Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2017

Open Access 01-12-2017 | Research

Is posture-related craniospinal compliance shift caused by jugular vein collapse? A theoretical analysis

Authors: Manuel Gehlen, Vartan Kurtcuoglu, Marianne Schmid Daners

Published in: Fluids and Barriers of the CNS | Issue 1/2017

Login to get access

Abstract

Background

Postural changes are related to changes in cerebrospinal fluid (CSF) dynamics. While sitting up leads to a decrease in cranial CSF pressure, it also causes shifts in the craniospinal CSF volume and compliance distribution. We hypothesized that jugular vein collapse in upright posture is a major contributor to these shifts in CSF volume and compliance.

Methods

To test this hypothesis, we implemented a mathematical lumped-parameter model of the CSF system and the relevant parts of the cardiovascular system. In this model, the CSF and the venous system are each divided into a cranial and a spinal part. The pressures in these cranial and spinal portions differ by the posture-dependent hydrostatic pressure columns in the connecting vessels. Jugular collapse is represented by a reduction of the hydrostatic pressure difference between cranial and spinal veins. The CSF pressure–volume relationship is implemented as a function of the local CSF to venous pressure gradient. This implies that an increase in CSF volume leads to a simultaneous displacement of blood from adjacent veins. CSF pulsations driven by the cardiovascular system are introduced through a pulsating cranial arterial volume.

Results

In upright posture, the implemented CSF pressure–volume relationship shifts to lower cranial CSF pressures compared to the horizontal position, leading to a decrease in cranial CSF pressure when sitting up. Concurrently, the compliance of the spinal compartment decreases while the one of the cranial compartment increases. With this, in upright posture only 10% of the CSF system’s compliance is provided by the spinal compartment compared to 35% in horizontal posture. This reduction in spinal compliance is accompanied by a caudal shift of CSF volume. Also, the ability of the spinal CSF compartment to compensate for cerebral arterial volume pulsations reduces in upright posture, which in turn reduces the calculated craniospinal CSF flow pulsations.

Conclusion

The mathematical model enabled us to isolate the effect of jugular collapse and quantify the induced shifts of compliance and CSF volume. The good concordance of the modelled changes with clinically observed values indicates that jugular collapse can be considered a major contributor to CSF dynamics in upright posture.
Literature
1.
go back to reference Magnæs B. Clinical studies of cranial and spinal compliance and the craniospinal flow of cerebrospinal fluid. Br J Neurosurg. 1989;3(6):659–68.CrossRefPubMed Magnæs B. Clinical studies of cranial and spinal compliance and the craniospinal flow of cerebrospinal fluid. Br J Neurosurg. 1989;3(6):659–68.CrossRefPubMed
2.
go back to reference Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging. 2005;22(5):591–6.CrossRefPubMed Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging. 2005;22(5):591–6.CrossRefPubMed
3.
go back to reference Davson H, Hollingsworth G, Segal M. The mechanism of drainage of the cerebrospinal fluid. Brain. 1970;93(4):665–78.CrossRefPubMed Davson H, Hollingsworth G, Segal M. The mechanism of drainage of the cerebrospinal fluid. Brain. 1970;93(4):665–78.CrossRefPubMed
4.
go back to reference Qvarlander S, Sundstrom N, Malm J, Eklund A. Postural effects on intracranial pressure: modelling and clinical evaluation. J Appl Physiol. 2013;115(10):1474–80.CrossRefPubMed Qvarlander S, Sundstrom N, Malm J, Eklund A. Postural effects on intracranial pressure: modelling and clinical evaluation. J Appl Physiol. 2013;115(10):1474–80.CrossRefPubMed
5.
go back to reference Petersen LG, Petersen JCG, Andresen M, Secher NH, Juhler M. Postural influence on intracranial and cerebral perfusion pressure in ambulatory neurosurgical patients. Am J Physiol Regul Integr Comp Physiol. 2016;310(1):R100–4.CrossRefPubMed Petersen LG, Petersen JCG, Andresen M, Secher NH, Juhler M. Postural influence on intracranial and cerebral perfusion pressure in ambulatory neurosurgical patients. Am J Physiol Regul Integr Comp Physiol. 2016;310(1):R100–4.CrossRefPubMed
7.
go back to reference Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975;43(5):523–34.CrossRefPubMed Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975;43(5):523–34.CrossRefPubMed
8.
go back to reference Yiallourou TI, Schmid Daners M, Kurtcuoglu V, Haba-Rubio J, Heinzer R, Fornani E, et al. Continuous positive airway pressure alters cranial blood flow and cerebrospinal fluid dynamics at the craniovertebral junction. Interdiscip Neurosurg. 2015;2(3):152–9.CrossRef Yiallourou TI, Schmid Daners M, Kurtcuoglu V, Haba-Rubio J, Heinzer R, Fornani E, et al. Continuous positive airway pressure alters cranial blood flow and cerebrospinal fluid dynamics at the craniovertebral junction. Interdiscip Neurosurg. 2015;2(3):152–9.CrossRef
9.
go back to reference Qvarlander S, Ambarki K, Wåhlin A, Jacobsson J, Birgander R, Malm J, et al. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2016. doi:10.1111/ane.12636. Qvarlander S, Ambarki K, Wåhlin A, Jacobsson J, Birgander R, Malm J, et al. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2016. doi:10.​1111/​ane.​12636.
11.
go back to reference Gehlen M, Kurtcuoglu V, Schmid Daners M. Patient specific hardware-in-the-loop testing of cerebrospinal fluid shunt systems. IEEE Trans Biomed Eng. 2016;63(2):348–58.CrossRefPubMed Gehlen M, Kurtcuoglu V, Schmid Daners M. Patient specific hardware-in-the-loop testing of cerebrospinal fluid shunt systems. IEEE Trans Biomed Eng. 2016;63(2):348–58.CrossRefPubMed
12.
go back to reference Avezaat CJJ, van Eijndhoven JHM. Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir (Wien). 1986;79(1):13–29. doi:10.1007/-BF01403461.CrossRef Avezaat CJJ, van Eijndhoven JHM. Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir (Wien). 1986;79(1):13–29. doi:10.​1007/​-BF01403461.CrossRef
13.
go back to reference Czosnyka M, Czosnyka Z, Momjian S, Pickard JD. Cerebrospinal fluid dynamics. Physiol Meas. 2004;25(5):R51–76.CrossRefPubMed Czosnyka M, Czosnyka Z, Momjian S, Pickard JD. Cerebrospinal fluid dynamics. Physiol Meas. 2004;25(5):R51–76.CrossRefPubMed
14.
go back to reference Raabe A, Czosnyka M, Piper I, Seifert V. Monitoring of intracranial compliance: correction for a change in body position. Acta Neurochir (Wien). 1999;141(1):31–6.CrossRef Raabe A, Czosnyka M, Piper I, Seifert V. Monitoring of intracranial compliance: correction for a change in body position. Acta Neurochir (Wien). 1999;141(1):31–6.CrossRef
15.
go back to reference Rigamonti D. Adult hydrocephalus. Cambridge: Cambridge University Press; 2014.CrossRef Rigamonti D. Adult hydrocephalus. Cambridge: Cambridge University Press; 2014.CrossRef
16.
go back to reference Qvarlander S, Lundkvist B, Koskinen LOD, Malm J, Eklund A. Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2013;84(7):735–41.CrossRefPubMed Qvarlander S, Lundkvist B, Koskinen LOD, Malm J, Eklund A. Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2013;84(7):735–41.CrossRefPubMed
17.
go back to reference Wåhlin A, Ambarki K, Birgander R, Alperin N, Malm J, Eklund A. Assessment of craniospinal pressure-volume indices. Am J Neuroradiol. 2010;31(9):1645–50.CrossRefPubMed Wåhlin A, Ambarki K, Birgander R, Alperin N, Malm J, Eklund A. Assessment of craniospinal pressure-volume indices. Am J Neuroradiol. 2010;31(9):1645–50.CrossRefPubMed
18.
go back to reference Lenfeldt N, Andersson N, Ågren-Wilsson A, Bergenheim AT, Koskinen LOD, Eklund A, et al. Cerebrospinal fluid pulse pressure method: a possible substitute for the examination of B waves. J Neurosurg. 2004;101(6):944–50.CrossRefPubMed Lenfeldt N, Andersson N, Ågren-Wilsson A, Bergenheim AT, Koskinen LOD, Eklund A, et al. Cerebrospinal fluid pulse pressure method: a possible substitute for the examination of B waves. J Neurosurg. 2004;101(6):944–50.CrossRefPubMed
19.
go back to reference Schmid Daners M, Bottan S, Guzzella L, Poulikakos D, Kurtcuoglu V. Craniospinal pressure–volume dynamics in phantom models. IEEE Trans Biomed Eng. 2012;59(12):3482–90.CrossRefPubMed Schmid Daners M, Bottan S, Guzzella L, Poulikakos D, Kurtcuoglu V. Craniospinal pressure–volume dynamics in phantom models. IEEE Trans Biomed Eng. 2012;59(12):3482–90.CrossRefPubMed
20.
go back to reference Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. Neuroradiology. 1992;34(5):370–80.CrossRefPubMed Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. Neuroradiology. 1992;34(5):370–80.CrossRefPubMed
21.
go back to reference Drake JM, Tenti G, Sivalsganathan S. Computer modelling of siphoning for CSF shunt design evaluation. Pediatr Neurosurg. 1994;21(1):6–15.CrossRefPubMed Drake JM, Tenti G, Sivalsganathan S. Computer modelling of siphoning for CSF shunt design evaluation. Pediatr Neurosurg. 1994;21(1):6–15.CrossRefPubMed
22.
go back to reference Cirovic S, Walsh C, Fraser W. Mathematical study of the role of non-linear venous compliance in the cranial volume-pressure test. Med Biol Eng Comput. 2003;41(5):579–88.CrossRefPubMed Cirovic S, Walsh C, Fraser W. Mathematical study of the role of non-linear venous compliance in the cranial volume-pressure test. Med Biol Eng Comput. 2003;41(5):579–88.CrossRefPubMed
23.
go back to reference Hall JE, Guyton AC. Textbook of medical physiology. Philadelphia: Saunders; 2011. Hall JE, Guyton AC. Textbook of medical physiology. Philadelphia: Saunders; 2011.
Metadata
Title
Is posture-related craniospinal compliance shift caused by jugular vein collapse? A theoretical analysis
Authors
Manuel Gehlen
Vartan Kurtcuoglu
Marianne Schmid Daners
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2017
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-017-0053-6

Other articles of this Issue 1/2017

Fluids and Barriers of the CNS 1/2017 Go to the issue