Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2016

Open Access 01-12-2016 | Research

Radiation dose of digital radiography (DR) versus micro-dose x-ray (EOS) on patients with adolescent idiopathic scoliosis: 2016 SOSORT- IRSSD “John Sevastic Award” Winner in Imaging Research

Authors: Steve C. N. Hui, Jean-Philippe Pialasse, Judy Y. H. Wong, Tsz-ping Lam, Bobby K. W. Ng, Jack C. Y. Cheng, Winnie C. W. Chu

Published in: Scoliosis and Spinal Disorders | Issue 1/2016

Login to get access

Abstract

Background

Patients with adolescent idiopathic scoliosis (AIS) frequently receive x-ray imaging at diagnosis and subsequent follow monitoring. The ionizing radiation exposure has accumulated through their development stage and the effect of radiation to this young vulnerable group of patients is uncertain. To achieve the ALARA (as low as reasonably achievable) concept of radiation dose in medical imaging, a slot-scanning x-ray technique by the EOS system has been adopted and the radiation dose using micro-dose protocol was compared with the standard digital radiography on patients with AIS.

Methods

Ninety-nine participants with AIS underwent micro-dose EOS and 33 underwent standard digital radiography (DR) for imaging of the whole spine. Entrance-skin dose was measured using thermoluminescent dosimeters (TLD) at three regions (i.e. dorsal sites at the level of sternal notch, nipple line, symphysis pubis). Effective dose and organ dose were calculated by simulation using PCXMC 2.0. Data from two x-ray systems were compared using independent-samples t-test and significance level at 0.05. All TLD measurements were conducted on PA projection only. Image quality was also assessed by two raters using Cobb angle measurement and a set of imaging parameters for optimization purposes.

Results

Entrance-skin dose from micro-dose EOS system was 5.9–27.0 times lower at various regions compared with standard DR. The calculated effective dose was 2.6 ± 0.5 (μSv) and 67.5 ± 23.3 (μSv) from micro-dose and standard DR, respectively. The reduction in the micro-dose was approximately 26 times. Organ doses at thyroid, lung and gonad regions were significantly lower in micro-dose (p < 0.001). Data were further compared within the different gender groups. Females received significantly higher (p < 0.001) organ dose at ovaries compared to the testes in males. Patients with AIS received approximately 16–34 times lesser organ dose from micro-dose x-ray as compared with the standard DR. There was no significant difference in overall rating of imaging quality between EOS and DR. Micro-dose protocol provided enough quality to perform consistent measurement on Cobb angle.

Conclusions

Entrance-skin dose, effective dose and organ dose were significantly reduced in micro-dose x-ray. The effective dose of a single micro-dose x-ray (2.6 μSv) was less than a day of background radiation. As AIS patients require periodic x-ray follow up for surveillance of curve progression, clinical use of micro-dose x-ray system is beneficial for these young patients to reduce the intake of ionizing radiation.
Literature
1.
go back to reference Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371:1527–37.CrossRefPubMed Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371:1527–37.CrossRefPubMed
2.
go back to reference Deng M, Hui SC, Yu FW, Lam TP, Qiu Y, Ng BK, et al. MRI-based morphological evidence of spinal cord tethering predicts curve progression in adolescent idiopathic scoliosis. Spine J. 2015;15:1391–401.CrossRefPubMed Deng M, Hui SC, Yu FW, Lam TP, Qiu Y, Ng BK, et al. MRI-based morphological evidence of spinal cord tethering predicts curve progression in adolescent idiopathic scoliosis. Spine J. 2015;15:1391–401.CrossRefPubMed
4.
go back to reference Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res. 2012;751:158–246.CrossRefPubMed Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res. 2012;751:158–246.CrossRefPubMed
5.
go back to reference Levy AR, Goldberg MS, Hanley JA, Mayo NE, Poitras B. Projecting the lifetime risk of cancer from exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis. Health Phys. 1994;66:621–33.CrossRefPubMed Levy AR, Goldberg MS, Hanley JA, Mayo NE, Poitras B. Projecting the lifetime risk of cancer from exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis. Health Phys. 1994;66:621–33.CrossRefPubMed
6.
go back to reference Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976). 2000;25:2052–63.CrossRef Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976). 2000;25:2052–63.CrossRef
7.
go back to reference Bone CM, Hsieh GH. The risk of carcinogenesis from radiographs to pediatric orthopaedic patients. J Pediatr Orthop. 2000;20:251–4.PubMed Bone CM, Hsieh GH. The risk of carcinogenesis from radiographs to pediatric orthopaedic patients. J Pediatr Orthop. 2000;20:251–4.PubMed
8.
go back to reference Goldberg MS, Mayo NE, Levy AR, Scott SC, Poitras B. Adverse reproductive outcomes among women exposed to low levels of ionizing radiation from diagnostic radiography for adolescent idiopathic scoliosis. Epidemiology. 1998;9:271–8.CrossRefPubMed Goldberg MS, Mayo NE, Levy AR, Scott SC, Poitras B. Adverse reproductive outcomes among women exposed to low levels of ionizing radiation from diagnostic radiography for adolescent idiopathic scoliosis. Epidemiology. 1998;9:271–8.CrossRefPubMed
9.
go back to reference Akhtar W, Aslam M, Ali A, Mirza K, Ahmad N. Film retakes in digital and conventional radiography. J Coll Physicians Surg Pak. 2008;18:151–3.PubMed Akhtar W, Aslam M, Ali A, Mirza K, Ahmad N. Film retakes in digital and conventional radiography. J Coll Physicians Surg Pak. 2008;18:151–3.PubMed
10.
go back to reference Luo TD, Stans AA, Schueler BA, Larson AN. Cumulative Radiation Exposure With EOS Imaging Compared With Standard Spine Radiographs. Spine Deformity. 2015;3:144–50.CrossRefPubMed Luo TD, Stans AA, Schueler BA, Larson AN. Cumulative Radiation Exposure With EOS Imaging Compared With Standard Spine Radiographs. Spine Deformity. 2015;3:144–50.CrossRefPubMed
11.
go back to reference Levy AR, Goldberg MS, Mayo NE, Hanley JA, Poitras B. Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 1996;21:1540–7. discussion 8.CrossRef Levy AR, Goldberg MS, Mayo NE, Hanley JA, Poitras B. Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 1996;21:1540–7. discussion 8.CrossRef
12.
go back to reference Knott P, Pappo E, Cameron M, Demauroy J, Rivard C, Kotwicki T, et al. SOSORT 2012 consensus paper: reducing x-ray exposure in pediatric patients with scoliosis. Scoliosis. 2014;9:4.CrossRefPubMedPubMedCentral Knott P, Pappo E, Cameron M, Demauroy J, Rivard C, Kotwicki T, et al. SOSORT 2012 consensus paper: reducing x-ray exposure in pediatric patients with scoliosis. Scoliosis. 2014;9:4.CrossRefPubMedPubMedCentral
13.
go back to reference Charpak G, Bouclier R, Bressani T, Favier J, Zupancic C. Use of Multiwire Proportional Counters to Select and Localize Charged Particles. Nucl Instrum Methods. 1968;62:262.CrossRef Charpak G, Bouclier R, Bressani T, Favier J, Zupancic C. Use of Multiwire Proportional Counters to Select and Localize Charged Particles. Nucl Instrum Methods. 1968;62:262.CrossRef
14.
go back to reference Amzallag-Bellenger E, Uyttenhove F, Nectoux E, Moraux A, Bigot J, Herbaux B, et al. Idiopathic scoliosis in children and adolescents: assessment with a biplanar X-ray device. Insights Imaging. 2014;5:571–83.CrossRefPubMedPubMedCentral Amzallag-Bellenger E, Uyttenhove F, Nectoux E, Moraux A, Bigot J, Herbaux B, et al. Idiopathic scoliosis in children and adolescents: assessment with a biplanar X-ray device. Insights Imaging. 2014;5:571–83.CrossRefPubMedPubMedCentral
15.
go back to reference Begon M, Scherrer SA, Coillard C, Rivard CH, Allard P. Three-dimensional vertebral wedging and pelvic asymmetries in the early stages of adolescent idiopathic scoliosis. Spine J. 2015;15:477–86.CrossRefPubMed Begon M, Scherrer SA, Coillard C, Rivard CH, Allard P. Three-dimensional vertebral wedging and pelvic asymmetries in the early stages of adolescent idiopathic scoliosis. Spine J. 2015;15:477–86.CrossRefPubMed
16.
17.
go back to reference Briot K, Fechtenbaum J, Etcheto A, Kolta S, Feydy A, Roux C. Diagnosis of vertebral fractures using a low-dose biplanar imaging system. Osteoporos Int. 2015;26:2649–55.CrossRefPubMed Briot K, Fechtenbaum J, Etcheto A, Kolta S, Feydy A, Roux C. Diagnosis of vertebral fractures using a low-dose biplanar imaging system. Osteoporos Int. 2015;26:2649–55.CrossRefPubMed
18.
go back to reference Buck FM, Guggenberger R, Koch PP, Pfirrmann CW. Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. AJR Am J Roentgenol. 2012;199:W607–12.CrossRefPubMed Buck FM, Guggenberger R, Koch PP, Pfirrmann CW. Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. AJR Am J Roentgenol. 2012;199:W607–12.CrossRefPubMed
19.
go back to reference Rosskopf AB, Ramseier LE, Sutter R, Pfirrmann CW, Buck FM. Femoral and tibial torsion measurement in children and adolescents: comparison of 3D models based on low-dose biplanar radiography and low-dose CT. AJR Am J Roentgenol. 2014;202:W285–91.CrossRefPubMed Rosskopf AB, Ramseier LE, Sutter R, Pfirrmann CW, Buck FM. Femoral and tibial torsion measurement in children and adolescents: comparison of 3D models based on low-dose biplanar radiography and low-dose CT. AJR Am J Roentgenol. 2014;202:W285–91.CrossRefPubMed
20.
go back to reference Kadoury S, Shen J, Parent S. Global geometric torsion estimation in adolescent idiopathic scoliosis. Med Biol Eng Comput. 2014;52:309–19.CrossRefPubMed Kadoury S, Shen J, Parent S. Global geometric torsion estimation in adolescent idiopathic scoliosis. Med Biol Eng Comput. 2014;52:309–19.CrossRefPubMed
21.
go back to reference Meyrignac O, Moreno R, Baunin C, Vial J, Accadbled F, Sommet A, et al. Low-dose biplanar radiography can be used in children and adolescents to accurately assess femoral and tibial torsion and greatly reduce irradiation. Eur Radiol. 2015;25:1752–60.CrossRefPubMed Meyrignac O, Moreno R, Baunin C, Vial J, Accadbled F, Sommet A, et al. Low-dose biplanar radiography can be used in children and adolescents to accurately assess femoral and tibial torsion and greatly reduce irradiation. Eur Radiol. 2015;25:1752–60.CrossRefPubMed
22.
go back to reference Ilharreborde B, Vidal C, Skalli W, Mazda K. Sagittal alignment of the cervical spine in adolescent idiopathic scoliosis treated by posteromedial translation. Eur Spine J. 2013;22:330–7.CrossRefPubMed Ilharreborde B, Vidal C, Skalli W, Mazda K. Sagittal alignment of the cervical spine in adolescent idiopathic scoliosis treated by posteromedial translation. Eur Spine J. 2013;22:330–7.CrossRefPubMed
23.
go back to reference Sutter R, Pfirrmann CW, Espinosa N, Buck FM. Three-dimensional hindfoot alignment measurements based on biplanar radiographs: comparison with standard radiographic measurements. Skeletal Radiol. 2013;42:493–8.CrossRefPubMed Sutter R, Pfirrmann CW, Espinosa N, Buck FM. Three-dimensional hindfoot alignment measurements based on biplanar radiographs: comparison with standard radiographic measurements. Skeletal Radiol. 2013;42:493–8.CrossRefPubMed
24.
go back to reference Morvan G, Mathieu P, Vuillemin V, Guerini H, Bossard P, Zeitoun F, et al. Standardized way for imaging of the sagittal spinal balance. Eur Spine J. 2011;20 Suppl 5:602–8.CrossRefPubMedPubMedCentral Morvan G, Mathieu P, Vuillemin V, Guerini H, Bossard P, Zeitoun F, et al. Standardized way for imaging of the sagittal spinal balance. Eur Spine J. 2011;20 Suppl 5:602–8.CrossRefPubMedPubMedCentral
25.
go back to reference Lazennec JY, Rousseau MA, Rangel A, Gorin M, Belicourt C, Brusson A, et al. Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: measurements reproductibility with EOS imaging system versus conventional radiographies. Orthop Traumatol Surg Res. 2011;97:373–80.CrossRefPubMed Lazennec JY, Rousseau MA, Rangel A, Gorin M, Belicourt C, Brusson A, et al. Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: measurements reproductibility with EOS imaging system versus conventional radiographies. Orthop Traumatol Surg Res. 2011;97:373–80.CrossRefPubMed
26.
go back to reference Somoskeoy S, Tunyogi-Csapo M, Bogyo C, Illes T. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J. 2012;12:1052–9.CrossRefPubMed Somoskeoy S, Tunyogi-Csapo M, Bogyo C, Illes T. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J. 2012;12:1052–9.CrossRefPubMed
27.
go back to reference Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine (Phila Pa 1976). 2012;37:1391–7.CrossRef Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine (Phila Pa 1976). 2012;37:1391–7.CrossRef
28.
go back to reference Kalifa G, Charpak Y, Maccia C, Fery-Lemonnier E, Bloch J, Boussard JM, et al. Evaluation of a new low-dose digital x-ray device: first dosimetric and clinical results in children. Pediatr Radiol. 1998;28:557–61.CrossRefPubMed Kalifa G, Charpak Y, Maccia C, Fery-Lemonnier E, Bloch J, Boussard JM, et al. Evaluation of a new low-dose digital x-ray device: first dosimetric and clinical results in children. Pediatr Radiol. 1998;28:557–61.CrossRefPubMed
29.
go back to reference Deschenes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, et al. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine (Phila Pa 1976). 2010;35:989–94.CrossRef Deschenes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, et al. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine (Phila Pa 1976). 2010;35:989–94.CrossRef
31.
go back to reference Ilharreborde B, Ferrero E, Alison M, Mazda K. EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Eur Spine J. 2016;25:526–31.CrossRefPubMed Ilharreborde B, Ferrero E, Alison M, Mazda K. EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Eur Spine J. 2016;25:526–31.CrossRefPubMed
32.
go back to reference Servomaa A, Tapiovaara M. Organ Dose Calculation in Medical X Ray Examinations by the Program PCXMC. Radiat Prot Dosim. 1998;80:213–9.CrossRef Servomaa A, Tapiovaara M. Organ Dose Calculation in Medical X Ray Examinations by the Program PCXMC. Radiat Prot Dosim. 1998;80:213–9.CrossRef
33.
go back to reference Kogon PL, Lumsden R. How do you critique your radiographs? J Can Chiropr Assoc. 1993;37:230–2.PubMedCentral Kogon PL, Lumsden R. How do you critique your radiographs? J Can Chiropr Assoc. 1993;37:230–2.PubMedCentral
34.
go back to reference Cook JV, Kyriou JC, Pettet A, Fitzgerald MC, Shah K, Pablot SM. Key factors in the optimization of paediatric X-ray practice. Br J Radiol. 2001;74:1032–40.CrossRefPubMed Cook JV, Kyriou JC, Pettet A, Fitzgerald MC, Shah K, Pablot SM. Key factors in the optimization of paediatric X-ray practice. Br J Radiol. 2001;74:1032–40.CrossRefPubMed
35.
go back to reference The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007; 37:1-332. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007; 37:1-332.
Metadata
Title
Radiation dose of digital radiography (DR) versus micro-dose x-ray (EOS) on patients with adolescent idiopathic scoliosis: 2016 SOSORT- IRSSD “John Sevastic Award” Winner in Imaging Research
Authors
Steve C. N. Hui
Jean-Philippe Pialasse
Judy Y. H. Wong
Tsz-ping Lam
Bobby K. W. Ng
Jack C. Y. Cheng
Winnie C. W. Chu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2016
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/s13013-016-0106-7

Other articles of this Issue 1/2016

Scoliosis and Spinal Disorders 1/2016 Go to the issue