Skip to main content
Top
Published in: Nutrition & Metabolism 1/2016

Open Access 01-12-2016 | Research

Serum metabolic biomarkers distinguish metabolically healthy peripherally obese from unhealthy centrally obese individuals

Authors: Xiang Gao, Weidong Zhang, Yongbo Wang, Pardis Pedram, Farrell Cahill, Guangju Zhai, Edward Randell, Wayne Gulliver, Guang Sun

Published in: Nutrition & Metabolism | Issue 1/2016

Login to get access

Abstract

Background

Metabolic abnormalities are more associated with central obesity than peripheral obesity, but the underlying mechanisms are largely unknown. The present study was to identify serum metabolic biomarkers which distinguish metabolically unhealthy centrally obese (MUCO) from metabolically healthy peripherally obese (MHPO) individuals.

Methods

A two-stage case–control study design was employed. In the discovery stage, 20 individuals (10 MHPO and 10 MUCO) were included and in the following validation stage, 79 individuals (20 normal weight (NW), 30 MHPO, 29 MUCO) were utilized. Study groups were matched for age, sex, physical activity and total dietary calorie intake with MHPO and MUCO additionally matched for BMI. Metabolic abnormality was defined as: 1) HOMA-IR > 4.27 (90th percentile), 2) high-density lipoprotein cholesterol < 1.03 mmol/L in men and < 1.30 mmol/L in women, 3) fasting blood glucose ≥ 5.6 mmol/L, and 4) waist circumference > 102 cm in men and > 88 cm in women. MUCO individuals had all of these abnormalities whereas MHPO and NW individuals had none of them. A targeted metabolomics approach was performed on fasting serum samples, which can simultaneously identify and quantify 186 metabolites.

Results

In the discovery stage, serum leucine, isoleucine, tyrosine, valine, phenylalanine, alpha-aminoadipic acid, methioninesulfoxide and propionylcarnitine were found to be significantly higher in MUCO, compared with MHPO group after multiple testing adjustment. Significant changes of five metabolites (leucine, isoleucine, valine, alpha-aminoadipic acid, propionylcarnitine) were confirmed in the validation stage.

Conclusions

Significantly higher levels of serum leucine, isoleucine, valine, alpha-aminoadipic acid, propionylcarnitine are characteristic of metabolically unhealthy centrally obese patients. The finding provides novel insights into the pathogenesis of metabolic abnormalities in obesity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2014;384(9945):766–81.CrossRef Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2014;384(9945):766–81.CrossRef
2.
go back to reference Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors. 2001. JAMA. 2003;289(1):76–9.CrossRefPubMed Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors. 2001. JAMA. 2003;289(1):76–9.CrossRefPubMed
4.
go back to reference Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.CrossRefPubMed Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.CrossRefPubMed
5.
go back to reference Van Gaal LF, Mertens IL, Christophe E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80.CrossRefPubMed Van Gaal LF, Mertens IL, Christophe E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80.CrossRefPubMed
6.
go back to reference Karelis A, Brochu M, Rabasa-Lhoret R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 2004;30(6):569–72.CrossRefPubMed Karelis A, Brochu M, Rabasa-Lhoret R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 2004;30(6):569–72.CrossRefPubMed
7.
go back to reference Aguilar-Salinas CA, García EG, Robles L, Riano D, Ruiz-Gomez DG, García-Ulloa AC, et al. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J Clin Endocrinol Metab. 2008;93(10):4075–9.CrossRefPubMed Aguilar-Salinas CA, García EG, Robles L, Riano D, Ruiz-Gomez DG, García-Ulloa AC, et al. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J Clin Endocrinol Metab. 2008;93(10):4075–9.CrossRefPubMed
8.
go back to reference Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168(15):1609–16.CrossRefPubMed Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168(15):1609–16.CrossRefPubMed
9.
go back to reference Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008;168(15):1617–24.CrossRefPubMed Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008;168(15):1617–24.CrossRefPubMed
10.
go back to reference Primeau V, Coderre L, Karelis A, Brochu M, Lavoie M, Messier V, et al. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes. 2011;35(7):971–81.CrossRef Primeau V, Coderre L, Karelis A, Brochu M, Lavoie M, Messier V, et al. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes. 2011;35(7):971–81.CrossRef
11.
go back to reference Shea JL, Randell EW, Sun G. The Prevalence of Metabolically Healthy Obese Subjects Defined by BMI and Dual‐Energy X‐Ray Absorptiometry. Obesity. 2011;19(3):624–30.CrossRefPubMed Shea JL, Randell EW, Sun G. The Prevalence of Metabolically Healthy Obese Subjects Defined by BMI and Dual‐Energy X‐Ray Absorptiometry. Obesity. 2011;19(3):624–30.CrossRefPubMed
12.
go back to reference Boonchaya-Anant P, Apovian CM. Metabolically Healthy Obesity—Does it Exist? Current atherosclerosis reports. 2014;16(10):1–9.CrossRef Boonchaya-Anant P, Apovian CM. Metabolically Healthy Obesity—Does it Exist? Current atherosclerosis reports. 2014;16(10):1–9.CrossRef
13.
14.
go back to reference Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26.CrossRefPubMedPubMedCentral Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26.CrossRefPubMedPubMedCentral
15.
go back to reference Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One. 2010;5(12):e15234.CrossRefPubMedPubMedCentral Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One. 2010;5(12):e15234.CrossRefPubMedPubMedCentral
16.
go back to reference Suhre K, Meisinger C, Doring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010;5(11):e13953.CrossRefPubMedPubMedCentral Suhre K, Meisinger C, Doring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010;5(11):e13953.CrossRefPubMedPubMedCentral
17.
go back to reference Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and pathway discovery. Journal of the American College of Cardiology. 2008;52(2):117–23.CrossRefPubMedPubMedCentral Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and pathway discovery. Journal of the American College of Cardiology. 2008;52(2):117–23.CrossRefPubMedPubMedCentral
18.
go back to reference Zhang A, Sun H, Wang X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol. 2012;168(6):1718–27.CrossRefPubMed Zhang A, Sun H, Wang X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol. 2012;168(6):1718–27.CrossRefPubMed
19.
go back to reference Zhang A, Sun H, Han Y, Yuan Y, Wang P, Song G, et al. Exploratory urinary metabolic biomarkers and pathways using UPLC-Q-TOF-HDMS coupled with pattern recognition approach. Analyst. 2012;137(18):4200–8.CrossRefPubMed Zhang A, Sun H, Han Y, Yuan Y, Wang P, Song G, et al. Exploratory urinary metabolic biomarkers and pathways using UPLC-Q-TOF-HDMS coupled with pattern recognition approach. Analyst. 2012;137(18):4200–8.CrossRefPubMed
20.
go back to reference Wiklund PK, Pekkala S, Autio R, Munukka E, Xu L, Saltevo J, et al. Serum metabolic profiles in overweight and obese women with and without metabolic syndrome. Diabetol Metab Syndr. 2014;6(1):40.CrossRefPubMedPubMedCentral Wiklund PK, Pekkala S, Autio R, Munukka E, Xu L, Saltevo J, et al. Serum metabolic profiles in overweight and obese women with and without metabolic syndrome. Diabetol Metab Syndr. 2014;6(1):40.CrossRefPubMedPubMedCentral
21.
go back to reference Böhm A, Halama A, Meile T, Zdichavsky M, Lehmann R, Weigert C, et al. Metabolic signatures of cultured human adipocytes from metabolically healthy versus unhealthy obese individuals. PLoS One. 2014;9(4):e93148.CrossRefPubMedPubMedCentral Böhm A, Halama A, Meile T, Zdichavsky M, Lehmann R, Weigert C, et al. Metabolic signatures of cultured human adipocytes from metabolically healthy versus unhealthy obese individuals. PLoS One. 2014;9(4):e93148.CrossRefPubMedPubMedCentral
22.
go back to reference Chen H, Tseng Y, Wang S, Tsai Y, Chang C, Kuo T, et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes. 2015;39(8):1241–8.CrossRef Chen H, Tseng Y, Wang S, Tsai Y, Chang C, Kuo T, et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes. 2015;39(8):1241–8.CrossRef
23.
go back to reference Zhai G, Wang-Sattler R, Hart DJ, Arden NK, Hakim AJ, Illig T, et al. Serum branched-chain amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis. Ann Rheum Dis. 2010;69:1227–31.CrossRefPubMed Zhai G, Wang-Sattler R, Hart DJ, Arden NK, Hakim AJ, Illig T, et al. Serum branched-chain amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis. Ann Rheum Dis. 2010;69:1227–31.CrossRefPubMed
24.
go back to reference Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. 2012;8(1):133–42.CrossRef Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. 2012;8(1):133–42.CrossRef
25.
go back to reference Sun G, French CR, Martin GR, Younghusband B, Green RC, Xie Y-g, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr. 2005;81(1):74–8.PubMed Sun G, French CR, Martin GR, Younghusband B, Green RC, Xie Y-g, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr. 2005;81(1):74–8.PubMed
26.
go back to reference Sun G, Vasdev S, Martin GR, Gadag V, Zhang H. Altered calcium homeostasis is correlated with abnormalities of fasting serum glucose, insulin resistance, and β-cell function in the Newfoundland population. Diabetes. 2005;54(11):3336–9.CrossRefPubMed Sun G, Vasdev S, Martin GR, Gadag V, Zhang H. Altered calcium homeostasis is correlated with abnormalities of fasting serum glucose, insulin resistance, and β-cell function in the Newfoundland population. Diabetes. 2005;54(11):3336–9.CrossRefPubMed
27.
go back to reference Kennedy AP, Shea JL, Sun G. Comparison of the Classification of Obesity by BMI vs. Dual‐energy X‐ray Absorptiometry in the Newfoundland Population. Obesity. 2009;17(11):2094–9.CrossRefPubMed Kennedy AP, Shea JL, Sun G. Comparison of the Classification of Obesity by BMI vs. Dual‐energy X‐ray Absorptiometry in the Newfoundland Population. Obesity. 2009;17(11):2094–9.CrossRefPubMed
28.
go back to reference Shea J, King M, Yi Y, Gulliver W, Sun G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr Metab Cardiovas. 2012;22(9):741–7.CrossRef Shea J, King M, Yi Y, Gulliver W, Sun G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr Metab Cardiovas. 2012;22(9):741–7.CrossRef
29.
go back to reference Fontaine-Bisson B, Thorburn J, Gregory A, Zhang H, Sun G. Melanin-concentrating hormone receptor 1 polymorphisms are associated with components of energy balance in the Complex Diseases in the Newfoundland Population: Environment and Genetics (CODING) study. Am J Clin Nutr. 2014;99(2):384–91.CrossRefPubMed Fontaine-Bisson B, Thorburn J, Gregory A, Zhang H, Sun G. Melanin-concentrating hormone receptor 1 polymorphisms are associated with components of energy balance in the Complex Diseases in the Newfoundland Population: Environment and Genetics (CODING) study. Am J Clin Nutr. 2014;99(2):384–91.CrossRefPubMed
30.
go back to reference Rothney MP, Xia Y, Wacker WK, Martin FP, Beaumont M, Rezzi S, et al. Precision of a new tool to measure visceral adipose tissue (VAT) using dual‐energy X‐Ray absorptiometry (DXA). Obesity. 2013;21(1):e134–6.CrossRefPubMed Rothney MP, Xia Y, Wacker WK, Martin FP, Beaumont M, Rezzi S, et al. Precision of a new tool to measure visceral adipose tissue (VAT) using dual‐energy X‐Ray absorptiometry (DXA). Obesity. 2013;21(1):e134–6.CrossRefPubMed
31.
go back to reference Ergun DL, Rothney MP, Oates MK, Xia Y, Wacker WK, Binkley NC. Visceral adipose tissue quantification using lunar prodigy. J Clin Densitom. 2013;16(1):75–8.CrossRefPubMed Ergun DL, Rothney MP, Oates MK, Xia Y, Wacker WK, Binkley NC. Visceral adipose tissue quantification using lunar prodigy. J Clin Densitom. 2013;16(1):75–8.CrossRefPubMed
32.
go back to reference Willett WC, Sampson L, STAMPFER MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122(1):51–65.PubMed Willett WC, Sampson L, STAMPFER MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122(1):51–65.PubMed
33.
go back to reference Subar AF, Thompson FE, Kipnis V, Midthune D, Hurwitz P, McNutt S, et al. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires the Eating at America's Table Study. Am J Epidemiol. 2001;154(12):1089–99.CrossRefPubMed Subar AF, Thompson FE, Kipnis V, Midthune D, Hurwitz P, McNutt S, et al. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires the Eating at America's Table Study. Am J Epidemiol. 2001;154(12):1089–99.CrossRefPubMed
34.
go back to reference Michels KB, Willett WC. Self-administered semiquantitative food frequency questionnaires: patterns, predictors, and interpretation of omitted items. Epidemiology. 2009;20(2):295.CrossRefPubMedPubMedCentral Michels KB, Willett WC. Self-administered semiquantitative food frequency questionnaires: patterns, predictors, and interpretation of omitted items. Epidemiology. 2009;20(2):295.CrossRefPubMedPubMedCentral
35.
36.
go back to reference Baecke J, Burema J, Frijters J. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982;36(5):936–42.PubMed Baecke J, Burema J, Frijters J. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982;36(5):936–42.PubMed
37.
go back to reference Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRefPubMed Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRefPubMed
38.
go back to reference Seo MH, Rhee E-J. Metabolic and cardiovascular implications of a metabolically healthy obesity phenotype. Endocrinology and Metabolism. 2014;29(4):427–34.CrossRefPubMedPubMedCentral Seo MH, Rhee E-J. Metabolic and cardiovascular implications of a metabolically healthy obesity phenotype. Endocrinology and Metabolism. 2014;29(4):427–34.CrossRefPubMedPubMedCentral
39.
go back to reference Pouliot M-C, Després J-P, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. The American journal of cardiology. 1994;73(7):460–8.CrossRefPubMed Pouliot M-C, Després J-P, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. The American journal of cardiology. 1994;73(7):460–8.CrossRefPubMed
41.
go back to reference Burd NA, Tang JE, Moore DR, Phillips SM. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol. 2009;106(5):1692–701.CrossRefPubMed Burd NA, Tang JE, Moore DR, Phillips SM. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol. 2009;106(5):1692–701.CrossRefPubMed
42.
go back to reference Blaak E. Gender differences in fat metabolism. Curr Opin ClinL Nutr. 2001;4(6):499–502.CrossRef Blaak E. Gender differences in fat metabolism. Curr Opin ClinL Nutr. 2001;4(6):499–502.CrossRef
44.
go back to reference Weinsier RL, Hunter GR, Heini AF, Goran MI, Sell SM. The etiology of obesity: relative contribution of metabolic factors, diet, and physical activity. Am J Med. 1998;105(2):145–50.CrossRefPubMed Weinsier RL, Hunter GR, Heini AF, Goran MI, Sell SM. The etiology of obesity: relative contribution of metabolic factors, diet, and physical activity. Am J Med. 1998;105(2):145–50.CrossRefPubMed
45.
go back to reference Lakka TA, Laaksonen DE. Physical activity in prevention and treatment of the metabolic syndrome. Appl Physiol Nutr Me. 2007;32(1):76–88.CrossRef Lakka TA, Laaksonen DE. Physical activity in prevention and treatment of the metabolic syndrome. Appl Physiol Nutr Me. 2007;32(1):76–88.CrossRef
46.
go back to reference Shah S, Crosslin D, Haynes C, Nelson S, Turer C, Stevens R, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55(2):321–30.CrossRefPubMedPubMedCentral Shah S, Crosslin D, Haynes C, Nelson S, Turer C, Stevens R, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55(2):321–30.CrossRefPubMedPubMedCentral
47.
go back to reference Tom A, Nair KS. Assessment of branched-chain amino Acid status and potential for biomarkers. J Nutr. 2006;136(1 Suppl):324S–30S.PubMed Tom A, Nair KS. Assessment of branched-chain amino Acid status and potential for biomarkers. J Nutr. 2006;136(1 Suppl):324S–30S.PubMed
48.
go back to reference She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endoc M. 2007;293(6):E1552–63. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endoc M. 2007;293(6):E1552–63.
50.
go back to reference Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010;285(15):11348–56.CrossRefPubMedPubMedCentral Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010;285(15):11348–56.CrossRefPubMedPubMedCentral
51.
go back to reference Sears D, Hsiao G, Hsiao A, Yu J, Courtney C, Ofrecio J, et al. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. P Natl Acad Sci. 2009;106(44):18745–50.CrossRef Sears D, Hsiao G, Hsiao A, Yu J, Courtney C, Ofrecio J, et al. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. P Natl Acad Sci. 2009;106(44):18745–50.CrossRef
52.
go back to reference Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 2013;304(11):E1175–87.CrossRefPubMedPubMedCentral Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 2013;304(11):E1175–87.CrossRefPubMedPubMedCentral
53.
go back to reference Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. World J Gastroentero. 2013;19(43):7620.CrossRef Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. World J Gastroentero. 2013;19(43):7620.CrossRef
54.
go back to reference Felig P, Marliss E, Cahill Jr GF. Plasma amino acid levels and insulin secretion in obesity. New Engl J Med. 1969;281(15):811–6.CrossRefPubMed Felig P, Marliss E, Cahill Jr GF. Plasma amino acid levels and insulin secretion in obesity. New Engl J Med. 1969;281(15):811–6.CrossRefPubMed
55.
go back to reference Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.CrossRefPubMedPubMedCentral Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.CrossRefPubMedPubMedCentral
56.
go back to reference Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circulation: Cardiovascular Genetics. 2010; doi: 10.1161/CIRCGENETICS. 109.852814. Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circulation: Cardiovascular Genetics. 2010; doi: 10.1161/CIRCGENETICS. 109.852814.
57.
go back to reference Wang C, Guo F. Branched chain amino acids and metabolic regulation. Chinese Sci Bull. 2013;58(11):1228–35.CrossRef Wang C, Guo F. Branched chain amino acids and metabolic regulation. Chinese Sci Bull. 2013;58(11):1228–35.CrossRef
58.
go back to reference Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, et al. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol. 2008;4(1):214.PubMedPubMedCentral Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, et al. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol. 2008;4(1):214.PubMedPubMedCentral
59.
go back to reference Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, Palma MJ, Roberts LD, Dejam A, Souza AL. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125(18):2222–31.CrossRefPubMedPubMedCentral Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, Palma MJ, Roberts LD, Dejam A, Souza AL. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125(18):2222–31.CrossRefPubMedPubMedCentral
60.
go back to reference Stančáková A, Civelek M, Saleem NK, Soininen P, Kangas AJ, Cederberg H, Paananen J, Pihlajamäki J, Bonnycastle LL, Morken MA. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes. 2012;61(7):1895–902.CrossRefPubMedPubMedCentral Stančáková A, Civelek M, Saleem NK, Soininen P, Kangas AJ, Cederberg H, Paananen J, Pihlajamäki J, Bonnycastle LL, Morken MA. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes. 2012;61(7):1895–902.CrossRefPubMedPubMedCentral
61.
go back to reference Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost H-G, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62(2):639–48.CrossRefPubMedPubMedCentral Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost H-G, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62(2):639–48.CrossRefPubMedPubMedCentral
62.
go back to reference Bach A. Carnitine biosynthesis in mammals. Reprod Nutr Dev. 1981;22(4):583–96.CrossRef Bach A. Carnitine biosynthesis in mammals. Reprod Nutr Dev. 1981;22(4):583–96.CrossRef
64.
go back to reference Mai M, Tönjes A, Kovacs P, Stumvoll M, Fiedler GM, Leichtle AB. Serum levels of acylcarnitines are altered in prediabetic conditions. PloS One. 2013;8(12):e82459.CrossRefPubMedPubMedCentral Mai M, Tönjes A, Kovacs P, Stumvoll M, Fiedler GM, Leichtle AB. Serum levels of acylcarnitines are altered in prediabetic conditions. PloS One. 2013;8(12):e82459.CrossRefPubMedPubMedCentral
65.
go back to reference Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity. 2010;18(9):1695–700.CrossRefPubMedPubMedCentral Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity. 2010;18(9):1695–700.CrossRefPubMedPubMedCentral
66.
go back to reference Kim JY, Park JY, Kim OY, Ham BM, Kim H-J, Kwon DY, et al. Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC− Q-TOF MS). J Proteome Res. 2010;9(9):4368–75.CrossRefPubMed Kim JY, Park JY, Kim OY, Ham BM, Kim H-J, Kwon DY, et al. Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC− Q-TOF MS). J Proteome Res. 2010;9(9):4368–75.CrossRefPubMed
67.
go back to reference Guidetti P, Schwarcz R. Determination of α-aminoadipic acid in brain, peripheral tissues, and body fluids using GC/MS with negative chemical ionization. Mol Brain Res. 2003;118(1):132–9.CrossRefPubMed Guidetti P, Schwarcz R. Determination of α-aminoadipic acid in brain, peripheral tissues, and body fluids using GC/MS with negative chemical ionization. Mol Brain Res. 2003;118(1):132–9.CrossRefPubMed
68.
go back to reference Chang YF. Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem. 1978;30(2):347–54.CrossRefPubMed Chang YF. Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem. 1978;30(2):347–54.CrossRefPubMed
69.
go back to reference Urpi-Sarda M, Almanza-Aguilera E, Tulipani S, Tinahones FJ, Salas-Salvadó J, Andres-Lacueva C. Metabolomics for Biomarkers of Type 2 Diabetes Mellitus: Advances and Nutritional Intervention Trends. Current Cardiovascular Risk Reports. 2015;9(3):1–12.CrossRef Urpi-Sarda M, Almanza-Aguilera E, Tulipani S, Tinahones FJ, Salas-Salvadó J, Andres-Lacueva C. Metabolomics for Biomarkers of Type 2 Diabetes Mellitus: Advances and Nutritional Intervention Trends. Current Cardiovascular Risk Reports. 2015;9(3):1–12.CrossRef
70.
go back to reference Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123(10):4309–17.CrossRefPubMedPubMedCentral Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123(10):4309–17.CrossRefPubMedPubMedCentral
71.
go back to reference Lee A, Jang HB, Ra M, Choi Y, Lee H-J, Park JY, et al. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy's metabolite profiling. Obes Res Clin Pract. 2015;9(4):336–45.CrossRefPubMed Lee A, Jang HB, Ra M, Choi Y, Lee H-J, Park JY, et al. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy's metabolite profiling. Obes Res Clin Pract. 2015;9(4):336–45.CrossRefPubMed
72.
go back to reference Hosker J, Matthews D, Rudenski A, Burnett M, Darling P, Bown E, et al. Continuous infusion of glucose with model assessment: measurement of insulin resistance and β-cell function in man. Diabetologia. 1985;28(7):401–11.CrossRefPubMed Hosker J, Matthews D, Rudenski A, Burnett M, Darling P, Bown E, et al. Continuous infusion of glucose with model assessment: measurement of insulin resistance and β-cell function in man. Diabetologia. 1985;28(7):401–11.CrossRefPubMed
Metadata
Title
Serum metabolic biomarkers distinguish metabolically healthy peripherally obese from unhealthy centrally obese individuals
Authors
Xiang Gao
Weidong Zhang
Yongbo Wang
Pardis Pedram
Farrell Cahill
Guangju Zhai
Edward Randell
Wayne Gulliver
Guang Sun
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2016
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/s12986-016-0095-9

Other articles of this Issue 1/2016

Nutrition & Metabolism 1/2016 Go to the issue