Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Influenza Virus | Review

Virus usurps alternative splicing to clear the decks for infection

Authors: Ruixue Li, Shenyan Gao, Huayuan Chen, Xiaozhan Zhang, Xia Yang, Jun Zhao, Zeng Wang

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future.
Literature
2.
go back to reference Chow LT, Roberts JM, Lewis JB, Broker TR. A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids. Cell. 1977;11:819–36.PubMedCrossRef Chow LT, Roberts JM, Lewis JB, Broker TR. A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids. Cell. 1977;11:819–36.PubMedCrossRef
4.
go back to reference Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–5.PubMedCrossRef Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–5.PubMedCrossRef
7.
go back to reference Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci. 2010;35:169–78.PubMedCrossRef Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci. 2010;35:169–78.PubMedCrossRef
10.
go back to reference Papasaikas P, Valcarcel J. The spliceosome: the ultimate RNA chaperone and sculptor. Trends Biochem Sci. 2016;41:33–45.PubMedCrossRef Papasaikas P, Valcarcel J. The spliceosome: the ultimate RNA chaperone and sculptor. Trends Biochem Sci. 2016;41:33–45.PubMedCrossRef
11.
go back to reference Graham SV, Faizo AAA. Control of human papillomavirus gene expression by alternative splicing. Virus Res. 2017;231:83–95.PubMedCrossRef Graham SV, Faizo AAA. Control of human papillomavirus gene expression by alternative splicing. Virus Res. 2017;231:83–95.PubMedCrossRef
12.
go back to reference Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol. 2022;24:242–54.PubMedCrossRef Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol. 2022;24:242–54.PubMedCrossRef
13.
go back to reference Graveley BR. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 2001;17:100–7.PubMedCrossRef Graveley BR. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 2001;17:100–7.PubMedCrossRef
15.
go back to reference Gomez-Redondo I, Planells B, Navarrete P, Gutierrez-Adan A. Role of alternative splicing in sex determination in vertebrates. Sex Dev. 2021;15:381–91.PubMedCrossRef Gomez-Redondo I, Planells B, Navarrete P, Gutierrez-Adan A. Role of alternative splicing in sex determination in vertebrates. Sex Dev. 2021;15:381–91.PubMedCrossRef
17.
go back to reference Bonnal SC, Lopez-Oreja I, Valcarcel J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat Rev Clin Oncol. 2020;17:457–74.PubMedCrossRef Bonnal SC, Lopez-Oreja I, Valcarcel J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat Rev Clin Oncol. 2020;17:457–74.PubMedCrossRef
18.
go back to reference Sehrawat S, Garcia-Blanco MA. RNA virus infections and their effect on host alternative splicing. Antiviral Res. 2023;210:105503.PubMedCrossRef Sehrawat S, Garcia-Blanco MA. RNA virus infections and their effect on host alternative splicing. Antiviral Res. 2023;210:105503.PubMedCrossRef
19.
go back to reference Purcell DF, Martin MA. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993;67:6365–78.PubMedPubMedCentralCrossRef Purcell DF, Martin MA. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993;67:6365–78.PubMedPubMedCentralCrossRef
24.
go back to reference Himmelspach M, Cavaloc Y, Chebli K, Stévenin J, Gattoni R. Titration of serine/arginine (SR) splicing factors during adenoviral infection modulates E1A pre-mRNA alternative splicing. RNA. 1995;1:794–806.PubMedPubMedCentral Himmelspach M, Cavaloc Y, Chebli K, Stévenin J, Gattoni R. Titration of serine/arginine (SR) splicing factors during adenoviral infection modulates E1A pre-mRNA alternative splicing. RNA. 1995;1:794–806.PubMedPubMedCentral
25.
go back to reference Schmitt P, Gattoni R, Keohavong P, Stevenin J. Alternative splicing of E1A transcripts of adenovirus requires appropriate ionic conditions in vitro. Cell. 1987;50:31–9.PubMedCrossRef Schmitt P, Gattoni R, Keohavong P, Stevenin J. Alternative splicing of E1A transcripts of adenovirus requires appropriate ionic conditions in vitro. Cell. 1987;50:31–9.PubMedCrossRef
26.
go back to reference Gattoni R, Chebli K, Himmelspach M, Stevenin J. Modulation of alternative splicing of adenoviral E1A transcripts: factors involved in the early-to-late transition. Genes Dev. 1991;5:1847–58.PubMedCrossRef Gattoni R, Chebli K, Himmelspach M, Stevenin J. Modulation of alternative splicing of adenoviral E1A transcripts: factors involved in the early-to-late transition. Genes Dev. 1991;5:1847–58.PubMedCrossRef
27.
go back to reference Dauksaite V, Akusjärvi G. The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5’-splice site selection. Biochem J. 2004;381:343–50.PubMedPubMedCentralCrossRef Dauksaite V, Akusjärvi G. The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5’-splice site selection. Biochem J. 2004;381:343–50.PubMedPubMedCentralCrossRef
28.
go back to reference Mayeda A, Krainer AR. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell. 1992;68:365–75.PubMedCrossRef Mayeda A, Krainer AR. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell. 1992;68:365–75.PubMedCrossRef
29.
go back to reference Caceres JF, Misteli T, Screaton GR, Spector DL, Krainer AR. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J Cell Biol. 1997;138:225–38.PubMedPubMedCentralCrossRef Caceres JF, Misteli T, Screaton GR, Spector DL, Krainer AR. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J Cell Biol. 1997;138:225–38.PubMedPubMedCentralCrossRef
30.
31.
go back to reference Bourgeois CF, Popielarz M, Hildwein G, Stevenin J. Identification of a bidirectional splicing enhancer: differential involvement of SR proteins in 5’ or 3’ splice site activation. Mol Cell Biol. 1999;19:7347–56.PubMedPubMedCentralCrossRef Bourgeois CF, Popielarz M, Hildwein G, Stevenin J. Identification of a bidirectional splicing enhancer: differential involvement of SR proteins in 5’ or 3’ splice site activation. Mol Cell Biol. 1999;19:7347–56.PubMedPubMedCentralCrossRef
32.
go back to reference Kreivi JP, Akusjärvi G. Regulation of adenovirus alternative RNA splicing at the level of commitment complex formation. Nucleic Acids Res. 1994;22:332–7.PubMedPubMedCentralCrossRef Kreivi JP, Akusjärvi G. Regulation of adenovirus alternative RNA splicing at the level of commitment complex formation. Nucleic Acids Res. 1994;22:332–7.PubMedPubMedCentralCrossRef
33.
36.
go back to reference Nevins JR, Wilson MC. Regulation of adenovirus-2 gene expression at the level of transcriptional termination and RNA processing. Nature. 1981;290:113–8.PubMedCrossRef Nevins JR, Wilson MC. Regulation of adenovirus-2 gene expression at the level of transcriptional termination and RNA processing. Nature. 1981;290:113–8.PubMedCrossRef
37.
go back to reference Delsert C, Morin N, Klessig DF. cis-acting elements and a trans-acting factor affecting alternative splicing of adenovirus L1 transcripts. Mol Cell Biol. 1989;9:4364–71.PubMedPubMedCentral Delsert C, Morin N, Klessig DF. cis-acting elements and a trans-acting factor affecting alternative splicing of adenovirus L1 transcripts. Mol Cell Biol. 1989;9:4364–71.PubMedPubMedCentral
38.
go back to reference Dauksaite V, Akusjarvi G. Human splicing factor ASF/SF2 encodes for a repressor domain required for its inhibitory activity on pre-mRNA splicing. J Biol Chem. 2002;277:12579–86.PubMedCrossRef Dauksaite V, Akusjarvi G. Human splicing factor ASF/SF2 encodes for a repressor domain required for its inhibitory activity on pre-mRNA splicing. J Biol Chem. 2002;277:12579–86.PubMedCrossRef
39.
go back to reference Huang TS, Nilsson CE, Punga T, Akusjarvi G. Functional inactivation of the SR family of splicing factors during a vaccinia virus infection. EMBO Rep. 2002;3:1088–93.PubMedPubMedCentralCrossRef Huang TS, Nilsson CE, Punga T, Akusjarvi G. Functional inactivation of the SR family of splicing factors during a vaccinia virus infection. EMBO Rep. 2002;3:1088–93.PubMedPubMedCentralCrossRef
40.
go back to reference Kanopka A, Muhlemann O, Petersen-Mahrt S, Estmer C, Ohrmalm C, Akusjarvi G. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature. 1998;393:185–7.PubMedCrossRef Kanopka A, Muhlemann O, Petersen-Mahrt S, Estmer C, Ohrmalm C, Akusjarvi G. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature. 1998;393:185–7.PubMedCrossRef
41.
go back to reference Tormanen H, Backstrom E, Carlsson A, Akusjarvi G. L4–33K, an adenovirus-encoded alternative RNA splicing factor. J Biol Chem. 2006;281:36510–7.PubMedCrossRef Tormanen H, Backstrom E, Carlsson A, Akusjarvi G. L4–33K, an adenovirus-encoded alternative RNA splicing factor. J Biol Chem. 2006;281:36510–7.PubMedCrossRef
42.
go back to reference Biasiotto R, Akusjarvi G. Regulation of human adenovirus alternative RNA splicing by the adenoviral L4-33K and L4-22K proteins. Int J Mol Sci. 2015;16:2893–912.PubMedPubMedCentralCrossRef Biasiotto R, Akusjarvi G. Regulation of human adenovirus alternative RNA splicing by the adenoviral L4-33K and L4-22K proteins. Int J Mol Sci. 2015;16:2893–912.PubMedPubMedCentralCrossRef
43.
go back to reference Sommer S, Salditt-Georgieff M, Bachenheimer S, Darnell JE, Furuichi Y, Morgan M, Shatkin AJ. The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic Acids Res. 1976;3:749–65.PubMedPubMedCentralCrossRef Sommer S, Salditt-Georgieff M, Bachenheimer S, Darnell JE, Furuichi Y, Morgan M, Shatkin AJ. The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic Acids Res. 1976;3:749–65.PubMedPubMedCentralCrossRef
44.
go back to reference Price AM, Hayer KE, McIntyre ABR, Gokhale NS, Abebe JS, Della Fera AN, Mason CE, Horner SM, Wilson AC, Depledge DP, Weitzman MD. Direct RNA sequencing reveals m(6)A modifications on adenovirus RNA are necessary for efficient splicing. Nat Commun. 2020;11:6016.PubMedPubMedCentralCrossRef Price AM, Hayer KE, McIntyre ABR, Gokhale NS, Abebe JS, Della Fera AN, Mason CE, Horner SM, Wilson AC, Depledge DP, Weitzman MD. Direct RNA sequencing reveals m(6)A modifications on adenovirus RNA are necessary for efficient splicing. Nat Commun. 2020;11:6016.PubMedPubMedCentralCrossRef
45.
go back to reference Price AM, Steinbock RT, Di C, Hayer KE, Li Y, Herrmann C, Parenti NA, Whelan JN, Weiss SR, Weitzman MD. Adenovirus prevents dsRNA formation by promoting efficient splicing of viral RNA. Nucleic Acids Res. 2022;50:1201–20.PubMedCrossRef Price AM, Steinbock RT, Di C, Hayer KE, Li Y, Herrmann C, Parenti NA, Whelan JN, Weiss SR, Weitzman MD. Adenovirus prevents dsRNA formation by promoting efficient splicing of viral RNA. Nucleic Acids Res. 2022;50:1201–20.PubMedCrossRef
46.
go back to reference Shin KH, Kim RH, Kang MK, Kim RH, Kim SG, Lim PK, Yochim JM, Baluda MA, Park NH. p53 promotes the fidelity of DNA end-joining activity by, in part, enhancing the expression of heterogeneous nuclear ribonucleoprotein G. DNA Repair (Amst). 2007;6:830–40.PubMedCrossRef Shin KH, Kim RH, Kang MK, Kim RH, Kim SG, Lim PK, Yochim JM, Baluda MA, Park NH. p53 promotes the fidelity of DNA end-joining activity by, in part, enhancing the expression of heterogeneous nuclear ribonucleoprotein G. DNA Repair (Amst). 2007;6:830–40.PubMedCrossRef
47.
go back to reference Johansson C, Schwartz S. Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat Rev Microbiol. 2013;11:239–51.PubMedCrossRef Johansson C, Schwartz S. Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat Rev Microbiol. 2013;11:239–51.PubMedCrossRef
49.
go back to reference Johansson C, Somberg M, Li X, Backstrom Winquist E, Fay J, Ryan F, Pim D, Banks L, Schwartz S. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation. EMBO J. 2012;31:3212–27.PubMedPubMedCentralCrossRef Johansson C, Somberg M, Li X, Backstrom Winquist E, Fay J, Ryan F, Pim D, Banks L, Schwartz S. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation. EMBO J. 2012;31:3212–27.PubMedPubMedCentralCrossRef
50.
go back to reference Hao CY, Zheng YJ, Jonsson J, Cui XX, Yu HR, Wu CJ, Kajitani N, Schwartz S. hnRNP G/RBMX enhances HPV16 E2 mRNA splicing through a novel splicing enhancer and inhibits production of spliced E7 oncogene mRNAs. Nucleic Acids Res. 2022;50:3867–91.PubMedPubMedCentralCrossRef Hao CY, Zheng YJ, Jonsson J, Cui XX, Yu HR, Wu CJ, Kajitani N, Schwartz S. hnRNP G/RBMX enhances HPV16 E2 mRNA splicing through a novel splicing enhancer and inhibits production of spliced E7 oncogene mRNAs. Nucleic Acids Res. 2022;50:3867–91.PubMedPubMedCentralCrossRef
51.
go back to reference Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10:550–60.PubMedCrossRef Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10:550–60.PubMedCrossRef
52.
go back to reference Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018;26:158–68.PubMedCrossRef Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018;26:158–68.PubMedCrossRef
53.
go back to reference Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–9.PubMedCrossRef Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–9.PubMedCrossRef
54.
go back to reference Tang S, Tao M, McCoy JP Jr, Zheng ZM. The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol. 2006;80:4249–63.PubMedPubMedCentralCrossRef Tang S, Tao M, McCoy JP Jr, Zheng ZM. The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol. 2006;80:4249–63.PubMedPubMedCentralCrossRef
55.
go back to reference Shally M, Alloul N, Jackman A, Muller M, Gissmann L, Sherman L. The E6 variant proteins E6I–E6IV of human papillomavirus 16: expression in cell free systems and bacteria and study of their interaction with p53. Virus Res. 1996;42:81–96.PubMedCrossRef Shally M, Alloul N, Jackman A, Muller M, Gissmann L, Sherman L. The E6 variant proteins E6I–E6IV of human papillomavirus 16: expression in cell free systems and bacteria and study of their interaction with p53. Virus Res. 1996;42:81–96.PubMedCrossRef
56.
go back to reference Zheng ZM. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci. 2004;11:278–94.PubMedCrossRef Zheng ZM. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci. 2004;11:278–94.PubMedCrossRef
57.
go back to reference Mesplede T, Gagnon D, Bergeron-Labrecque F, Azar I, Senechal H, Coutlee F, Archambault J. p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J Virol. 2012;86:94–107.PubMedPubMedCentralCrossRef Mesplede T, Gagnon D, Bergeron-Labrecque F, Azar I, Senechal H, Coutlee F, Archambault J. p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J Virol. 2012;86:94–107.PubMedPubMedCentralCrossRef
58.
go back to reference Paget-Bailly P, Meznad K, Bruyère D, Perrard J, Herfs M, Jung AC, Mougin C, Prétet J-L, Baguet A. Comparative RNA sequencing reveals that HPV16 E6 abrogates the effect of E6*I on ROS metabolism. Sci Rep. 2019;9:5938.PubMedPubMedCentralCrossRef Paget-Bailly P, Meznad K, Bruyère D, Perrard J, Herfs M, Jung AC, Mougin C, Prétet J-L, Baguet A. Comparative RNA sequencing reveals that HPV16 E6 abrogates the effect of E6*I on ROS metabolism. Sci Rep. 2019;9:5938.PubMedPubMedCentralCrossRef
60.
go back to reference Ajiro M, Tang S, Doorbar J, Zheng ZM. Serine/arginine-rich splicing factor 3 and heterogeneous nuclear ribonucleoprotein A1 regulate alternative RNA splicing and gene expression of human papillomavirus 18 through two functionally distinguishable cis elements. J Virol. 2016;90:9138–52.PubMedPubMedCentralCrossRef Ajiro M, Tang S, Doorbar J, Zheng ZM. Serine/arginine-rich splicing factor 3 and heterogeneous nuclear ribonucleoprotein A1 regulate alternative RNA splicing and gene expression of human papillomavirus 18 through two functionally distinguishable cis elements. J Virol. 2016;90:9138–52.PubMedPubMedCentralCrossRef
62.
go back to reference McFarlane M, MacDonald AI, Stevenson A, Graham SV. Human papillomavirus 16 oncoprotein expression is controlled by the cellular splicing factor SRSF2 (SC35). J Virol. 2015;89:5276–87.PubMedPubMedCentralCrossRef McFarlane M, MacDonald AI, Stevenson A, Graham SV. Human papillomavirus 16 oncoprotein expression is controlled by the cellular splicing factor SRSF2 (SC35). J Virol. 2015;89:5276–87.PubMedPubMedCentralCrossRef
63.
go back to reference Ho JSY, Zhu ZY, Marazzi I. Unconventional viral gene expression mechanisms as therapeutic targets. Nature. 2021;593:362–71.PubMedCrossRef Ho JSY, Zhu ZY, Marazzi I. Unconventional viral gene expression mechanisms as therapeutic targets. Nature. 2021;593:362–71.PubMedCrossRef
65.
go back to reference Cao S, Liu XL, Yu MR, Li J, Jia XJ, Bi YH, Sun L, Gao GF, Liu WJ. A nuclear export signal in the matrix protein of influenza A virus is required for efficient virus replication. J Virol. 2012;86:4883–91.PubMedPubMedCentralCrossRef Cao S, Liu XL, Yu MR, Li J, Jia XJ, Bi YH, Sun L, Gao GF, Liu WJ. A nuclear export signal in the matrix protein of influenza A virus is required for efficient virus replication. J Virol. 2012;86:4883–91.PubMedPubMedCentralCrossRef
66.
go back to reference Jackson D, Lamb RA. The influenza A virus spliced messenger RNA M mRNA3 is not required for viral replication in tissue culture. J Gen Virol. 2008;89:3097–101.PubMedCrossRef Jackson D, Lamb RA. The influenza A virus spliced messenger RNA M mRNA3 is not required for viral replication in tissue culture. J Gen Virol. 2008;89:3097–101.PubMedCrossRef
67.
go back to reference Wise HM, Hutchinson EC, Jagger BW, Stuart AD, Kang ZH, Robb N, Schwartzman LM, Kash JC, Fodor E, Firth AE, et al. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Path. 2012;8:e1002998.CrossRef Wise HM, Hutchinson EC, Jagger BW, Stuart AD, Kang ZH, Robb N, Schwartzman LM, Kash JC, Fodor E, Firth AE, et al. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Path. 2012;8:e1002998.CrossRef
68.
go back to reference Shih SR, Krug RM. Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J. 1996;15:5415–27.PubMedPubMedCentralCrossRef Shih SR, Krug RM. Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J. 1996;15:5415–27.PubMedPubMedCentralCrossRef
69.
go back to reference Shih SR, Nemeroff ME, Krug RM. The choice of alternative 5’ splice sites in influenza virus M1 mRNA is regulated by the viral polymerase complex. Proc Natl Acad Sci U S A. 1995;92:6324–8.PubMedPubMedCentralCrossRef Shih SR, Nemeroff ME, Krug RM. The choice of alternative 5’ splice sites in influenza virus M1 mRNA is regulated by the viral polymerase complex. Proc Natl Acad Sci U S A. 1995;92:6324–8.PubMedPubMedCentralCrossRef
70.
go back to reference Thompson MG, Munoz-Moreno R, Bhat P, Roytenberg R, Lindberg J, Gazzara MR, Mallory MJ, Zhang K, Garcia-Sastre A, Fontoura BMA, Lynch KW. Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nat Commun. 2018;9:2407.PubMedPubMedCentralCrossRef Thompson MG, Munoz-Moreno R, Bhat P, Roytenberg R, Lindberg J, Gazzara MR, Mallory MJ, Zhang K, Garcia-Sastre A, Fontoura BMA, Lynch KW. Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nat Commun. 2018;9:2407.PubMedPubMedCentralCrossRef
72.
go back to reference Robb NC, Fodor E. The accumulation of influenza A virus segment 7 spliced mRNAs is regulated by the NS1 protein. J Gen Virol. 2012;93:113–8.PubMedCrossRef Robb NC, Fodor E. The accumulation of influenza A virus segment 7 spliced mRNAs is regulated by the NS1 protein. J Gen Virol. 2012;93:113–8.PubMedCrossRef
73.
go back to reference Muraki Y, Furukawa T, Kohno Y, Matsuzaki Y, Takashita E, Sugawara K, Hongo S. Influenza C virus NS1 protein upregulates the splicing of viral mRNAs. J Virol. 2010;84:1957–66.PubMedCrossRef Muraki Y, Furukawa T, Kohno Y, Matsuzaki Y, Takashita E, Sugawara K, Hongo S. Influenza C virus NS1 protein upregulates the splicing of viral mRNAs. J Virol. 2010;84:1957–66.PubMedCrossRef
74.
go back to reference Zheng M, Wang P, Song W, Lau SY, Liu S, Huang X, Mok BW, Liu YC, Chen Y, Yuen KY, Chen H. An A14U substitution in the 3’ noncoding region of the M segment of viral RNA supports replication of influenza virus with an NS1 deletion by modulating alternative splicing of M segment mRNAs. J Virol. 2015;89:10273–85.PubMedPubMedCentralCrossRef Zheng M, Wang P, Song W, Lau SY, Liu S, Huang X, Mok BW, Liu YC, Chen Y, Yuen KY, Chen H. An A14U substitution in the 3’ noncoding region of the M segment of viral RNA supports replication of influenza virus with an NS1 deletion by modulating alternative splicing of M segment mRNAs. J Virol. 2015;89:10273–85.PubMedPubMedCentralCrossRef
75.
go back to reference Calderon BM, Danzy S, Delima GK, Jacobs NT, Ganti K, Hockman MR, Conn GL, Lowen AC, Steel J. Dysregulation of M segment gene expression contributes to influenza A virus host restriction. PLoS Pathog. 2019;15:e1007892.PubMedPubMedCentralCrossRef Calderon BM, Danzy S, Delima GK, Jacobs NT, Ganti K, Hockman MR, Conn GL, Lowen AC, Steel J. Dysregulation of M segment gene expression contributes to influenza A virus host restriction. PLoS Pathog. 2019;15:e1007892.PubMedPubMedCentralCrossRef
77.
go back to reference Dubois J, Terrier O, Rosa-Calatrava M. Influenza viruses and mRNA splicing: doing more with less. MBio. 2014;5:e0070-e00014.CrossRef Dubois J, Terrier O, Rosa-Calatrava M. Influenza viruses and mRNA splicing: doing more with less. MBio. 2014;5:e0070-e00014.CrossRef
80.
go back to reference Chung YT, Kuan CY, Liao GR, Albrecht RA, Tseng YY, Hsu YC, Ou SC, Hsu WL. A variant NS1 protein from H5N2 avian influenza virus suppresses PKR activation and promotes replication and virulence in mammals. Emerg Microbes Infect. 2022;11:2291–303.PubMedPubMedCentralCrossRef Chung YT, Kuan CY, Liao GR, Albrecht RA, Tseng YY, Hsu YC, Ou SC, Hsu WL. A variant NS1 protein from H5N2 avian influenza virus suppresses PKR activation and promotes replication and virulence in mammals. Emerg Microbes Infect. 2022;11:2291–303.PubMedPubMedCentralCrossRef
81.
go back to reference Garaigorta U, Ortin J. Mutation analysis of a recombinant NS replicon shows that influenza virus NS1 protein blocks the splicing and nucleo-cytoplasmic transport of its own viral mRNA. Nucleic Acids Res. 2007;35:4573–82.PubMedPubMedCentralCrossRef Garaigorta U, Ortin J. Mutation analysis of a recombinant NS replicon shows that influenza virus NS1 protein blocks the splicing and nucleo-cytoplasmic transport of its own viral mRNA. Nucleic Acids Res. 2007;35:4573–82.PubMedPubMedCentralCrossRef
82.
go back to reference Fortes P, Beloso A, Ortin J. Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J. 1994;13:704–12.PubMedPubMedCentralCrossRef Fortes P, Beloso A, Ortin J. Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J. 1994;13:704–12.PubMedPubMedCentralCrossRef
83.
go back to reference Alonso-Caplen FV, Nemeroff ME, Qiu Y, Krug RM. Nucleocytoplasmic transport: the influenza virus NS1 protein regulates the transport of spliced NS2 mRNA and its precursor NS1 mRNA. Genes Dev. 1992;6:255–67.PubMedCrossRef Alonso-Caplen FV, Nemeroff ME, Qiu Y, Krug RM. Nucleocytoplasmic transport: the influenza virus NS1 protein regulates the transport of spliced NS2 mRNA and its precursor NS1 mRNA. Genes Dev. 1992;6:255–67.PubMedCrossRef
84.
go back to reference Alonso-Caplen FV, Krug RM. Regulation of the extent of splicing of influenza virus NS1 mRNA: role of the rates of splicing and of the nucleocytoplasmic transport of NS1 mRNA. Mol Cell Biol. 1991;11:1092–8.PubMedPubMedCentral Alonso-Caplen FV, Krug RM. Regulation of the extent of splicing of influenza virus NS1 mRNA: role of the rates of splicing and of the nucleocytoplasmic transport of NS1 mRNA. Mol Cell Biol. 1991;11:1092–8.PubMedPubMedCentral
85.
go back to reference Hu B, Li X, Huo Y, Yu Y, Zhang Q, Chen G, Zhang Y, Fraser NW, Wu D, Zhou J. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome. Sci Rep. 2016;6:28075.PubMedPubMedCentralCrossRef Hu B, Li X, Huo Y, Yu Y, Zhang Q, Chen G, Zhang Y, Fraser NW, Wu D, Zhou J. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome. Sci Rep. 2016;6:28075.PubMedPubMedCentralCrossRef
86.
go back to reference De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B, Gebhard LG, Mammi P, Mancini E, Yanovsky MJ, Andino R, et al. The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog. 2016;12:e1005841.PubMedPubMedCentralCrossRef De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B, Gebhard LG, Mammi P, Mancini E, Yanovsky MJ, Andino R, et al. The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog. 2016;12:e1005841.PubMedPubMedCentralCrossRef
87.
go back to reference Li D, Su M, Sun PP, Guo WP, Wang CY, Wang JL, Wang H, Zhang Q, Du LY, Xie GC. Global profiling of the alternative splicing landscape reveals transcriptomic diversity during the early phase of enterovirus 71 infection. Virology. 2020;548:213–25.PubMedCrossRef Li D, Su M, Sun PP, Guo WP, Wang CY, Wang JL, Wang H, Zhang Q, Du LY, Xie GC. Global profiling of the alternative splicing landscape reveals transcriptomic diversity during the early phase of enterovirus 71 infection. Virology. 2020;548:213–25.PubMedCrossRef
88.
go back to reference Hu B, Huo Y, Yang L, Chen G, Luo M, Yang J, Zhou J. ZIKV infection effects changes in gene splicing, isoform composition and lncRNA expression in human neural progenitor cells. Virol J. 2017;14:217.PubMedPubMedCentralCrossRef Hu B, Huo Y, Yang L, Chen G, Luo M, Yang J, Zhou J. ZIKV infection effects changes in gene splicing, isoform composition and lncRNA expression in human neural progenitor cells. Virol J. 2017;14:217.PubMedPubMedCentralCrossRef
91.
go back to reference Batra R, Stark TJ, Clark AE, Belzile JP, Wheeler EC, Yee BA, Huang H, Gelboin-Burkhart C, Huelga SC, Aigner S, et al. RNA-binding protein CPEB1 remodels host and viral RNA landscapes. Nat Struct Mol Biol. 2016;23:1101–10.PubMedPubMedCentralCrossRef Batra R, Stark TJ, Clark AE, Belzile JP, Wheeler EC, Yee BA, Huang H, Gelboin-Burkhart C, Huelga SC, Aigner S, et al. RNA-binding protein CPEB1 remodels host and viral RNA landscapes. Nat Struct Mol Biol. 2016;23:1101–10.PubMedPubMedCentralCrossRef
92.
go back to reference Boudreault S, Durand M, Martineau CA, Perreault JP, Lemay G, Bisaillon M. Reovirus mu2 protein modulates host cell alternative splicing by reducing protein levels of U5 snRNP core components. Nucleic Acids Res. 2022;50:5263–81.PubMedPubMedCentralCrossRef Boudreault S, Durand M, Martineau CA, Perreault JP, Lemay G, Bisaillon M. Reovirus mu2 protein modulates host cell alternative splicing by reducing protein levels of U5 snRNP core components. Nucleic Acids Res. 2022;50:5263–81.PubMedPubMedCentralCrossRef
94.
go back to reference Pettit Kneller EL, Connor JH, Lyles DS. hnRNPs Relocalize to the cytoplasm following infection with vesicular stomatitis virus. J Virol. 2009;83:770–80.PubMedCrossRef Pettit Kneller EL, Connor JH, Lyles DS. hnRNPs Relocalize to the cytoplasm following infection with vesicular stomatitis virus. J Virol. 2009;83:770–80.PubMedCrossRef
95.
go back to reference Redondo N, Madan V, Alvarez E, Carrasco L. Impact of vesicular stomatitis virus M proteins on different cellular functions. PLoS ONE. 2015;10:e0131137.PubMedPubMedCentralCrossRef Redondo N, Madan V, Alvarez E, Carrasco L. Impact of vesicular stomatitis virus M proteins on different cellular functions. PLoS ONE. 2015;10:e0131137.PubMedPubMedCentralCrossRef
96.
go back to reference Song J, Quan R, Wang D, Liu J. Seneca valley virus 3C (pro) cleaves heterogeneous nuclear ribonucleoprotein K to facilitate viral replication. Front Microbiol. 2022;13:945443.PubMedPubMedCentralCrossRef Song J, Quan R, Wang D, Liu J. Seneca valley virus 3C (pro) cleaves heterogeneous nuclear ribonucleoprotein K to facilitate viral replication. Front Microbiol. 2022;13:945443.PubMedPubMedCentralCrossRef
97.
go back to reference Fitzgerald KD, Chase AJ, Cathcart AL, Tran GP, Semler BL. Viral proteinase requirements for the nucleocytoplasmic relocalization of cellular splicing factor SRp20 during picornavirus infections. J Virol. 2013;87:2390–400.PubMedPubMedCentralCrossRef Fitzgerald KD, Chase AJ, Cathcart AL, Tran GP, Semler BL. Viral proteinase requirements for the nucleocytoplasmic relocalization of cellular splicing factor SRp20 during picornavirus infections. J Virol. 2013;87:2390–400.PubMedPubMedCentralCrossRef
98.
go back to reference Liu YC, Kuo RL, Lin JY, Huang PN, Huang Y, Liu H, Arnold JJ, Chen SJ, Wang RY, Cameron CE, Shih SR. Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8. PLoS Pathog. 2014;10:e1004199.PubMedPubMedCentralCrossRef Liu YC, Kuo RL, Lin JY, Huang PN, Huang Y, Liu H, Arnold JJ, Chen SJ, Wang RY, Cameron CE, Shih SR. Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8. PLoS Pathog. 2014;10:e1004199.PubMedPubMedCentralCrossRef
99.
go back to reference Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, Chow A, Bhat P, Ollikainen N, Quinodoz SA, Loney C, et al. SARS-CoV-2 disrupts splicing, translation, and protein Trafficking to suppress host defenses. Cell. 2020;183(1325–1339):e1321. Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, Chow A, Bhat P, Ollikainen N, Quinodoz SA, Loney C, et al. SARS-CoV-2 disrupts splicing, translation, and protein Trafficking to suppress host defenses. Cell. 2020;183(1325–1339):e1321.
100.
go back to reference Slonchak A, Khromykh AA. Subgenomic flaviviral RNAs: what do we know after the first decade of research. Antiviral Res. 2018;159:13–25.PubMedCrossRef Slonchak A, Khromykh AA. Subgenomic flaviviral RNAs: what do we know after the first decade of research. Antiviral Res. 2018;159:13–25.PubMedCrossRef
101.
go back to reference Roby JA, Pijlman GP, Wilusz J, Khromykh AA. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses. 2014;6:404–27.PubMedPubMedCentralCrossRef Roby JA, Pijlman GP, Wilusz J, Khromykh AA. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses. 2014;6:404–27.PubMedPubMedCentralCrossRef
102.
go back to reference Bonenfant G, Meng R, Shotwell C, Badu P, Payne AF, Ciota AT, Sammons MA, Berglund JA, Pager CT. Asian zika virus isolate significantly changes the transcriptional profile and alternative RNA splicing events in a neuroblastoma cell line. Viruses-Basel. 2020. https://doi.org/10.3390/v12050510.CrossRef Bonenfant G, Meng R, Shotwell C, Badu P, Payne AF, Ciota AT, Sammons MA, Berglund JA, Pager CT. Asian zika virus isolate significantly changes the transcriptional profile and alternative RNA splicing events in a neuroblastoma cell line. Viruses-Basel. 2020. https://​doi.​org/​10.​3390/​v12050510.CrossRef
103.
go back to reference Michalski D, Ontiveros JG, Russo J, Charley PA, Anderson JR, Heck AM, Geiss BJ, Wilusz J. Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem. 2019;294:16282–96.PubMedPubMedCentralCrossRef Michalski D, Ontiveros JG, Russo J, Charley PA, Anderson JR, Heck AM, Geiss BJ, Wilusz J. Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem. 2019;294:16282–96.PubMedPubMedCentralCrossRef
104.
go back to reference Liang J, Hong Z, Sun B, Guo Z, Wang C, Zhu J. The alternatively spliced isoforms of key molecules in the cGAS-STING signaling pathway. Front Immunol. 2021;12:771744.PubMedPubMedCentralCrossRef Liang J, Hong Z, Sun B, Guo Z, Wang C, Zhu J. The alternatively spliced isoforms of key molecules in the cGAS-STING signaling pathway. Front Immunol. 2021;12:771744.PubMedPubMedCentralCrossRef
105.
106.
go back to reference Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature. 2019;567:389–93.PubMedPubMedCentralCrossRef Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature. 2019;567:389–93.PubMedPubMedCentralCrossRef
107.
go back to reference Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2013;14:19–26.PubMedCrossRef Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2013;14:19–26.PubMedCrossRef
108.
go back to reference Wang PH, Fung SY, Gao WW, Deng JJ, Cheng Y, Chaudhary V, Yuen KS, Ho TH, Chan CP, Zhang Y, et al. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Res. 2018;46:4054–71.PubMedPubMedCentralCrossRef Wang PH, Fung SY, Gao WW, Deng JJ, Cheng Y, Chaudhary V, Yuen KS, Ho TH, Chan CP, Zhang Y, et al. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Res. 2018;46:4054–71.PubMedPubMedCentralCrossRef
109.
go back to reference Chen H, Pei R, Zhu W, Zeng R, Wang Y, Wang Y, Lu M, Chen X. An alternative splicing isoform of MITA antagonizes MITA-mediated induction of type I IFNs. J Immunol. 2014;192:1162–70.PubMedCrossRef Chen H, Pei R, Zhu W, Zeng R, Wang Y, Wang Y, Lu M, Chen X. An alternative splicing isoform of MITA antagonizes MITA-mediated induction of type I IFNs. J Immunol. 2014;192:1162–70.PubMedCrossRef
110.
go back to reference Li C, Feng L, Luo WW, Lei CQ, Li M, Shu HB. The RNA-binding protein LUC7L2 mediates MITA/STING intron retention to negatively regulate innate antiviral response. Cell Discov. 2021;7:46.PubMedPubMedCentralCrossRef Li C, Feng L, Luo WW, Lei CQ, Li M, Shu HB. The RNA-binding protein LUC7L2 mediates MITA/STING intron retention to negatively regulate innate antiviral response. Cell Discov. 2021;7:46.PubMedPubMedCentralCrossRef
111.
go back to reference Deng W, Shi M, Han M, Zhong J, Li Z, Li W, Hu Y, Yan L, Wang J, He Y, et al. Negative regulation of virus-triggered IFN-beta signaling pathway by alternative splicing of TBK1. J Biol Chem. 2008;283:35590–7.PubMedCrossRef Deng W, Shi M, Han M, Zhong J, Li Z, Li W, Hu Y, Yan L, Wang J, He Y, et al. Negative regulation of virus-triggered IFN-beta signaling pathway by alternative splicing of TBK1. J Biol Chem. 2008;283:35590–7.PubMedCrossRef
112.
go back to reference Hu YW, Zhang J, Wu XM, Cao L, Nie P, Chang MX. TANK-Binding Kinase 1 (TBK1) Isoforms negatively regulate type I interferon induction by inhibiting TBK1-IRF3 interaction and IRF3 phosphorylation. Front Immunol. 2018;9:84.PubMedPubMedCentralCrossRef Hu YW, Zhang J, Wu XM, Cao L, Nie P, Chang MX. TANK-Binding Kinase 1 (TBK1) Isoforms negatively regulate type I interferon induction by inhibiting TBK1-IRF3 interaction and IRF3 phosphorylation. Front Immunol. 2018;9:84.PubMedPubMedCentralCrossRef
113.
go back to reference Zhang J, Wu XM, Hu YW, Chang MX. A novel transcript isoform of TBK1 negatively regulates type I IFN production by promoting proteasomal degradation of TBK1 and lysosomal degradation of IRF3. Front Immunol. 2020;11:580864.PubMedPubMedCentralCrossRef Zhang J, Wu XM, Hu YW, Chang MX. A novel transcript isoform of TBK1 negatively regulates type I IFN production by promoting proteasomal degradation of TBK1 and lysosomal degradation of IRF3. Front Immunol. 2020;11:580864.PubMedPubMedCentralCrossRef
115.
go back to reference Walter MJ, Look DC, Tidwell RM, Roswit WT, Holtzman MJ. Targeted inhibition of interferon-gamma-dependent intercellular adhesion molecule-1 (ICAM-1) expression using dominant-negative Stat1. J Biol Chem. 1997;272:28582–9.PubMedCrossRef Walter MJ, Look DC, Tidwell RM, Roswit WT, Holtzman MJ. Targeted inhibition of interferon-gamma-dependent intercellular adhesion molecule-1 (ICAM-1) expression using dominant-negative Stat1. J Biol Chem. 1997;272:28582–9.PubMedCrossRef
116.
go back to reference Han Z, Marendy E, Wang YD, Yuan J, Sample JT, Swaminathan S. Multiple roles of Epstein-Barr virus SM protein in lytic replication. J Virol. 2007;81:4058–69.PubMedPubMedCentralCrossRef Han Z, Marendy E, Wang YD, Yuan J, Sample JT, Swaminathan S. Multiple roles of Epstein-Barr virus SM protein in lytic replication. J Virol. 2007;81:4058–69.PubMedPubMedCentralCrossRef
118.
go back to reference Haller O, Kochs G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic. 2002;3:710–7.PubMedCrossRef Haller O, Kochs G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic. 2002;3:710–7.PubMedCrossRef
119.
go back to reference Ku C-C, Che X-B, Reichelt M, Rajamani J, Schaap-Nutt A, Huang K-J, Sommer MH, Chen Y-S, Chen Y-Y, Arvin AM. Herpes simplex virus-1 induces expression of a novel MxA isoform that enhances viral replication. Immunol Cell Biol. 2011;89:173–82.PubMedCrossRef Ku C-C, Che X-B, Reichelt M, Rajamani J, Schaap-Nutt A, Huang K-J, Sommer MH, Chen Y-S, Chen Y-Y, Arvin AM. Herpes simplex virus-1 induces expression of a novel MxA isoform that enhances viral replication. Immunol Cell Biol. 2011;89:173–82.PubMedCrossRef
120.
go back to reference Chen Y, Graf L, Chen T, Liao Q, Bai T, Petric PP, Zhu W, Yang L, Dong J, Lu J, et al. Rare variant MX1 alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science. 2021;373:918–22.PubMedCrossRef Chen Y, Graf L, Chen T, Liao Q, Bai T, Petric PP, Zhu W, Yang L, Dong J, Lu J, et al. Rare variant MX1 alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science. 2021;373:918–22.PubMedCrossRef
Metadata
Title
Virus usurps alternative splicing to clear the decks for infection
Authors
Ruixue Li
Shenyan Gao
Huayuan Chen
Xiaozhan Zhang
Xia Yang
Jun Zhao
Zeng Wang
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Influenza Virus
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02098-9

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.