Skip to main content
Top
Published in: European Spine Journal 5/2011

01-09-2011 | Review Article

Standardized way for imaging of the sagittal spinal balance

Authors: Gérard Morvan, Philippe Mathieu, Valérie Vuillemin, Henri Guerini, Philippe Bossard, Frédéric Zeitoun, Marc Wybier

Published in: European Spine Journal | Special Issue 5/2011

Login to get access

Abstract

Nowadays, conventional or digitalized teleradiography remains the most commonly used tool for the study of the sagittal balance, sometimes with secondary digitalization. The irradiation given by this technique is important and the photographic results are often poor. Some radiographic tables allow the realization of digitalized spinal radiographs by simultaneous translation of X-ray tube and receptor. EOS system is a new, very low dose system which gives good quality images, permits a simultaneous acquisition of upright frontal and sagittal views, is able to cover in the same time the spine and the lower limbs and study the axial plane on 3D envelope reconstructions. In the future, this low dose system should take a great place in the study of the pelvispinal balance. On the lateral view, several pelvic (incidence, pelvic tilt, sacral slope) and spinal (lumbar lordosis, thoracic kyphosis, Th9 sagittal offset, C7 plumb line) parameters are drawn to define the pelvispinal balance. All are interdependent. Pelvic incidence is an individual anatomic characteristic that corresponds to the “thickness” of the pelvis and governs the spinal balance. Pelvis and spine, in a harmonious whole, can be compared to an accordion, more or less compressed or stretched.
Literature
1.
go back to reference Legaye J, Saunier P, Dumas R, Vallee C (2009) Correction for patients sway in radiographic biplanar imaging for three-dimensional reconstruction of the spine: in vitro study of a new method. Acta Radiol 50(7):781–790PubMedCrossRef Legaye J, Saunier P, Dumas R, Vallee C (2009) Correction for patients sway in radiographic biplanar imaging for three-dimensional reconstruction of the spine: in vitro study of a new method. Acta Radiol 50(7):781–790PubMedCrossRef
2.
go back to reference Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87-A:260–267CrossRef Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87-A:260–267CrossRef
3.
go back to reference Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:346–353PubMedCrossRef Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:346–353PubMedCrossRef
4.
go back to reference Rajnics P, Pomero V, Templier A, Lavaste F, Illes T (2001) Computer-assisted assessment of spinal sagittal plane radiographs. J Spinal Disord 14:135–142PubMedCrossRef Rajnics P, Pomero V, Templier A, Lavaste F, Illes T (2001) Computer-assisted assessment of spinal sagittal plane radiographs. J Spinal Disord 14:135–142PubMedCrossRef
5.
go back to reference Dubousset J, Charpak G, Dorion I et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med 189(2):287–297PubMed Dubousset J, Charpak G, Dorion I et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med 189(2):287–297PubMed
6.
go back to reference Dubousset J, Charpak G, Skalli W, Kalifa G, Lazennec JY (2007) EOS stereo-radiography system: whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Rev Chir Orthop Reparatrice Appar Mot 93:141–143PubMed Dubousset J, Charpak G, Skalli W, Kalifa G, Lazennec JY (2007) EOS stereo-radiography system: whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Rev Chir Orthop Reparatrice Appar Mot 93:141–143PubMed
7.
go back to reference Deschênes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, Parent S (2010) Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine 35(9):989–994PubMedCrossRef Deschênes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, Parent S (2010) Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine 35(9):989–994PubMedCrossRef
8.
go back to reference Duval-Beaupère G, Schmidt C, Cosson P (1992) A barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20(4):451–462PubMedCrossRef Duval-Beaupère G, Schmidt C, Cosson P (1992) A barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20(4):451–462PubMedCrossRef
9.
go back to reference Jackson RP, McManus AC (2004) Pelvic lordosis and pelvic incidence: the relationship of pelvic parameters to sagittal spinal profile. Curr Opin Orthop 15:150–153CrossRef Jackson RP, McManus AC (2004) Pelvic lordosis and pelvic incidence: the relationship of pelvic parameters to sagittal spinal profile. Curr Opin Orthop 15:150–153CrossRef
10.
go back to reference Schwab F, Lafage V, Boyce R, Skalli W, Farcy JP (2006) Gravity line analysis in adult volunteers. Age-related correlation with spinal parameters, pelvic parameters and foot position. Spine 31:E959–E967PubMedCrossRef Schwab F, Lafage V, Boyce R, Skalli W, Farcy JP (2006) Gravity line analysis in adult volunteers. Age-related correlation with spinal parameters, pelvic parameters and foot position. Spine 31:E959–E967PubMedCrossRef
11.
go back to reference Putto E, Tallroth K (1990) Extension-flexion radiographies for motion studies of the lumbar spine a comparison of two methods. Spine 115:107–110CrossRef Putto E, Tallroth K (1990) Extension-flexion radiographies for motion studies of the lumbar spine a comparison of two methods. Spine 115:107–110CrossRef
12.
go back to reference Farfan HJ (1973) Mechanical disorders of the low back. Lea and Febiger, Philadelphia Farfan HJ (1973) Mechanical disorders of the low back. Lea and Febiger, Philadelphia
13.
go back to reference Morgan FP, Kingt T (1957) Primary instability of lumbar vertebra as common cause of low back pain. J Bone Joint Surg Br 39:6–22PubMed Morgan FP, Kingt T (1957) Primary instability of lumbar vertebra as common cause of low back pain. J Bone Joint Surg Br 39:6–22PubMed
14.
go back to reference Froning EC, Frohman B (1968) Motion of the lumbosacral spine after laminectomy and spine fusion. Correlation of motion with the result. J Bone Joint Surg Am 50(5):897–917PubMed Froning EC, Frohman B (1968) Motion of the lumbosacral spine after laminectomy and spine fusion. Correlation of motion with the result. J Bone Joint Surg Am 50(5):897–917PubMed
Metadata
Title
Standardized way for imaging of the sagittal spinal balance
Authors
Gérard Morvan
Philippe Mathieu
Valérie Vuillemin
Henri Guerini
Philippe Bossard
Frédéric Zeitoun
Marc Wybier
Publication date
01-09-2011
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue Special Issue 5/2011
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-011-1927-y

Other articles of this Special Issue 5/2011

European Spine Journal 5/2011 Go to the issue