Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Chloroquin | Research

3C protease of enterovirus 71 cleaves promyelocytic leukemia protein and impairs PML-NBs production

Authors: Zhuoran Li, Ya’ni Wu, Hui Li, Wenqian Li, Juan Tan, Wentao Qiao

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Enterovirus 71 (EV71) usually infects infants causing hand-foot-mouth disease (HFMD), even fatal neurological disease like aseptic meningitis. Effective drug for preventing and treating EV71 infection is unavailable currently. EV71 3C mediated the cleavage of many proteins and played an important role in viral inhibiting host innate immunity. Promyelocytic leukemia (PML) protein, the primary organizer of PML nuclear bodies (PML-NBs), can be induced by interferon and is involved in antiviral activity. PML inhibits EV71 replication, and EV71 infection reduces PML expression, but the molecular mechanism is unclear.

Methods

The cleavage of PMLIII and IV was confirmed by co-transfection of EV71 3C protease and PML. The detailed cleavage sites were evaluated further by constructing the Q to A mutant of PML. PML knockout cells were infected with EV71 to identify the effect of cleavage on EV71 replication. Immunofluorescence analysis to examine the interference of EV71 3C on the formation of PML-NBs.

Results

EV71 3C directly cleaved PMLIII and IV. Furthermore, 3C cleaved PMLIV at the sites of Q430–A431 and Q444–S445 through its protease activity. Overexpression of PMLIV Q430A/Q444A variant exhibited stronger antiviral potential than the wild type. PMLIV Q430A/Q444A formed normal nuclear bodies that were not affected by 3C, suggesting that 3C may impair PML-NBs production via PMLIV cleavage and counter its antiviral activities. PML, especially PMLIV, which sequesters viral proteins in PML-NBs and inhibits viral production, is a novel target of EV71 3C cleavage.

Conclusions

EV71 3C cleaves PMLIV at Q430–A431 and Q444–S445. Cleavage reduces the antiviral function of PML and decomposes the formation of PML-NBs, which is conducive to virus replication.
Literature
1.
go back to reference de Crom SC, Rossen JW, van Furth AM, Obihara CC. Enterovirus and parechovirus infection in children: a brief overview. Eur J Pediatr. 2016;175:1023–9.PubMedPubMedCentralCrossRef de Crom SC, Rossen JW, van Furth AM, Obihara CC. Enterovirus and parechovirus infection in children: a brief overview. Eur J Pediatr. 2016;175:1023–9.PubMedPubMedCentralCrossRef
2.
go back to reference Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis. 1974;129:304–9.PubMedCrossRef Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis. 1974;129:304–9.PubMedCrossRef
3.
go back to reference Chumakov M, Voroshilova M, Shindarov L, Lavrova I, Gracheva L, Koroleva G, Vasilenko S, Brodvarova I, Nikolova M, Gyurova S, et al. Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol. 1979;60:329–40.PubMedCrossRef Chumakov M, Voroshilova M, Shindarov L, Lavrova I, Gracheva L, Koroleva G, Vasilenko S, Brodvarova I, Nikolova M, Gyurova S, et al. Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol. 1979;60:329–40.PubMedCrossRef
4.
go back to reference Melnick JL, Schmidt NJ, Mirkovic RR, Chumakov MP, Lavrova IK, Voroshilova MK. Identification of Bulgarian strain 258 of enterovirus 71. Intervirology. 1980;12:297–302.PubMedCrossRef Melnick JL, Schmidt NJ, Mirkovic RR, Chumakov MP, Lavrova IK, Voroshilova MK. Identification of Bulgarian strain 258 of enterovirus 71. Intervirology. 1980;12:297–302.PubMedCrossRef
5.
go back to reference Huang CC, Liu CC, Chang YC, Chen CY, Wang ST, Yeh TF. Neurologic complications in children with enterovirus 71 infection. N Engl J Med. 1999;341:936–42.PubMedCrossRef Huang CC, Liu CC, Chang YC, Chen CY, Wang ST, Yeh TF. Neurologic complications in children with enterovirus 71 infection. N Engl J Med. 1999;341:936–42.PubMedCrossRef
6.
go back to reference World-Health-Organization. Hand, foot and mouth disease situation update 2018. World-Health-Organization; 2018. World-Health-Organization. Hand, foot and mouth disease situation update 2018. World-Health-Organization; 2018.
7.
go back to reference Teoh HL, Mohammad SS, Britton PN, Kandula T, Lorentzos MS, Booy R, Jones CA, Rawlinson W, Ramachandran V, Rodriguez ML, et al. Clinical characteristics and functional motor outcomes of enterovirus 71 neurological disease in children. JAMA Neurol. 2016;73:300–7.PubMedCrossRef Teoh HL, Mohammad SS, Britton PN, Kandula T, Lorentzos MS, Booy R, Jones CA, Rawlinson W, Ramachandran V, Rodriguez ML, et al. Clinical characteristics and functional motor outcomes of enterovirus 71 neurological disease in children. JAMA Neurol. 2016;73:300–7.PubMedCrossRef
8.
go back to reference Weng KF, Chen LL, Huang PN, Shih SR. Neural pathogenesis of enterovirus 71 infection. Microbes Infect. 2010;12:505–10.PubMedCrossRef Weng KF, Chen LL, Huang PN, Shih SR. Neural pathogenesis of enterovirus 71 infection. Microbes Infect. 2010;12:505–10.PubMedCrossRef
9.
go back to reference Yi L, Lu J, Kung HF, He ML. The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol. 2011;37:313–27.PubMedCrossRef Yi L, Lu J, Kung HF, He ML. The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol. 2011;37:313–27.PubMedCrossRef
11.
go back to reference Wang X, Zhu C, Bao W, Zhao K, Niu J, Yu XF, Zhang W. Characterization of full-length enterovirus 71 strains from severe and mild disease patients in northeastern China. PLoS ONE. 2012;7:e32405.PubMedPubMedCentralCrossRef Wang X, Zhu C, Bao W, Zhao K, Niu J, Yu XF, Zhang W. Characterization of full-length enterovirus 71 strains from severe and mild disease patients in northeastern China. PLoS ONE. 2012;7:e32405.PubMedPubMedCentralCrossRef
12.
go back to reference Wang H, Li Y. Recent progress on functional genomics research of enterovirus 71. Virol Sin. 2019;34:9–21.PubMedCrossRef Wang H, Li Y. Recent progress on functional genomics research of enterovirus 71. Virol Sin. 2019;34:9–21.PubMedCrossRef
13.
go back to reference Li ML, Hsu TA, Chen TC, Chang SC, Lee JC, Chen CC, Stollar V, Shih SR. The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology. 2002;293:386–95.PubMedCrossRef Li ML, Hsu TA, Chen TC, Chang SC, Lee JC, Chen CC, Stollar V, Shih SR. The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology. 2002;293:386–95.PubMedCrossRef
14.
go back to reference Wen W, Qi Z, Wang J. The function and mechanism of enterovirus 71 (EV71) 3C protease. Curr Microbiol. 2020;77:1968–75.PubMedCrossRef Wen W, Qi Z, Wang J. The function and mechanism of enterovirus 71 (EV71) 3C protease. Curr Microbiol. 2020;77:1968–75.PubMedCrossRef
15.
go back to reference Shih SR, Chiang C, Chen TC, Wu CN, Hsu JT, Lee JC, Hwang MJ, Li ML, Chen GW, Ho MS. Mutations at KFRDI and VGK domains of enterovirus 71 3C protease affect its RNA binding and proteolytic activities. J Biomed Sci. 2004;11:239–48.PubMedCrossRef Shih SR, Chiang C, Chen TC, Wu CN, Hsu JT, Lee JC, Hwang MJ, Li ML, Chen GW, Ho MS. Mutations at KFRDI and VGK domains of enterovirus 71 3C protease affect its RNA binding and proteolytic activities. J Biomed Sci. 2004;11:239–48.PubMedCrossRef
16.
go back to reference Weng KF, Li ML, Hung CT, Shih SR. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS Pathog. 2009;5:e1000593.PubMedPubMedCentralCrossRef Weng KF, Li ML, Hung CT, Shih SR. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS Pathog. 2009;5:e1000593.PubMedPubMedCentralCrossRef
17.
go back to reference Li J, Yao Y, Chen Y, Xu X, Lin Y, Yang Z, Qiao W, Tan J. Enterovirus 71 3C promotes apoptosis through cleavage of PinX1, a telomere binding protein. J Virol. 2017;91:e02016.PubMedPubMedCentralCrossRef Li J, Yao Y, Chen Y, Xu X, Lin Y, Yang Z, Qiao W, Tan J. Enterovirus 71 3C promotes apoptosis through cleavage of PinX1, a telomere binding protein. J Virol. 2017;91:e02016.PubMedPubMedCentralCrossRef
18.
go back to reference Wo X, Yuan Y, Xu Y, Chen Y, Wang Y, Zhao S, Lin L, Zhong X, Wang Y, Zhong Z, Zhao W. TAR DNA-binding protein 43 is cleaved by the protease 3C of enterovirus A71. Virol Sin. 2021;36:95–103.PubMedCrossRef Wo X, Yuan Y, Xu Y, Chen Y, Wang Y, Zhao S, Lin L, Zhong X, Wang Y, Zhong Z, Zhao W. TAR DNA-binding protein 43 is cleaved by the protease 3C of enterovirus A71. Virol Sin. 2021;36:95–103.PubMedCrossRef
19.
go back to reference Lei X, Xiao X, Xue Q, Jin Q, He B, Wang J. Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses. J Virol. 2013;87:1690–8.PubMedPubMedCentralCrossRef Lei X, Xiao X, Xue Q, Jin Q, He B, Wang J. Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses. J Virol. 2013;87:1690–8.PubMedPubMedCentralCrossRef
20.
go back to reference Xu C, He X, Zheng Z, Zhang Z, Wei C, Guan K, Hou L, Zhang B, Zhu L, Cao Y, et al. Downregulation of microRNA miR-526a by enterovirus inhibits RIG-I-dependent innate immune response. J Virol. 2014;88:11356–68.PubMedPubMedCentralCrossRef Xu C, He X, Zheng Z, Zhang Z, Wei C, Guan K, Hou L, Zhang B, Zhu L, Cao Y, et al. Downregulation of microRNA miR-526a by enterovirus inhibits RIG-I-dependent innate immune response. J Virol. 2014;88:11356–68.PubMedPubMedCentralCrossRef
21.
go back to reference Wang H, Lei X, Xiao X, Yang C, Lu W, Huang Z, Leng Q, Jin Q, He B, Meng G, Wang J. Reciprocal regulation between enterovirus 71 and the NLRP3 inflammasome. Cell Rep. 2015;12:42–8.PubMedCrossRef Wang H, Lei X, Xiao X, Yang C, Lu W, Huang Z, Leng Q, Jin Q, He B, Meng G, Wang J. Reciprocal regulation between enterovirus 71 and the NLRP3 inflammasome. Cell Rep. 2015;12:42–8.PubMedCrossRef
22.
go back to reference Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007;8:1006–16.PubMedCrossRef Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007;8:1006–16.PubMedCrossRef
23.
go back to reference de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84.PubMedCrossRef de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84.PubMedCrossRef
24.
go back to reference Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VVVS, Dmitrovsky E, Evans RM. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell. 1991;66:663–74.PubMedCrossRef Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VVVS, Dmitrovsky E, Evans RM. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell. 1991;66:663–74.PubMedCrossRef
25.
go back to reference Pandolfi PP, Grignani F, Alcalay M, Mencarelli A, Biondi A, LoCoco F, Grignani F, Pelicci PG. Structure and origin of the acute promyelocytic leukemia myl/RAR alpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene. 1991;6:1285–92.PubMed Pandolfi PP, Grignani F, Alcalay M, Mencarelli A, Biondi A, LoCoco F, Grignani F, Pelicci PG. Structure and origin of the acute promyelocytic leukemia myl/RAR alpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene. 1991;6:1285–92.PubMed
26.
go back to reference El Asmi F, Maroui MA, Dutrieux J, Blondel D, Nisole S, Chelbi-Alix MK. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog. 2014;10:e1003975.PubMedPubMedCentralCrossRef El Asmi F, Maroui MA, Dutrieux J, Blondel D, Nisole S, Chelbi-Alix MK. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog. 2014;10:e1003975.PubMedPubMedCentralCrossRef
27.
go back to reference Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene. 2001;20:7223–33.PubMedCrossRef Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene. 2001;20:7223–33.PubMedCrossRef
28.
go back to reference Chen D, Feng C, Tian X, Zheng N, Wu Z. Promyelocytic leukemia restricts enterovirus 71 replication by inhibiting autophagy. Front Immunol. 2018;9:1268.PubMedPubMedCentralCrossRef Chen D, Feng C, Tian X, Zheng N, Wu Z. Promyelocytic leukemia restricts enterovirus 71 replication by inhibiting autophagy. Front Immunol. 2018;9:1268.PubMedPubMedCentralCrossRef
31.
go back to reference Li ML, Lin JY, Chen BS, Weng KF, Shih SR, Calderon JD, Tolbert BS, Brewer G. EV71 3C protease induces apoptosis by cleavage of hnRNP A1 to promote apaf-1 translation. PLoS ONE. 2019;14:e0221048.PubMedPubMedCentralCrossRef Li ML, Lin JY, Chen BS, Weng KF, Shih SR, Calderon JD, Tolbert BS, Brewer G. EV71 3C protease induces apoptosis by cleavage of hnRNP A1 to promote apaf-1 translation. PLoS ONE. 2019;14:e0221048.PubMedPubMedCentralCrossRef
32.
go back to reference Lei X, Han N, Xiao X, Jin Q, He B, Wang J. Enterovirus 71 3C inhibits cytokine expression through cleavage of the TAK1/TAB1/TAB2/TAB3 complex. J Virol. 2014;88:9830–41.PubMedPubMedCentralCrossRef Lei X, Han N, Xiao X, Jin Q, He B, Wang J. Enterovirus 71 3C inhibits cytokine expression through cleavage of the TAK1/TAB1/TAB2/TAB3 complex. J Virol. 2014;88:9830–41.PubMedPubMedCentralCrossRef
33.
34.
go back to reference Dikic I. Proteasomal and autophagic degradation systems. Annu Rev Biochem. 2017;86:193–224.CrossRef Dikic I. Proteasomal and autophagic degradation systems. Annu Rev Biochem. 2017;86:193–224.CrossRef
35.
go back to reference Varshavsky A. The ubiquitin system, autophagy, and regulated protein degradation. Annu Rev Biochem. 2017;86:123–8.CrossRef Varshavsky A. The ubiquitin system, autophagy, and regulated protein degradation. Annu Rev Biochem. 2017;86:123–8.CrossRef
36.
go back to reference Chelbi-Alix MK, de The H. Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene. 1999;18:935–41.PubMedCrossRef Chelbi-Alix MK, de The H. Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene. 1999;18:935–41.PubMedCrossRef
37.
go back to reference Pampin M, Simonin Y, Blondel B, Percherancier Y, Chelbi-Alix MK. Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense. J Virol. 2006;80:8582–92.PubMedPubMedCentralCrossRef Pampin M, Simonin Y, Blondel B, Percherancier Y, Chelbi-Alix MK. Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense. J Virol. 2006;80:8582–92.PubMedPubMedCentralCrossRef
38.
go back to reference El McHichi B, Regad T, Maroui MA, Rodriguez MS, Aminev A, Gerbaud S, Escriou N, Dianoux L, Chelbi-Alix MK. SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol. 2010;84:11634–45.PubMedPubMedCentralCrossRef El McHichi B, Regad T, Maroui MA, Rodriguez MS, Aminev A, Gerbaud S, Escriou N, Dianoux L, Chelbi-Alix MK. SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol. 2010;84:11634–45.PubMedPubMedCentralCrossRef
39.
go back to reference Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol. 2015;6:594.PubMedPubMedCentralCrossRef Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol. 2015;6:594.PubMedPubMedCentralCrossRef
40.
go back to reference Geoffroy MC, Chelbi-Alix MK. Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res. 2011;31:145–58.PubMedCrossRef Geoffroy MC, Chelbi-Alix MK. Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res. 2011;31:145–58.PubMedCrossRef
41.
go back to reference Cui S, Wang J, Fan T, Qin B, Guo L, Lei X, Wang J, Wang M, Jin Q. Crystal structure of human enterovirus 71 3C protease. J Mol Biol. 2011;408:449–61.PubMedPubMedCentralCrossRef Cui S, Wang J, Fan T, Qin B, Guo L, Lei X, Wang J, Wang M, Jin Q. Crystal structure of human enterovirus 71 3C protease. J Mol Biol. 2011;408:449–61.PubMedPubMedCentralCrossRef
Metadata
Title
3C protease of enterovirus 71 cleaves promyelocytic leukemia protein and impairs PML-NBs production
Authors
Zhuoran Li
Ya’ni Wu
Hui Li
Wenqian Li
Juan Tan
Wentao Qiao
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01725-7

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue