoue H, Ono K, Masuda W, Morimoto Y, Tanaka T, Yokota M, et al. Gender difference in unstimulated whole saliva flow rate and salivary gland sizes. Arch Oral Biol. 2006;51:1055–60.CrossRefPubMed Inoue H, Ono K, Masuda W, Morimoto Y, Tanaka T, Yokota M, et al. Gender difference in unstimulated whole saliva flow rate and salivary gland sizes. Arch Oral Biol. 2006;51:1055–60.CrossRefPubMed
Metadata
Title
Geometric changes of parotid glands caused by hydration during chemoradiotherapy
Authors
Petronella M. Kager
Sanne C. C. van Weerdenburg
Simon R. van Kranen
Suzanne van Beek
Elisabeth A. Lamers-Kuijper
Wilma D. Heemsbergen
Olga Hamming-Vrieze
Peter Remeijer
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0554-x

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue