Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2015

Open Access 01-12-2015 | Review

Adenosine receptor signaling: a key to opening the blood–brain door

Authors: Margaret S. Bynoe, Christophe Viret, Angela Yan, Do-Geun Kim

Published in: Fluids and Barriers of the CNS | Issue 1/2015

Login to get access

Abstract

The aim of this review is to outline evidence that adenosine receptor (AR) activation can modulate blood–brain barrier (BBB) permeability and the implications for disease states and drug delivery. Barriers of the central nervous system (CNS) constitute a protective and regulatory interface between the CNS and the rest of the organism. Such barriers allow for the maintenance of the homeostasis of the CNS milieu. Among them, the BBB is a highly efficient permeability barrier that separates the brain micro-environment from the circulating blood. It is made up of tight junction-connected endothelial cells with specialized transporters to selectively control the passage of nutrients required for neural homeostasis and function, while preventing the entry of neurotoxic factors. The identification of cellular and molecular mechanisms involved in the development and function of CNS barriers is required for a better understanding of CNS homeostasis in both physiological and pathological settings. It has long been recognized that the endogenous purine nucleoside adenosine is a potent modulator of a large number of neurological functions. More recently, experimental studies conducted with human/mouse brain primary endothelial cells as well as with mouse models, indicate that adenosine markedly regulates BBB permeability. Extracellular adenosine, which is efficiently generated through the catabolism of ATP via the CD39/CD73 ecto-nucleotidase axis, promotes BBB permeability by signaling through A1 and A2A ARs expressed on BBB cells. In line with this hypothesis, induction of AR signaling by selective agonists efficiently augments BBB permeability in a transient manner and promotes the entry of macromolecules into the CNS. Conversely, antagonism of AR signaling blocks the entry of inflammatory cells and soluble factors into the brain. Thus, AR modulation of the BBB appears as a system susceptible to tighten as well as to permeabilize the BBB. Collectively, these findings point to AR manipulation as a pertinent avenue of research for novel strategies aiming at efficiently delivering therapeutic drugs/cells into the CNS, or at restricting the entry of inflammatory immune cells into the brain in some diseases such as multiple sclerosis.
Literature
3.
go back to reference Brown DA, Sawchenko PE. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol. 2007;502(2):236–60. doi:10.1002/cne.21307.PubMedCrossRef Brown DA, Sawchenko PE. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol. 2007;502(2):236–60. doi:10.​1002/​cne.​21307.PubMedCrossRef
4.
go back to reference Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, et al. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009;10(5):514–23. doi:10.1038/ni.1716.PubMedCrossRef Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, et al. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009;10(5):514–23. doi:10.​1038/​ni.​1716.PubMedCrossRef
20.
go back to reference Barankiewicz J, Danks AM, Abushanab E, Makings L, Wiemann T, Wallis RA, et al. Regulation of adenosine concentration and cytoprotective effects of novel reversible adenosine deaminase inhibitors. J Pharmacol Exp Ther. 1997;283(3):1230–8.PubMed Barankiewicz J, Danks AM, Abushanab E, Makings L, Wiemann T, Wallis RA, et al. Regulation of adenosine concentration and cytoprotective effects of novel reversible adenosine deaminase inhibitors. J Pharmacol Exp Ther. 1997;283(3):1230–8.PubMed
21.
go back to reference Lloyd HG, Fredholm BB. Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices. Neurochem Int. 1995;26(4):387–95 (019701869400144 J [pii]).PubMedCrossRef Lloyd HG, Fredholm BB. Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices. Neurochem Int. 1995;26(4):387–95 (019701869400144 J [pii]).PubMedCrossRef
24.
25.
go back to reference Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53(4):527–52.PubMed Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53(4):527–52.PubMed
29.
go back to reference Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC. Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol. 1996;118(6):1461–8.PubMedPubMedCentralCrossRef Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC. Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol. 1996;118(6):1461–8.PubMedPubMedCentralCrossRef
30.
go back to reference Mahan LC, McVittie LD, Smyk-Randall EM, Nakata H, Monsma FJ Jr, Gerfen CR, et al. Cloning and expression of an A1 adenosine receptor from rat brain. Mol Pharmacol. 1991;40(1):1–7.PubMed Mahan LC, McVittie LD, Smyk-Randall EM, Nakata H, Monsma FJ Jr, Gerfen CR, et al. Cloning and expression of an A1 adenosine receptor from rat brain. Mol Pharmacol. 1991;40(1):1–7.PubMed
31.
go back to reference Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn-Schmiedeberg’s Archiv Pharmacol. 2000;362(4–5):364–74.CrossRef Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn-Schmiedeberg’s Archiv Pharmacol. 2000;362(4–5):364–74.CrossRef
32.
go back to reference Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, et al. Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol. 2001;49(5):650–8.PubMedCrossRef Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, et al. Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol. 2001;49(5):650–8.PubMedCrossRef
34.
go back to reference Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J. Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol. 1998;401(2):163–86.PubMedCrossRef Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J. Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol. 1998;401(2):163–86.PubMedCrossRef
35.
go back to reference Schiffmann SN, Libert F, Vassart G, Vanderhaeghen JJ. Distribution of adenosine A2 receptor mRNA in the human brain. Neurosci Lett. 1991;130(2):177–81.PubMedCrossRef Schiffmann SN, Libert F, Vassart G, Vanderhaeghen JJ. Distribution of adenosine A2 receptor mRNA in the human brain. Neurosci Lett. 1991;130(2):177–81.PubMedCrossRef
37.
go back to reference Li XX, Nomura T, Aihara H, Nishizaki T. Adenosine enhances glial glutamate efflux via A2a adenosine receptors. Life Sci. 2001;68(12):1343–50.PubMedCrossRef Li XX, Nomura T, Aihara H, Nishizaki T. Adenosine enhances glial glutamate efflux via A2a adenosine receptors. Life Sci. 2001;68(12):1343–50.PubMedCrossRef
38.
go back to reference Matos M, Augusto E, Agostinho P, Cunha RA, Chen JF. Antagonistic interaction between adenosine A2A receptors and Na+/K+-ATPase-alpha2 controlling glutamate uptake in astrocytes. J Neurosci Off J Soc Neurosci. 2013;33(47):18492–502. doi:10.1523/JNEUROSCI.1828-13.2013.CrossRef Matos M, Augusto E, Agostinho P, Cunha RA, Chen JF. Antagonistic interaction between adenosine A2A receptors and Na+/K+-ATPase-alpha2 controlling glutamate uptake in astrocytes. J Neurosci Off J Soc Neurosci. 2013;33(47):18492–502. doi:10.​1523/​JNEUROSCI.​1828-13.​2013.CrossRef
39.
go back to reference Matos M, Augusto E, Santos-Rodrigues AD, Schwarzschild MA, Chen JF, Cunha RA, et al. Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia. 2012;60(5):702–16. doi:10.1002/glia.22290.PubMedCrossRef Matos M, Augusto E, Santos-Rodrigues AD, Schwarzschild MA, Chen JF, Cunha RA, et al. Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia. 2012;60(5):702–16. doi:10.​1002/​glia.​22290.PubMedCrossRef
40.
go back to reference Fredholm BB, Svenningsson P. Adenosine-dopamine interactions: development of a concept and some comments on therapeutic possibilities. Neurology. 2003;61(11 Suppl 6):S5–9.PubMedCrossRef Fredholm BB, Svenningsson P. Adenosine-dopamine interactions: development of a concept and some comments on therapeutic possibilities. Neurology. 2003;61(11 Suppl 6):S5–9.PubMedCrossRef
43.
go back to reference Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, et al. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2008;105(27):9325–30. doi:10.1073/pnas.0711175105.PubMedPubMedCentralCrossRef Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, et al. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2008;105(27):9325–30. doi:10.​1073/​pnas.​0711175105.PubMedPubMedCentralCrossRef
49.
go back to reference Narravula S, Lennon PF, Mueller BU, Colgan SP. Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function. J Immunol. 2000;165(9):5262–8.PubMedCrossRef Narravula S, Lennon PF, Mueller BU, Colgan SP. Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function. J Immunol. 2000;165(9):5262–8.PubMedCrossRef
51.
go back to reference Stevens B, Porta S, Haak LL, Gallo V, Fields RD. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron. 2002;36(5):855–68.PubMedPubMedCentralCrossRef Stevens B, Porta S, Haak LL, Gallo V, Fields RD. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron. 2002;36(5):855–68.PubMedPubMedCentralCrossRef
53.
go back to reference Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D’Onofrio M, Caciagli F, et al. Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Develop Neurosci Off J Int Soc Develop Neurosci. 2001;19(4):395–414.CrossRef Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D’Onofrio M, Caciagli F, et al. Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Develop Neurosci Off J Int Soc Develop Neurosci. 2001;19(4):395–414.CrossRef
55.
go back to reference Biber K, Klotz KN, Berger M, Gebicke-Harter PJ, van Calker D. Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci Off J Soc Neurosci. 1997;17(13):4956–64. Biber K, Klotz KN, Berger M, Gebicke-Harter PJ, van Calker D. Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci Off J Soc Neurosci. 1997;17(13):4956–64.
60.
go back to reference Chen X, Gawryluk JW, Wagener JF, Ghribi O, Geiger JD. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer’s disease. J Neuroinflam. 2008;5:12. doi:10.1186/1742-2094-5-12.CrossRef Chen X, Gawryluk JW, Wagener JF, Ghribi O, Geiger JD. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer’s disease. J Neuroinflam. 2008;5:12. doi:10.​1186/​1742-2094-5-12.CrossRef
62.
go back to reference Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci. 2001;114(Pt 7):1343–55.PubMed Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci. 2001;114(Pt 7):1343–55.PubMed
64.
go back to reference Jou TS, Schneeberger EE, Nelson WJ. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol. 1998;142(1):101–15.PubMedPubMedCentralCrossRef Jou TS, Schneeberger EE, Nelson WJ. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol. 1998;142(1):101–15.PubMedPubMedCentralCrossRef
65.
go back to reference Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, et al. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J Off Publ Feder Am Soc Exper Biol. 2007;21(13):3666–76. doi:10.1096/fj.07-8329com. Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, et al. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J Off Publ Feder Am Soc Exper Biol. 2007;21(13):3666–76. doi:10.​1096/​fj.​07-8329com.
66.
71.
go back to reference Takedachi M, Qu D, Ebisuno Y, Oohara H, Joachims ML, McGee ST, et al. CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. J Immunol. 2008;180(9):6288–96.PubMedPubMedCentralCrossRef Takedachi M, Qu D, Ebisuno Y, Oohara H, Joachims ML, McGee ST, et al. CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. J Immunol. 2008;180(9):6288–96.PubMedPubMedCentralCrossRef
73.
go back to reference Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci Off J Soc Neurosci. 2004;24(6):1521–9. doi:10.1523/JNEUROSCI.4271-03.2004.CrossRef Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci Off J Soc Neurosci. 2004;24(6):1521–9. doi:10.​1523/​JNEUROSCI.​4271-03.​2004.CrossRef
76.
go back to reference Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997;91(4):521–30.PubMedCrossRef Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997;91(4):521–30.PubMedCrossRef
77.
go back to reference Mills JH, Alabanza LM, Mahamed DA, Bynoe MS. Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis. J Neuroinflamm. 2012;9:193. doi:10.1186/1742-2094-9-193.CrossRef Mills JH, Alabanza LM, Mahamed DA, Bynoe MS. Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis. J Neuroinflamm. 2012;9:193. doi:10.​1186/​1742-2094-9-193.CrossRef
78.
go back to reference Schwarz N, Pruessmeyer J, Hess FM, Dreymueller D, Pantaler E, Koelsch A, et al. Requirements for leukocyte transmigration via the transmembrane chemokine CX3CL1. Cell Mol Life Sci CMLS. 2010;67(24):4233–48. doi:10.1007/s00018-010-0433-4.PubMedCrossRef Schwarz N, Pruessmeyer J, Hess FM, Dreymueller D, Pantaler E, Koelsch A, et al. Requirements for leukocyte transmigration via the transmembrane chemokine CX3CL1. Cell Mol Life Sci CMLS. 2010;67(24):4233–48. doi:10.​1007/​s00018-010-0433-4.PubMedCrossRef
79.
go back to reference Sunnemark D, Eltayeb S, Nilsson M, Wallstrom E, Lassmann H, Olsson T, et al. CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J Neuroinflam. 2005;2:17. doi:10.1186/1742-2094-2-17.CrossRef Sunnemark D, Eltayeb S, Nilsson M, Wallstrom E, Lassmann H, Olsson T, et al. CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J Neuroinflam. 2005;2:17. doi:10.​1186/​1742-2094-2-17.CrossRef
80.
go back to reference Kastenbauer S, Koedel U, Wick M, Kieseier BC, Hartung HP, Pfister HW. CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system. J Neuroimmunol. 2003;137(1–2):210–7.PubMedCrossRef Kastenbauer S, Koedel U, Wick M, Kieseier BC, Hartung HP, Pfister HW. CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system. J Neuroimmunol. 2003;137(1–2):210–7.PubMedCrossRef
82.
go back to reference Rancan M, Bye N, Otto VI, Trentz O, Kossmann T, Frentzel S, et al. The chemokine fractalkine in patients with severe traumatic brain injury and a mouse model of closed head injury. J Cerebral Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2004;24(10):1110–8. doi:10.1097/01.WCB.0000133470.91843.72.CrossRef Rancan M, Bye N, Otto VI, Trentz O, Kossmann T, Frentzel S, et al. The chemokine fractalkine in patients with severe traumatic brain injury and a mouse model of closed head injury. J Cerebral Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2004;24(10):1110–8. doi:10.​1097/​01.​WCB.​0000133470.​91843.​72.CrossRef
83.
go back to reference Huang D, Shi FD, Jung S, Pien GC, Wang J, Salazar-Mather TP, et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J Off Publ Feder Am Soc Exp Biol. 2006;20(7):896–905. doi:10.1096/fj.05-5465com. Huang D, Shi FD, Jung S, Pien GC, Wang J, Salazar-Mather TP, et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J Off Publ Feder Am Soc Exp Biol. 2006;20(7):896–905. doi:10.​1096/​fj.​05-5465com.
85.
go back to reference Hossain S, Akaike T, Chowdhury EH. Current approaches for drug delivery to central nervous system. Curr Drug Deliv. 2010;7(5):389–97.PubMedCrossRef Hossain S, Akaike T, Chowdhury EH. Current approaches for drug delivery to central nervous system. Curr Drug Deliv. 2010;7(5):389–97.PubMedCrossRef
86.
go back to reference Rajadhyaksha M, Boyden T, Liras J, El-Kattan A, Brodfuehrer J. Current advances in Delivery of biotherapeutics across the blood-brain barrier. Curr Drug Discov Technol. 2011;8(2):87–101.PubMedCrossRef Rajadhyaksha M, Boyden T, Liras J, El-Kattan A, Brodfuehrer J. Current advances in Delivery of biotherapeutics across the blood-brain barrier. Curr Drug Discov Technol. 2011;8(2):87–101.PubMedCrossRef
88.
go back to reference Neuwelt EA, Frenkel EP, Diehl JT, Maravilla KR, Vu LH, Clark WK, et al. Osmotic blood-brain barrier disruption: a new means of increasing chemotherapeutic agent delivery. Trans Am Neurol Assoc. 1979;104:256–60.PubMed Neuwelt EA, Frenkel EP, Diehl JT, Maravilla KR, Vu LH, Clark WK, et al. Osmotic blood-brain barrier disruption: a new means of increasing chemotherapeutic agent delivery. Trans Am Neurol Assoc. 1979;104:256–60.PubMed
89.
go back to reference Neuwelt EA, Specht HD, Howieson J, Haines JE, Bennett MJ, Hill SA, et al. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning. AJR Am J Roentgenol. 1983;141(4):829–35. doi:10.2214/ajr.141.4.829.PubMedCrossRef Neuwelt EA, Specht HD, Howieson J, Haines JE, Bennett MJ, Hill SA, et al. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning. AJR Am J Roentgenol. 1983;141(4):829–35. doi:10.​2214/​ajr.​141.​4.​829.PubMedCrossRef
91.
go back to reference Borlongan CV, Emerich DF. Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist Cereport. Brain Res Bull. 2003;60(3):297–306.PubMedCrossRef Borlongan CV, Emerich DF. Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist Cereport. Brain Res Bull. 2003;60(3):297–306.PubMedCrossRef
92.
go back to reference Prados MD, Schold SJS, Fine HA, Jaeckle K, Hochberg F, Mechtler L, et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro Oncol. 2003;5(2):96–103.PubMedPubMedCentral Prados MD, Schold SJS, Fine HA, Jaeckle K, Hochberg F, Mechtler L, et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro Oncol. 2003;5(2):96–103.PubMedPubMedCentral
94.
go back to reference Matsukado K, Inamura T, Nakano S, Fukui M, Bartus RT, Black KL. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery. 1996;39(1):125–33 (discussion 33–4).PubMedCrossRef Matsukado K, Inamura T, Nakano S, Fukui M, Bartus RT, Black KL. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery. 1996;39(1):125–33 (discussion 33–4).PubMedCrossRef
95.
96.
go back to reference Elliott PJ, Hayward NJ, Dean RL, Blunt DG, Bartus RT. Intravenous RMP-7 selectively increases uptake of carboplatin into rat brain tumors. Cancer Res. 1996;56(17):3998–4005.PubMed Elliott PJ, Hayward NJ, Dean RL, Blunt DG, Bartus RT. Intravenous RMP-7 selectively increases uptake of carboplatin into rat brain tumors. Cancer Res. 1996;56(17):3998–4005.PubMed
99.
go back to reference Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides. 2001;22(12):2329–43 S019697810100537X [pii].PubMedCrossRef Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides. 2001;22(12):2329–43 S019697810100537X [pii].PubMedCrossRef
100.
go back to reference Granholm AC, Backman C, Bloom F, Ebendal T, Gerhardt GA, Hoffer B, et al. NGF and anti-transferrin receptor antibody conjugate: short and long-term effects on survival of cholinergic neurons in intraocular septal transplants. J Pharmacol Exp Therap. 1994;268(1):448–59. Granholm AC, Backman C, Bloom F, Ebendal T, Gerhardt GA, Hoffer B, et al. NGF and anti-transferrin receptor antibody conjugate: short and long-term effects on survival of cholinergic neurons in intraocular septal transplants. J Pharmacol Exp Therap. 1994;268(1):448–59.
101.
102.
go back to reference Thakker DR, Weatherspoon MR, Harrison J, Keene TE, Lane DS, Kaemmerer WF, et al. Intracerebroventricular amyloid-beta antibodies reduce cerebral amyloid angiopathy and associated micro-hemorrhages in aged Tg2576 mice. Proc Natl Acad Sci USA. 2009;106(11):4501–6. doi:10.1073/pnas.0813404106.PubMedPubMedCentralCrossRef Thakker DR, Weatherspoon MR, Harrison J, Keene TE, Lane DS, Kaemmerer WF, et al. Intracerebroventricular amyloid-beta antibodies reduce cerebral amyloid angiopathy and associated micro-hemorrhages in aged Tg2576 mice. Proc Natl Acad Sci USA. 2009;106(11):4501–6. doi:10.​1073/​pnas.​0813404106.PubMedPubMedCentralCrossRef
Metadata
Title
Adenosine receptor signaling: a key to opening the blood–brain door
Authors
Margaret S. Bynoe
Christophe Viret
Angela Yan
Do-Geun Kim
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2015
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-015-0017-7

Other articles of this Issue 1/2015

Fluids and Barriers of the CNS 1/2015 Go to the issue