Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Research

Porcine promyelocytic leukemia protein isoforms suppress Japanese encephalitis virus replication in PK15 cells

Authors: Zhenyu Chen, Huaijin Liu, Jingjing Zhu, Xing Duan, Han Wang, Xiangchen Li, Xiaolong Zhou, Ayong Zhao, Songbai Yang

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Background

Promyelocytic leukemia protein (PML) is a primary component of PML nuclear bodies (PML-NBs). PML and PML-NBs play critical roles in processes like the cell cycle, DNA damage repair, apoptosis, and the antiviral immune response. Previously, we identified five porcine PML alternative splicing variants and observed an increase in the expression of these PML isoforms following Japanese encephalitis virus (JEV) infection. In this study, we examined the functional roles of these PML isoforms in JEV infection.

Methods

PML isoforms were either knocked down or overexpressed in PK15 cells, after which they were infected with JEV. Subsequently, we analyzed the gene expression of PML isoforms, JEV, and the interferon (IFN)-β signaling pathway using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Viral titers were determined through 50% tissue culture infectious dose (TCID50) assays.

Results

Our results demonstrated that the knockdown of endogenous PML promoted JEV replication, while the overexpression of PML isoforms 1, 3, 4, and 5 (PML1, PML3, PML4, and PML5) inhibited JEV replication. Further investigation revealed that PML1, PML3, PML4, and PML5 negatively regulated the expression of genes involved in the interferon (IFN)-β signaling pathway by inhibiting IFN regulatory factor 3 (IRF3) post-JEV infection.

Conclusions

These findings demonstrate that porcine PML isoforms PML1, PML3, PML4, and PML5 negatively regulate IFN-β and suppress viral replication during JEV infection. The results of this study provide insight into the functional roles of porcine PML isoforms in JEV infection and the regulation of the innate immune response.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li Y, Ma X, Wu W, Chen Z, Meng G. PML Nuclear Body Biogenesis, Carcinogenesis, and targeted therapy. Trends Cancer. 2020;6:889–906.CrossRefPubMed Li Y, Ma X, Wu W, Chen Z, Meng G. PML Nuclear Body Biogenesis, Carcinogenesis, and targeted therapy. Trends Cancer. 2020;6:889–906.CrossRefPubMed
2.
go back to reference de Thé H, Le Bras M, Lallemand-Breitenbach V. The cell biology of Disease: acute promyelocytic Leukemia, arsenic, and PML bodies. J Cell Biol. 2012;198:11–21.CrossRefPubMedPubMedCentral de Thé H, Le Bras M, Lallemand-Breitenbach V. The cell biology of Disease: acute promyelocytic Leukemia, arsenic, and PML bodies. J Cell Biol. 2012;198:11–21.CrossRefPubMedPubMedCentral
3.
go back to reference de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic Leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84.CrossRefPubMed de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic Leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84.CrossRefPubMed
4.
go back to reference Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J. 2023;20:82.CrossRefPubMedPubMedCentral Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J. 2023;20:82.CrossRefPubMedPubMedCentral
5.
go back to reference Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res. 2020;48:11890–912.CrossRefPubMedPubMedCentral Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res. 2020;48:11890–912.CrossRefPubMedPubMedCentral
7.
go back to reference Fada BJ, Reward E, Gu H. The role of ND10 Nuclear bodies in Herpesvirus Infection: a frenemy for the Virus? Viruses. 2021; 13. Fada BJ, Reward E, Gu H. The role of ND10 Nuclear bodies in Herpesvirus Infection: a frenemy for the Virus? Viruses. 2021; 13.
8.
go back to reference Boutell C, Cuchet-Lourenço D, Vanni E, Orr A, Glass M, McFarlane S, Everett RD. A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence. PLoS Pathog. 2011;7:e1002245.CrossRefPubMedPubMedCentral Boutell C, Cuchet-Lourenço D, Vanni E, Orr A, Glass M, McFarlane S, Everett RD. A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence. PLoS Pathog. 2011;7:e1002245.CrossRefPubMedPubMedCentral
9.
go back to reference Wang S, Long J, Zheng CF. The potential link between PML NBs and ICP0 in regulating lytic and latent Infection of HSV-1. Protein Cell. 2012;3:372–82.CrossRefPubMedPubMedCentral Wang S, Long J, Zheng CF. The potential link between PML NBs and ICP0 in regulating lytic and latent Infection of HSV-1. Protein Cell. 2012;3:372–82.CrossRefPubMedPubMedCentral
10.
go back to reference Kahle T, Volkmann B, Eissmann K, Herrmann A, Schmitt S, Wittmann S, Merkel L, Reuter N, Stamminger T, Gramberg T. TRIM19/PML restricts HIV Infection in a cell type-dependent manner. Viruses. 2015; 8. Kahle T, Volkmann B, Eissmann K, Herrmann A, Schmitt S, Wittmann S, Merkel L, Reuter N, Stamminger T, Gramberg T. TRIM19/PML restricts HIV Infection in a cell type-dependent manner. Viruses. 2015; 8.
11.
go back to reference Chen D, Feng C, Tian X, Zheng N, Wu Z. Promyelocytic Leukemia restricts Enterovirus 71 replication by inhibiting Autophagy. Front Immunol. 2018;9:1268.CrossRefPubMedPubMedCentral Chen D, Feng C, Tian X, Zheng N, Wu Z. Promyelocytic Leukemia restricts Enterovirus 71 replication by inhibiting Autophagy. Front Immunol. 2018;9:1268.CrossRefPubMedPubMedCentral
12.
go back to reference Li Z, Wu Y, Li H, Li W, Tan J, Qiao W. 3 C protease of enterovirus 71 cleaves promyelocytic Leukemia protein and impairs PML-NBs production. Virol J. 2021;18:255.CrossRefPubMedPubMedCentral Li Z, Wu Y, Li H, Li W, Tan J, Qiao W. 3 C protease of enterovirus 71 cleaves promyelocytic Leukemia protein and impairs PML-NBs production. Virol J. 2021;18:255.CrossRefPubMedPubMedCentral
13.
go back to reference El Asmi F, Maroui MA, Dutrieux J, Blondel D, Nisole S, Chelbi-Alix MK. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog. 2014;10:e1003975.CrossRefPubMedPubMedCentral El Asmi F, Maroui MA, Dutrieux J, Blondel D, Nisole S, Chelbi-Alix MK. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog. 2014;10:e1003975.CrossRefPubMedPubMedCentral
14.
go back to reference Giovannoni F, Damonte EB, Garcia CC. Cellular promyelocytic Leukemia protein is an important dengue virus restriction factor. PLoS ONE. 2015;10:e0125690.CrossRefPubMedPubMedCentral Giovannoni F, Damonte EB, Garcia CC. Cellular promyelocytic Leukemia protein is an important dengue virus restriction factor. PLoS ONE. 2015;10:e0125690.CrossRefPubMedPubMedCentral
15.
go back to reference Giovannoni F, Ladelfa MF, Monte M, Jans DA, Hemmerich P, García C. Dengue non-structural protein 5 polymerase complexes with promyelocytic Leukemia protein (PML) isoforms III and IV to disrupt PML-Nuclear bodies in infected cells. Front Cell Infect Microbiol. 2019;9:284.CrossRefPubMedPubMedCentral Giovannoni F, Ladelfa MF, Monte M, Jans DA, Hemmerich P, García C. Dengue non-structural protein 5 polymerase complexes with promyelocytic Leukemia protein (PML) isoforms III and IV to disrupt PML-Nuclear bodies in infected cells. Front Cell Infect Microbiol. 2019;9:284.CrossRefPubMedPubMedCentral
16.
go back to reference Maroui MA, Pampin M, Chelbi-Alix MK. Promyelocytic Leukemia isoform IV confers resistance to Encephalomyocarditis virus via the sequestration of 3D polymerase in nuclear bodies. J Virol. 2011;85:13164–73.CrossRefPubMedPubMedCentral Maroui MA, Pampin M, Chelbi-Alix MK. Promyelocytic Leukemia isoform IV confers resistance to Encephalomyocarditis virus via the sequestration of 3D polymerase in nuclear bodies. J Virol. 2011;85:13164–73.CrossRefPubMedPubMedCentral
17.
go back to reference Yu C, Xu A, Lang Y, Qin C, Wang M, Yuan X, Sun S, Feng W, Gao C, Chen J et al. Swine promyelocytic Leukemia isoform II inhibits pseudorabies Virus Infection by suppressing viral gene transcription in promyelocytic Leukemia Nuclear bodies. J Virol. 2020; 94. Yu C, Xu A, Lang Y, Qin C, Wang M, Yuan X, Sun S, Feng W, Gao C, Chen J et al. Swine promyelocytic Leukemia isoform II inhibits pseudorabies Virus Infection by suppressing viral gene transcription in promyelocytic Leukemia Nuclear bodies. J Virol. 2020; 94.
18.
go back to reference Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus Infection. Mol Aspects Med. 2021;81:100994.CrossRefPubMed Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus Infection. Mol Aspects Med. 2021;81:100994.CrossRefPubMed
19.
go back to reference Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra S, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol. 2022;167:1739–62.CrossRefPubMedPubMedCentral Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra S, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol. 2022;167:1739–62.CrossRefPubMedPubMedCentral
20.
go back to reference Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, Marfin AA, Solomon T, Tsai TF, Tsu VD, Ginsburg AS. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ. 2011;89:766–74. 774A-774E.CrossRefPubMedPubMedCentral Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, Marfin AA, Solomon T, Tsai TF, Tsu VD, Ginsburg AS. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ. 2011;89:766–74. 774A-774E.CrossRefPubMedPubMedCentral
21.
go back to reference Wang H, Liang G. Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag. 2015;11:435–48.PubMedPubMedCentral Wang H, Liang G. Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag. 2015;11:435–48.PubMedPubMedCentral
22.
go back to reference Takashima I, Watanabe T, Ouchi N, Hashimoto N. Ecological studies of Japanese encephalitis virus in Hokkaido: interepidemic outbreaks of swine abortion and evidence for the virus to overwinter locally. Am J Trop Med Hyg. 1988;38:420–7.CrossRefPubMed Takashima I, Watanabe T, Ouchi N, Hashimoto N. Ecological studies of Japanese encephalitis virus in Hokkaido: interepidemic outbreaks of swine abortion and evidence for the virus to overwinter locally. Am J Trop Med Hyg. 1988;38:420–7.CrossRefPubMed
23.
go back to reference Burns KF. Congenital Japanese B encephalitis Infection of swine. Proc Soc Exp Biol Med. 1950;75:621–5.CrossRefPubMed Burns KF. Congenital Japanese B encephalitis Infection of swine. Proc Soc Exp Biol Med. 1950;75:621–5.CrossRefPubMed
24.
go back to reference Zhu J, Chen Z, Dai Z, Zhou X, Wang H, Li X, Zhao A, Yang S. Molecular Cloning of Alternative Splicing variants of the porcine PML Gene and its expression patterns during Japanese encephalitis virus Infection. Front Veterinary Sci. 2021; 8. Zhu J, Chen Z, Dai Z, Zhou X, Wang H, Li X, Zhao A, Yang S. Molecular Cloning of Alternative Splicing variants of the porcine PML Gene and its expression patterns during Japanese encephalitis virus Infection. Front Veterinary Sci. 2021; 8.
25.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed
29.
go back to reference Neerukonda SN. Interplay between RNA viruses and promyelocytic Leukemia Nuclear bodies. Vet Sci. 2021; 8. Neerukonda SN. Interplay between RNA viruses and promyelocytic Leukemia Nuclear bodies. Vet Sci. 2021; 8.
30.
go back to reference Mai J, Stubbe M, Hofmann S, Masser S, Dobner T, Boutell C, Groitl P, Schreiner S. PML alternative splice products differentially regulate HAdV productive Infection. Microbiol Spectr. 2022;10:e0078522.CrossRefPubMed Mai J, Stubbe M, Hofmann S, Masser S, Dobner T, Boutell C, Groitl P, Schreiner S. PML alternative splice products differentially regulate HAdV productive Infection. Microbiol Spectr. 2022;10:e0078522.CrossRefPubMed
31.
go back to reference Zhou H, Tang Y-D, Zheng C. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth F R. 2022. Zhou H, Tang Y-D, Zheng C. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth F R. 2022.
32.
go back to reference Maarifi G, Chelbi-Alix MK, Nisole S. PML control of cytokine signaling. Cytokine Growth Factor Rev. 2014;25:551–61.CrossRefPubMed Maarifi G, Chelbi-Alix MK, Nisole S. PML control of cytokine signaling. Cytokine Growth Factor Rev. 2014;25:551–61.CrossRefPubMed
33.
go back to reference Lavau C, Marchio A, Fagioli M, Jansen J, Falini B, Lebon P, Grosveld F, Pandolfi PP, Pelicci PG, Dejean A. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene. 1995;11:871–6.PubMed Lavau C, Marchio A, Fagioli M, Jansen J, Falini B, Lebon P, Grosveld F, Pandolfi PP, Pelicci PG, Dejean A. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene. 1995;11:871–6.PubMed
34.
go back to reference Chee AV, Lopez P, Pandolfi PP, Roizman B. Promyelocytic Leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J Virol. 2003;77:7101–5.CrossRefPubMedPubMedCentral Chee AV, Lopez P, Pandolfi PP, Roizman B. Promyelocytic Leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J Virol. 2003;77:7101–5.CrossRefPubMedPubMedCentral
35.
go back to reference Chen Y, Wright J, Meng X, Leppard KN. Promyelocytic Leukemia protein isoform II promotes transcription factor recruitment to activate Interferon Beta and Interferon-Responsive Gene expression. Mol Cell Biol. 2015;35:1660–72.CrossRefPubMedPubMedCentral Chen Y, Wright J, Meng X, Leppard KN. Promyelocytic Leukemia protein isoform II promotes transcription factor recruitment to activate Interferon Beta and Interferon-Responsive Gene expression. Mol Cell Biol. 2015;35:1660–72.CrossRefPubMedPubMedCentral
36.
go back to reference El Bougrini J, Dianoux L, Chelbi-Alix MK. PML positively regulates interferon gamma signaling. Biochimie. 2011;93:389–98.CrossRefPubMed El Bougrini J, Dianoux L, Chelbi-Alix MK. PML positively regulates interferon gamma signaling. Biochimie. 2011;93:389–98.CrossRefPubMed
38.
go back to reference Manocha GD, Mishra R, Sharma N, Kumawat KL, Basu A, Singh SK. Regulatory role of TRIM21 in the type-I interferon pathway in Japanese encephalitis virus-infected human microglial cells. J Neuroinflammation. 2014;11:24.CrossRefPubMedPubMedCentral Manocha GD, Mishra R, Sharma N, Kumawat KL, Basu A, Singh SK. Regulatory role of TRIM21 in the type-I interferon pathway in Japanese encephalitis virus-infected human microglial cells. J Neuroinflammation. 2014;11:24.CrossRefPubMedPubMedCentral
39.
go back to reference Chang CY, Liu HM, Chang MF, Chang SC. Middle East Respiratory Syndrome Coronavirus Nucleocapsid protein suppresses type I and type III Interferon induction by targeting RIG-I signaling. J Virol. 2020; 94. Chang CY, Liu HM, Chang MF, Chang SC. Middle East Respiratory Syndrome Coronavirus Nucleocapsid protein suppresses type I and type III Interferon induction by targeting RIG-I signaling. J Virol. 2020; 94.
40.
go back to reference Turelli P, Doucas V, Craig E, Mangeat B, Klages N, Evans R, Kalpana G, Trono D. Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol Cell. 2001;7:1245–54.CrossRefPubMed Turelli P, Doucas V, Craig E, Mangeat B, Klages N, Evans R, Kalpana G, Trono D. Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol Cell. 2001;7:1245–54.CrossRefPubMed
41.
go back to reference Wang S, Ren X, Li J, Lin C, Zhou J, Zhou J, Gu J. NAP1L4 inhibits porcine circovirus type 2 replication via IFN-β signaling pathway. Vet Microbiol. 2020;246:108692.CrossRefPubMed Wang S, Ren X, Li J, Lin C, Zhou J, Zhou J, Gu J. NAP1L4 inhibits porcine circovirus type 2 replication via IFN-β signaling pathway. Vet Microbiol. 2020;246:108692.CrossRefPubMed
42.
go back to reference Huang B, Li J, Zhang X, Zhao Q, Lu M, Lv Y. RIG-1 and MDA-5 signaling pathways contribute to IFN-β production and viral replication in porcine Circovirus virus type 2-infected PK-15 cells in vitro. Vet Microbiol. 2017;211:36–42.CrossRefPubMed Huang B, Li J, Zhang X, Zhao Q, Lu M, Lv Y. RIG-1 and MDA-5 signaling pathways contribute to IFN-β production and viral replication in porcine Circovirus virus type 2-infected PK-15 cells in vitro. Vet Microbiol. 2017;211:36–42.CrossRefPubMed
43.
go back to reference Chang TH, Liao CL, Lin YL. Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect. 2006;8:157–71.CrossRefPubMed Chang TH, Liao CL, Lin YL. Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect. 2006;8:157–71.CrossRefPubMed
44.
go back to reference Jiang R, Ye J, Zhu B, Song Y, Chen H, Cao S. Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection. J Immunol Res. 2014; 2014:787023. Jiang R, Ye J, Zhu B, Song Y, Chen H, Cao S. Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection. J Immunol Res. 2014; 2014:787023.
46.
go back to reference Hamrashdi MA, Brady G. Regulation of IRF3 activation in human antiviral signalling pathways. Biochem Pharmacol. 2022:115026. Hamrashdi MA, Brady G. Regulation of IRF3 activation in human antiviral signalling pathways. Biochem Pharmacol. 2022:115026.
Metadata
Title
Porcine promyelocytic leukemia protein isoforms suppress Japanese encephalitis virus replication in PK15 cells
Authors
Zhenyu Chen
Huaijin Liu
Jingjing Zhu
Xing Duan
Han Wang
Xiangchen Li
Xiaolong Zhou
Ayong Zhao
Songbai Yang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02212-x

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.