Skip to main content
Top
Published in: Head & Face Medicine 1/2015

Open Access 01-12-2015 | Short report

One palatal implant for skeletal anchorage – frequency and range of indications

Authors: Elena Krieger, Zeynep Yildizhan, Heinrich Wehrbein

Published in: Head & Face Medicine | Issue 1/2015

Login to get access

Abstract

Objective

Aim of this investigation was to analyze the frequency and range of indications of orthodontic treatments using one palatal implant for skeletal anchorage, in a time frame of four years.

Material and methods

A sample was comprised by viewing retrospectively the patient collective of a specialized university clinic who started orthodontic treatment in the time frame 01/09-12/12. Inclusion criterion was the first application of a superstructure within the investigated period after successful insertion of a palatal implant (Ortho-System®, Straumann, Basel, Switzerland). Frequency and range of indications of the conducted skeletally anchored tooth movement were determined by analyzing the individual patient documentation such as medical records, radiographs and casts.

Results

From a total of 1350 patients who started orthodontic treatment in this period met 56 (=4.2%) the inclusion criterion. In 85.7% of this sample was sagittal orthodontic tooth movement conducted, most frequently mesialization of ≥1 tooth (44.6%). Vertical tooth movement was in 57.1% of the sample performed, mostly extrusion of ≥1 tooth (34%). In 33.9% of the sample was ≥1 displaced tooth orthodontically relocated. One or two upper incisors were in 16.1% of the sample permanently replaced by the superstructure, all but one even after orthodontic treatment. In 66.1% of all cases were multi-functional anchorage challenges performed.

Conclusion

4.2 % of all treated patients within the investigated period required orthodontic treatment with skeletal anchorage (palatal implant), mainly for performing sagittal tooth movement (mesialization). The palatal implant was primarily used for multi-functional anchorage purposes, including skeletally anchored treatment in the mandible.
Literature
1.
go back to reference Schätzle M, Männchen R, Zwahlen M, Lang NP. Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res. 2009;20:1351–9.CrossRefPubMed Schätzle M, Männchen R, Zwahlen M, Lang NP. Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res. 2009;20:1351–9.CrossRefPubMed
2.
go back to reference Wehrbein H. Bone quality in the midpalate for temporary anchorage devices. Clin Oral Implants Res. 2009;20:45–9.CrossRefPubMed Wehrbein H. Bone quality in the midpalate for temporary anchorage devices. Clin Oral Implants Res. 2009;20:45–9.CrossRefPubMed
3.
go back to reference Jung BA, Kunkel M, Göllner P, Liechti T, Wagner W, Wehrbein H. Prognostic parameters contributing to palatal implant failures: a long-term survival analysis of 239 patients. Clin Oral Implants Res. 2012;23:746–50.CrossRefPubMed Jung BA, Kunkel M, Göllner P, Liechti T, Wagner W, Wehrbein H. Prognostic parameters contributing to palatal implant failures: a long-term survival analysis of 239 patients. Clin Oral Implants Res. 2012;23:746–50.CrossRefPubMed
4.
go back to reference Rodriguez JC, Suarez F, Chan HL, Padial-Molina M, Wang HL. Implants for orthodontic anchorage: success rates and reasons of failures. Implant Dent. 2014;23:155–61.CrossRefPubMed Rodriguez JC, Suarez F, Chan HL, Padial-Molina M, Wang HL. Implants for orthodontic anchorage: success rates and reasons of failures. Implant Dent. 2014;23:155–61.CrossRefPubMed
5.
go back to reference Wehrbein H, Merz BR, Diedrich P, Glatzmaier J. The use of palatal implants for orthodontic anchorage. Design and clinical application of the orthosystem. Clin Oral Implants Res. 1996;7:410–6.CrossRefPubMed Wehrbein H, Merz BR, Diedrich P, Glatzmaier J. The use of palatal implants for orthodontic anchorage. Design and clinical application of the orthosystem. Clin Oral Implants Res. 1996;7:410–6.CrossRefPubMed
6.
go back to reference Jung BA, Kunkel M, Göllner P, Liechti T, Wehrbein H. Success rate of second-generation palatal implants. Angle Orthod. 2009;79:85–90.CrossRefPubMed Jung BA, Kunkel M, Göllner P, Liechti T, Wehrbein H. Success rate of second-generation palatal implants. Angle Orthod. 2009;79:85–90.CrossRefPubMed
7.
go back to reference Jung BA, Harzer W, Gedrange T, Kunkel M, Moergel M, Diedrich P, et al. Spectrum of indications for palatal implants in treatment concepts involving immediate and conventional loading. J Orofac Orthop. 2010;71:273–80.CrossRefPubMed Jung BA, Harzer W, Gedrange T, Kunkel M, Moergel M, Diedrich P, et al. Spectrum of indications for palatal implants in treatment concepts involving immediate and conventional loading. J Orofac Orthop. 2010;71:273–80.CrossRefPubMed
8.
go back to reference Nienkemper M, Wilmes B, Pauls A, Drescher D. Multipurpose use of orthodontic mini-implants to achieve different treatment goals. J Orofac Orthop. 2012;73:467–76.CrossRefPubMed Nienkemper M, Wilmes B, Pauls A, Drescher D. Multipurpose use of orthodontic mini-implants to achieve different treatment goals. J Orofac Orthop. 2012;73:467–76.CrossRefPubMed
9.
go back to reference Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofacial Orthop. 2012;142:577–95.CrossRefPubMed Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofacial Orthop. 2012;142:577–95.CrossRefPubMed
10.
go back to reference Meursinge Reynders R, Ronchi L, Ladu L, van Etten-Jamaludin F, Bipat S. Insertion torque and success of orthodontic mini-implants: a systematic review. Am J Orthod Dentofacial Orthop. 2012;142:596–614.CrossRefPubMed Meursinge Reynders R, Ronchi L, Ladu L, van Etten-Jamaludin F, Bipat S. Insertion torque and success of orthodontic mini-implants: a systematic review. Am J Orthod Dentofacial Orthop. 2012;142:596–614.CrossRefPubMed
11.
go back to reference Migliorati M, Benedicenti S, Signori A, Drago S, Cirillo P, Barberis F, et al. Thread shape factor: evaluation of three different orthodontic miniscrews stability. Eur J Orthod. 2013;35:401–5.CrossRefPubMed Migliorati M, Benedicenti S, Signori A, Drago S, Cirillo P, Barberis F, et al. Thread shape factor: evaluation of three different orthodontic miniscrews stability. Eur J Orthod. 2013;35:401–5.CrossRefPubMed
12.
go back to reference Nienkemper M, Wilmes B, Pauls A, Yamaguchi S, Ludwig B, Drescher D. Treatment efficiency of mini-implant-borne distalization depending on age and second-molar eruption. J Orofac Orthop. 2014;75:118–32.CrossRefPubMed Nienkemper M, Wilmes B, Pauls A, Yamaguchi S, Ludwig B, Drescher D. Treatment efficiency of mini-implant-borne distalization depending on age and second-molar eruption. J Orofac Orthop. 2014;75:118–32.CrossRefPubMed
13.
go back to reference Seo YJ, Chung KR, Kim SH, Nelson G. Camouflage treatment of skeletal Class III malocclusion with asymmetry using a bone-borne rapid maxillary expander. Angle Orthod 2014, 17. [Epub ahead of print]. Seo YJ, Chung KR, Kim SH, Nelson G. Camouflage treatment of skeletal Class III malocclusion with asymmetry using a bone-borne rapid maxillary expander. Angle Orthod 2014, 17. [Epub ahead of print].
14.
go back to reference Yanagita T, Nakamura M, Kawanabe N, Yamashiro T. Class II malocclusion with complex problems treated with a novel combination of lingual orthodontic appliances and lingual arches. Am J Orthod Dentofacial Orthop. 2014;146:98–107.CrossRefPubMed Yanagita T, Nakamura M, Kawanabe N, Yamashiro T. Class II malocclusion with complex problems treated with a novel combination of lingual orthodontic appliances and lingual arches. Am J Orthod Dentofacial Orthop. 2014;146:98–107.CrossRefPubMed
15.
go back to reference Janssen KI, Raghoebar GM, Vissink A, Sandham A. Skeletal anchorage in orthodontics - a review of various systems in animal and human studies. Int J Oral Maxillofac Implants. 2008;23:75–88.PubMed Janssen KI, Raghoebar GM, Vissink A, Sandham A. Skeletal anchorage in orthodontics - a review of various systems in animal and human studies. Int J Oral Maxillofac Implants. 2008;23:75–88.PubMed
16.
go back to reference Reynders R, Ronchi L, Bipat S. Mini-implants in orthodontics: a systematic review of the literature. Am J Orthod Dentofacial Orthop. 2009;135:564–e1-19.CrossRefPubMed Reynders R, Ronchi L, Bipat S. Mini-implants in orthodontics: a systematic review of the literature. Am J Orthod Dentofacial Orthop. 2009;135:564–e1-19.CrossRefPubMed
17.
go back to reference Wehrbein H, Göllner P. Skeletal anchorage in orthodontics - basics and clinical application. J Orofac Orthop. 2007;68:443–61.CrossRefPubMed Wehrbein H, Göllner P. Skeletal anchorage in orthodontics - basics and clinical application. J Orofac Orthop. 2007;68:443–61.CrossRefPubMed
18.
go back to reference Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Path Oral Radiol Endod. 2007;103:e6–15.CrossRef Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Path Oral Radiol Endod. 2007;103:e6–15.CrossRef
19.
go back to reference Leung MT, Lee TC, Rabie A, Wong RW. Use of miniscrews and miniplates in orthodontics. J Oral Maxillofac Surg. 2008;66:1461–6.CrossRefPubMed Leung MT, Lee TC, Rabie A, Wong RW. Use of miniscrews and miniplates in orthodontics. J Oral Maxillofac Surg. 2008;66:1461–6.CrossRefPubMed
20.
go back to reference Baumgaertel S. Temporary skeletal anchorage devices: the case for miniscrews. Am J Orthod Dentofacial Orthop. 2014;145:558–64.CrossRefPubMed Baumgaertel S. Temporary skeletal anchorage devices: the case for miniscrews. Am J Orthod Dentofacial Orthop. 2014;145:558–64.CrossRefPubMed
21.
go back to reference Sugawara J. Temporary skeletal anchorage devices: the case for miniplates. Am J Orthod Dentofacial Orthop. 2014;145:559–65.CrossRefPubMed Sugawara J. Temporary skeletal anchorage devices: the case for miniplates. Am J Orthod Dentofacial Orthop. 2014;145:559–65.CrossRefPubMed
22.
go back to reference Mommaerts MY, Nols V, De Pauw G. Long-term prospective study of an orthodontic bone anchor. Int J Oral Maxillofac Implants. 2014;29:419–26.CrossRefPubMed Mommaerts MY, Nols V, De Pauw G. Long-term prospective study of an orthodontic bone anchor. Int J Oral Maxillofac Implants. 2014;29:419–26.CrossRefPubMed
Metadata
Title
One palatal implant for skeletal anchorage – frequency and range of indications
Authors
Elena Krieger
Zeynep Yildizhan
Heinrich Wehrbein
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Head & Face Medicine / Issue 1/2015
Electronic ISSN: 1746-160X
DOI
https://doi.org/10.1186/s13005-015-0073-x

Other articles of this Issue 1/2015

Head & Face Medicine 1/2015 Go to the issue