Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2017

Open Access 01-12-2017 | Research

Permeability across a novel microfluidic blood-tumor barrier model

Authors: Tori B. Terrell-Hall, Amanda G. Ammer, Jessica I. G. Griffith, Paul R. Lockman

Published in: Fluids and Barriers of the CNS | Issue 1/2017

Login to get access

Abstract

Background

The lack of translatable in vitro blood-tumor barrier (BTB) models creates challenges in the development of drugs to treat tumors of the CNS and our understanding of how the vascular changes at the BBB in the presence of a tumor.

Methods

In this study, we characterize a novel microfluidic model of the BTB (and BBB model as a reference) that incorporates flow and induces shear stress on endothelial cells. Cell lines utilized include human umbilical vein endothelial cells co-cultured with CTX-TNA2 rat astrocytes (BBB) or Met-1 metastatic murine breast cancer cells (BTB). Cells were capable of communicating across microfluidic compartments via a porous interface. We characterized the device by comparing permeability of three passive permeability markers and one marker subject to efflux.

Results

The permeability of Sulforhodamine 101 was significantly (p < 0.05) higher in the BTB model (13.1 ± 1.3 × 10−3, n = 4) than the BBB model (2.5 ± 0.3 × 10−3, n = 6). Similar permeability increases were observed in the BTB model for molecules ranging from 600 Da to 60 kDa. The function of P-gp was intact in both models and consistent with recent published in vivo data. Specifically, the rate of permeability of Rhodamine 123 across the BBB model (0.6 ± 0.1 × 10−3, n = 4), increased 14-fold in the presence of the P-gp inhibitor verapamil (14.7 ± 7.5 × 10−3, n = 3) and eightfold with the addition of Cyclosporine A (8.8 ± 1.8 × 10−3, n = 3). Similar values were noted in the BTB model.

Conclusions

The dynamic microfluidic in vitro BTB model is a novel commercially available model that incorporates shear stress, and has permeability and efflux properties that are similar to in vivo data.
Literature
1.
go back to reference Lin NU, et al. CNS metastases in breast cancer: old challenge, new frontiers. Clin Cancer Res. 2013;19(23):6404–18.CrossRefPubMed Lin NU, et al. CNS metastases in breast cancer: old challenge, new frontiers. Clin Cancer Res. 2013;19(23):6404–18.CrossRefPubMed
4.
5.
go back to reference Golden PL, Pardridge WM. P-Glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain Res. 1999;819(1–2):143–6.CrossRefPubMed Golden PL, Pardridge WM. P-Glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain Res. 1999;819(1–2):143–6.CrossRefPubMed
6.
go back to reference Crone C, Christensen O. Electrical resistance of a capillary endothelium. J Gen Physiol. 1981;77(4):349–71.CrossRefPubMed Crone C, Christensen O. Electrical resistance of a capillary endothelium. J Gen Physiol. 1981;77(4):349–71.CrossRefPubMed
8.
go back to reference Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol. 2005;76(1):22–76.CrossRefPubMed Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol. 2005;76(1):22–76.CrossRefPubMed
9.
go back to reference Adkins CE, et al. P-glycoprotein mediated efflux limits substrate and drug uptake in a preclinical brain metastases of breast cancer model. Front Pharmacol. 2013;4:136.CrossRefPubMedPubMedCentral Adkins CE, et al. P-glycoprotein mediated efflux limits substrate and drug uptake in a preclinical brain metastases of breast cancer model. Front Pharmacol. 2013;4:136.CrossRefPubMedPubMedCentral
10.
11.
12.
go back to reference Liebner S, et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100(3):323–31.CrossRefPubMed Liebner S, et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100(3):323–31.CrossRefPubMed
13.
go back to reference Sawada T, et al. Expression of the multidrug-resistance P-glycoprotein (Pgp, MDR-1) by endothelial cells of the neovasculature in central nervous system tumors. Brain Tumor Pathol. 1999;16(1):23–7.CrossRefPubMed Sawada T, et al. Expression of the multidrug-resistance P-glycoprotein (Pgp, MDR-1) by endothelial cells of the neovasculature in central nervous system tumors. Brain Tumor Pathol. 1999;16(1):23–7.CrossRefPubMed
14.
go back to reference Demeule M, et al. Expression of multidrug-resistance P-glycoprotein (MDR1) in human brain tumors. Int J Cancer. 2001;93(1):62–6.CrossRefPubMed Demeule M, et al. Expression of multidrug-resistance P-glycoprotein (MDR1) in human brain tumors. Int J Cancer. 2001;93(1):62–6.CrossRefPubMed
15.
go back to reference Lockman PR, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 2010;16(23):5664–78.CrossRefPubMedPubMedCentral Lockman PR, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 2010;16(23):5664–78.CrossRefPubMedPubMedCentral
16.
go back to reference Adkins CE, et al. Characterization of passive permeability at the blood-tumor barrier in five preclinical models of brain metastases of breast cancer. Clin Exp Metastasis. 2016;33(4):373–83.CrossRefPubMed Adkins CE, et al. Characterization of passive permeability at the blood-tumor barrier in five preclinical models of brain metastases of breast cancer. Clin Exp Metastasis. 2016;33(4):373–83.CrossRefPubMed
17.
go back to reference Helms HC, et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36(5):862–90.CrossRefPubMed Helms HC, et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36(5):862–90.CrossRefPubMed
18.
go back to reference Czupalla CJ, Liebner S, Devraj K. In vitro models of the blood–brain barrier. Methods Mol Biol. 2014;1135:415–37.CrossRefPubMed Czupalla CJ, Liebner S, Devraj K. In vitro models of the blood–brain barrier. Methods Mol Biol. 2014;1135:415–37.CrossRefPubMed
22.
go back to reference Santaguida S, et al. Side by side comparison between dynamic versus static models of blood–brain barrier in vitro: a permeability study. Brain Res. 2006;1109(1):1–13.CrossRefPubMed Santaguida S, et al. Side by side comparison between dynamic versus static models of blood–brain barrier in vitro: a permeability study. Brain Res. 2006;1109(1):1–13.CrossRefPubMed
23.
go back to reference Loftsson T. Drug permeation through biomembranes: cyclodextrins and the unstirred water layer. Pharmazie. 2012;67(5):363–70.PubMed Loftsson T. Drug permeation through biomembranes: cyclodextrins and the unstirred water layer. Pharmazie. 2012;67(5):363–70.PubMed
24.
go back to reference Korjamo T, Heikkinen AT, Monkkonen J. Analysis of unstirred water layer in in vitro permeability experiments. J Pharm Sci. 2009;98(12):4469–79.CrossRefPubMed Korjamo T, Heikkinen AT, Monkkonen J. Analysis of unstirred water layer in in vitro permeability experiments. J Pharm Sci. 2009;98(12):4469–79.CrossRefPubMed
25.
go back to reference Lutgendorf MA, et al. Effect of dexamethasone administered with magnesium sulfate on inflammation-mediated degradation of the blood–brain barrier using an in vitro model. Reprod Sci. 2014;21(4):483–91.CrossRefPubMedPubMedCentral Lutgendorf MA, et al. Effect of dexamethasone administered with magnesium sulfate on inflammation-mediated degradation of the blood–brain barrier using an in vitro model. Reprod Sci. 2014;21(4):483–91.CrossRefPubMedPubMedCentral
26.
go back to reference Adriani G, et al. Modeling the blood–brain barrier in a 3D triple co-culture microfluidic system. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:338–41.PubMed Adriani G, et al. Modeling the blood–brain barrier in a 3D triple co-culture microfluidic system. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:338–41.PubMed
27.
go back to reference Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood–brain barrier (muBBB). Lab Chip. 2012;12(10):1784–92.CrossRefPubMed Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood–brain barrier (muBBB). Lab Chip. 2012;12(10):1784–92.CrossRefPubMed
28.
go back to reference Cucullo L, et al. A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab. 2011;31(2):767–77.CrossRefPubMed Cucullo L, et al. A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab. 2011;31(2):767–77.CrossRefPubMed
29.
go back to reference Herland A, et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLoS ONE. 2016;11(3):e0150360.CrossRefPubMedPubMedCentral Herland A, et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLoS ONE. 2016;11(3):e0150360.CrossRefPubMedPubMedCentral
30.
go back to reference Neuhaus W, et al. A novel flow based hollow-fiber blood–brain barrier in vitro model with immortalised cell line PBMEC/C1-2. J Biotechnol. 2006;125(1):127–41.CrossRefPubMed Neuhaus W, et al. A novel flow based hollow-fiber blood–brain barrier in vitro model with immortalised cell line PBMEC/C1-2. J Biotechnol. 2006;125(1):127–41.CrossRefPubMed
31.
go back to reference Griep LM, et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood–brain barrier function. Biomed Microdevices. 2013;15(1):145–50.CrossRefPubMed Griep LM, et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood–brain barrier function. Biomed Microdevices. 2013;15(1):145–50.CrossRefPubMed
32.
33.
go back to reference Koziara JM, et al. In situ blood–brain barrier transport of nanoparticles. Pharm Res. 2003;20(11):1772–8.CrossRefPubMed Koziara JM, et al. In situ blood–brain barrier transport of nanoparticles. Pharm Res. 2003;20(11):1772–8.CrossRefPubMed
34.
go back to reference Mittapalli RK, et al. Quantitative fluorescence microscopy provides high resolution imaging of passive diffusion and P-gp mediated efflux at the in vivo blood–brain barrier. J Neurosci Methods. 2013;219(1):188–95.CrossRefPubMedPubMedCentral Mittapalli RK, et al. Quantitative fluorescence microscopy provides high resolution imaging of passive diffusion and P-gp mediated efflux at the in vivo blood–brain barrier. J Neurosci Methods. 2013;219(1):188–95.CrossRefPubMedPubMedCentral
35.
go back to reference Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. 2013;1521:1–15.CrossRefPubMedPubMedCentral Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. 2013;1521:1–15.CrossRefPubMedPubMedCentral
36.
go back to reference Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.CrossRefPubMed Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.CrossRefPubMed
37.
go back to reference Stanimirovic DB, et al. Blood–brain barrier models: in vitro to in vivo translation in preclinical development of CNS-targeting biotherapeutics. Expert Opin Drug Discov. 2015;10(2):141–55.CrossRefPubMed Stanimirovic DB, et al. Blood–brain barrier models: in vitro to in vivo translation in preclinical development of CNS-targeting biotherapeutics. Expert Opin Drug Discov. 2015;10(2):141–55.CrossRefPubMed
38.
go back to reference Schlageter KE, et al. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999;58(3):312–28.CrossRefPubMed Schlageter KE, et al. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999;58(3):312–28.CrossRefPubMed
39.
go back to reference Hawkins BT, Egleton RD. Fluorescence imaging of blood–brain barrier disruption. J Neurosci Methods. 2006;151(2):262–7.CrossRefPubMed Hawkins BT, Egleton RD. Fluorescence imaging of blood–brain barrier disruption. J Neurosci Methods. 2006;151(2):262–7.CrossRefPubMed
40.
go back to reference Bakay L, et al. Ultrasonically produced changes in the blood–brain barrier. AMA Arch Neurol Psychiatry. 1956;76(5):457–67.CrossRefPubMed Bakay L, et al. Ultrasonically produced changes in the blood–brain barrier. AMA Arch Neurol Psychiatry. 1956;76(5):457–67.CrossRefPubMed
41.
go back to reference Lin SR, Kormano M. Cerebral circulation after cardiac arrest. Microangiographic and protein tracer studies. Stroke. 1977;8(2):182–8.CrossRefPubMed Lin SR, Kormano M. Cerebral circulation after cardiac arrest. Microangiographic and protein tracer studies. Stroke. 1977;8(2):182–8.CrossRefPubMed
42.
go back to reference da Costa JC. Influence of electroconvulsions on the permeability of the blood–brain barrier to trypan blue. Arq Neuropsiquiatr. 1972;30(1):1–7.CrossRefPubMed da Costa JC. Influence of electroconvulsions on the permeability of the blood–brain barrier to trypan blue. Arq Neuropsiquiatr. 1972;30(1):1–7.CrossRefPubMed
43.
go back to reference Nemeroff CB, Crisley FD. Monosodium L-glutamate-induced convulsions: temporary alteration in blood–brain barrier permeability to plasma proteins. Environ Physiol Biochem. 1975;5(6):389–95.PubMed Nemeroff CB, Crisley FD. Monosodium L-glutamate-induced convulsions: temporary alteration in blood–brain barrier permeability to plasma proteins. Environ Physiol Biochem. 1975;5(6):389–95.PubMed
44.
go back to reference Schettler T, Shealy CN. Experimental selective alteration of blood–brain barrier by x-irradiation. J Neurosurg. 1970;32(1):89–94.CrossRefPubMed Schettler T, Shealy CN. Experimental selective alteration of blood–brain barrier by x-irradiation. J Neurosurg. 1970;32(1):89–94.CrossRefPubMed
46.
go back to reference Cordon-Cardo C, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem. 1990;38(9):1277–87.CrossRefPubMed Cordon-Cardo C, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem. 1990;38(9):1277–87.CrossRefPubMed
47.
go back to reference Man S, et al. Human brain microvascular endothelial cells and umbilical vein endothelial cells differentially facilitate leukocyte recruitment and utilize chemokines for T cell migration. Clin Dev Immunol. 2008;2008:384982.CrossRefPubMedPubMedCentral Man S, et al. Human brain microvascular endothelial cells and umbilical vein endothelial cells differentially facilitate leukocyte recruitment and utilize chemokines for T cell migration. Clin Dev Immunol. 2008;2008:384982.CrossRefPubMedPubMedCentral
48.
go back to reference Crone C, Olesen SP. Electrical resistance of brain microvascular endothelium. Brain Res. 1982;241(1):49–55.CrossRefPubMed Crone C, Olesen SP. Electrical resistance of brain microvascular endothelium. Brain Res. 1982;241(1):49–55.CrossRefPubMed
Metadata
Title
Permeability across a novel microfluidic blood-tumor barrier model
Authors
Tori B. Terrell-Hall
Amanda G. Ammer
Jessica I. G. Griffith
Paul R. Lockman
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2017
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-017-0050-9

Other articles of this Issue 1/2017

Fluids and Barriers of the CNS 1/2017 Go to the issue