Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Vibrionaceae | Research

Isolation and characterization of a novel phage belonging to a new genus against Vibrio parahaemolyticus

Authors: Yubing Chen, Wenqing Li, Keming Shi, Zheng Fang, Yunlan Yang, Rui Zhang

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Background

Vibrio parahaemolyticus is a major foodborne pathogen that contaminates aquatic products and causes great economic losses to aquaculture. Because of the emergence of multidrug-resistant V. parahaemolyticus strains, bacteriophages are considered promising agents for their biocontrol as an alternative or supplement to antibiotics. In this study, a lytic vibriophage, vB_VpaM_R16F (R16F), infecting V. parahaemolyticus 1.1997T was isolated, characterized and evaluated for its biocontrol potential.

Methods

A vibriophage R16F was isolated from sewage from a seafood market with the double-layer agar method. R16F was studied by transmission electron microscopy, host range, sensitivity of phage particles to chloroform, one-step growth curve and lytic activity. The phage genome was sequenced and in-depth characterized, including phylogenetic and taxonomic analysis.

Results

R16F belongs to the myovirus morphotype and infects V. parahaemolyticus, but not nine other Vibrio spp. As characterized by determining its host range, one-step growth curve, and lytic activity, phage R16F was found to highly effective in lysing host cells with a short latent period (< 10 min) and a small burst size (13 plaque-forming units). R16F has a linear double-stranded DNA with genome size 139,011 bp and a G + C content of 35.21%. Phylogenetic and intergenomic nucleotide sequence similarity analysis revealed that R16F is distinct from currently known vibriophages and belongs to a novel genus. Several genes (e.g., encoding ultraviolet damage endonuclease and endolysin) that may enhance environmental competitiveness were found in the genome of R16F, while no antibiotic resistance- or virulence factor-related gene was detected.

Conclusions

In consideration of its biological and genetic properties, this newly discovered phage R16F belongs to a novel genus and may be a potential alternate biocontrol agent.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ina-Salwany MY, Al-saari N, Mohamad A, Mursidi FA, Mohd-Aris A, Amal MNA, et al. Vibriosis in Fish: a review on Disease Development and Prevention. J Aquat Anim Health. 2019;31(1):3–22.PubMedCrossRef Ina-Salwany MY, Al-saari N, Mohamad A, Mursidi FA, Mohd-Aris A, Amal MNA, et al. Vibriosis in Fish: a review on Disease Development and Prevention. J Aquat Anim Health. 2019;31(1):3–22.PubMedCrossRef
2.
go back to reference Mateus L, Costa L, Silva YJ, Pereira C, Cunha A, Almeida A. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture. 2014;424–425:167–73.CrossRef Mateus L, Costa L, Silva YJ, Pereira C, Cunha A, Almeida A. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture. 2014;424–425:167–73.CrossRef
3.
go back to reference de Souza Valente C, Wan AHL. Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J Invertebr Pathol. 2021;181:107527.PubMedCrossRef de Souza Valente C, Wan AHL. Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J Invertebr Pathol. 2021;181:107527.PubMedCrossRef
4.
go back to reference Aguilera-Rivera D, Prieto-Davó A, Rodríguez-Fuentes G, Escalante-Herrera KS, Gaxiola G. A vibriosis outbreak in the Pacific white shrimp, Litopenaeus vannamei reared in biofloc and clear seawater. J Invertebr Pathol. 2019;167:107246.PubMedCrossRef Aguilera-Rivera D, Prieto-Davó A, Rodríguez-Fuentes G, Escalante-Herrera KS, Gaxiola G. A vibriosis outbreak in the Pacific white shrimp, Litopenaeus vannamei reared in biofloc and clear seawater. J Invertebr Pathol. 2019;167:107246.PubMedCrossRef
5.
go back to reference Su YC, Liu C. Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol. 2007;24(6):549–58.PubMedCrossRef Su YC, Liu C. Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol. 2007;24(6):549–58.PubMedCrossRef
6.
go back to reference Parveen S, Hettiarachchi KA, Bowers JC, Jones JL, Tamplin ML, McKay R, et al. Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters. Int J Food Microbiol. 2008;128(2):354–61.PubMedCrossRef Parveen S, Hettiarachchi KA, Bowers JC, Jones JL, Tamplin ML, McKay R, et al. Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters. Int J Food Microbiol. 2008;128(2):354–61.PubMedCrossRef
7.
go back to reference Letchumanan V, Loo K-Y, Woan-Fei Law J, Hei Wong S, Goh B-H, Ab Mutalib N-S, et al. Progress in Microbes and Molecular Biology Vibrio parahaemolyticus: the protagonist causing Foodborne Diseases. Prog Mol Biol Transl Sci. 2019;2(1):1. Letchumanan V, Loo K-Y, Woan-Fei Law J, Hei Wong S, Goh B-H, Ab Mutalib N-S, et al. Progress in Microbes and Molecular Biology Vibrio parahaemolyticus: the protagonist causing Foodborne Diseases. Prog Mol Biol Transl Sci. 2019;2(1):1.
8.
go back to reference Olumide A. Odeyem. Public health implications of microbial food safety and foodborne diseases in developing countries. Food Nutr Res. 2016;1:1–2. Olumide A. Odeyem. Public health implications of microbial food safety and foodborne diseases in developing countries. Food Nutr Res. 2016;1:1–2.
9.
go back to reference Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: A review on the pathogenesis, prevalence, and advance molecular identification techniques.Front Microbiol. 2014; 5. Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: A review on the pathogenesis, prevalence, and advance molecular identification techniques.Front Microbiol. 2014; 5.
10.
go back to reference Yang M, Liang Y, Huang S, Zhang J, Wang J, Chen H, et al. Isolation and characterization of the Novel Phages vB_VpS_BA3 and vB_VpS_CA8 for lysing Vibrio parahaemolyticus. Front Microbiol. 2020;11:1–13. Yang M, Liang Y, Huang S, Zhang J, Wang J, Chen H, et al. Isolation and characterization of the Novel Phages vB_VpS_BA3 and vB_VpS_CA8 for lysing Vibrio parahaemolyticus. Front Microbiol. 2020;11:1–13.
11.
go back to reference Lee LH, Mutalib NSA, Law JWF, Wong SH, Letchumanan V. Discovery on antibiotic resistance patterns of Vibrio parahaemolyticus in Selangor reveals carbapenemase producing Vibrio parahaemolyticus in marine and freshwater fish. Front Microbiol. 2018;9:1–13.CrossRef Lee LH, Mutalib NSA, Law JWF, Wong SH, Letchumanan V. Discovery on antibiotic resistance patterns of Vibrio parahaemolyticus in Selangor reveals carbapenemase producing Vibrio parahaemolyticus in marine and freshwater fish. Front Microbiol. 2018;9:1–13.CrossRef
12.
go back to reference Letchumanan V, Loo K-Y, Law JW-F, Wong SH, Goh B-H, Ab Mutalib N-S, et al. Vibrio parahaemolyticus: the protagonist of foodborne diseases. Prog Microbes Mol Biol. 2019;2(1):1–8.CrossRef Letchumanan V, Loo K-Y, Law JW-F, Wong SH, Goh B-H, Ab Mutalib N-S, et al. Vibrio parahaemolyticus: the protagonist of foodborne diseases. Prog Microbes Mol Biol. 2019;2(1):1–8.CrossRef
13.
go back to reference Tan CW, Rukayadi Y, Hasan H, Thung TY, Lee E, Rollon WD, et al. Prevalence and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from different types of seafood in Selangor, Malaysia. Saudi J Biol Sci. 2020;27(6):1602–8.PubMedPubMedCentralCrossRef Tan CW, Rukayadi Y, Hasan H, Thung TY, Lee E, Rollon WD, et al. Prevalence and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from different types of seafood in Selangor, Malaysia. Saudi J Biol Sci. 2020;27(6):1602–8.PubMedPubMedCentralCrossRef
14.
go back to reference Steward GF, Culley AI, Mueller JA, Wood-Charlson EM, Belcaid M, Poisson G. Are we missing half of the viruses in the ocean? ISME J. 2013;7(3):672–9.PubMedCrossRef Steward GF, Culley AI, Mueller JA, Wood-Charlson EM, Belcaid M, Poisson G. Are we missing half of the viruses in the ocean? ISME J. 2013;7(3):672–9.PubMedCrossRef
15.
go back to reference Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536(7617):425–30.PubMedCrossRef Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536(7617):425–30.PubMedCrossRef
17.
go back to reference Suttle CA. Marine viruses - major players in the global ecosystem. Nat Rev Microbiol. 2007;5(10):801–12.PubMedCrossRef Suttle CA. Marine viruses - major players in the global ecosystem. Nat Rev Microbiol. 2007;5(10):801–12.PubMedCrossRef
18.
go back to reference Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clin Microbiol Rev. 2019;32(2):1–25.CrossRef Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clin Microbiol Rev. 2019;32(2):1–25.CrossRef
19.
go back to reference Jun JW, Shin TH, Kim JH, Shin SP, Han JE, Heo GJ, et al. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J Infect Dis. 2014;210(1):72–8.PubMedCrossRef Jun JW, Shin TH, Kim JH, Shin SP, Han JE, Heo GJ, et al. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J Infect Dis. 2014;210(1):72–8.PubMedCrossRef
20.
go back to reference Lomelí-Ortega CO, Martínez-Díaz SF. Phage therapy against Vibrio parahaemolyticus infection in the whiteleg shrimp (Litopenaeus vannamei) larvae. Aquaculture. 2014;434:208–11.CrossRef Lomelí-Ortega CO, Martínez-Díaz SF. Phage therapy against Vibrio parahaemolyticus infection in the whiteleg shrimp (Litopenaeus vannamei) larvae. Aquaculture. 2014;434:208–11.CrossRef
21.
go back to reference Wang Y, Barton M, Elliott L, Li X, Abraham S, O’Dea M, et al. Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture. 2017;473:251–8.CrossRef Wang Y, Barton M, Elliott L, Li X, Abraham S, O’Dea M, et al. Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture. 2017;473:251–8.CrossRef
22.
go back to reference Ren H, Li Z, Xu Y, Wang L, Li X. Protective effectiveness of feeding phage cocktails in controlling Vibrio parahaemolyticus infection of sea cucumber Apostichopus japonicus. Aquaculture. 2019;503:322–9.CrossRef Ren H, Li Z, Xu Y, Wang L, Li X. Protective effectiveness of feeding phage cocktails in controlling Vibrio parahaemolyticus infection of sea cucumber Apostichopus japonicus. Aquaculture. 2019;503:322–9.CrossRef
23.
go back to reference Dubey S, Singh A, Kumar BTN, Singh NK, Tyagi A. Isolation and characterization of bacteriophages from Inland saline aquaculture environments to Control Vibrio parahaemolyticus contamination in shrimp. Indian J Microbiol. 2021;61(2):212–7.PubMedPubMedCentralCrossRef Dubey S, Singh A, Kumar BTN, Singh NK, Tyagi A. Isolation and characterization of bacteriophages from Inland saline aquaculture environments to Control Vibrio parahaemolyticus contamination in shrimp. Indian J Microbiol. 2021;61(2):212–7.PubMedPubMedCentralCrossRef
24.
go back to reference Yang Y, Cai L, Ma R, Xu Y, Tong Y, Huang Y, et al. A novel roseosiphophage isolated from the oligotrophic South China Sea. Viruses. 2017;9(5):1–16.CrossRef Yang Y, Cai L, Ma R, Xu Y, Tong Y, Huang Y, et al. A novel roseosiphophage isolated from the oligotrophic South China Sea. Viruses. 2017;9(5):1–16.CrossRef
25.
go back to reference Cai L, Ma R, Chen H, Yang Y, Jiao N, Zhang R. A newly isolated roseophage represents a distinct member of Siphoviridae family. Virol J. 2019;16(1):1–9.CrossRef Cai L, Ma R, Chen H, Yang Y, Jiao N, Zhang R. A newly isolated roseophage represents a distinct member of Siphoviridae family. Virol J. 2019;16(1):1–9.CrossRef
26.
go back to reference Middelboe M, Chan AM, Bertelsen SK. Isolation and life cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria.Man Aquat Viral Ecol. 2010;118–133. Middelboe M, Chan AM, Bertelsen SK. Isolation and life cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria.Man Aquat Viral Ecol. 2010;118–133.
28.
go back to reference Garneau JR, Depardieu F, Fortier LC, Bikard D, Monot M, PhageTerm. A tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep. 2017;7(1):1–10.CrossRef Garneau JR, Depardieu F, Fortier LC, Bikard D, Monot M, PhageTerm. A tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep. 2017;7(1):1–10.CrossRef
29.
go back to reference Besemer J, Lomsadze A, Borodovsky M, GeneMarkS. A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2607–18.PubMedPubMedCentralCrossRef Besemer J, Lomsadze A, Borodovsky M, GeneMarkS. A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2607–18.PubMedPubMedCentralCrossRef
30.
31.
go back to reference Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2005;33:325–8.CrossRef Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2005;33:325–8.CrossRef
32.
go back to reference Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.PubMed Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.PubMed
33.
go back to reference Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM et al. Gene sharing networks to automate genome-based prokaryotic viral taxonomy.bioRxiv. 2019;231–238. Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM et al. Gene sharing networks to automate genome-based prokaryotic viral taxonomy.bioRxiv. 2019;231–238.
34.
35.
go back to reference Ma R, Lai J, Chen X, Wang L, Yang Y, Wei S et al. A Novel Phage Infecting Alteromonas Represents a Distinct Group of Siphophages Infecting Diverse Aquatic Copiotrophs.mSphere. 2021;6(3). Ma R, Lai J, Chen X, Wang L, Yang Y, Wei S et al. A Novel Phage Infecting Alteromonas Represents a Distinct Group of Siphophages Infecting Diverse Aquatic Copiotrophs.mSphere. 2021;6(3).
36.
go back to reference Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions.BMC Bioinformatics. 2013;14. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions.BMC Bioinformatics. 2013;14.
37.
go back to reference Yu G. Using ggtree to visualize data on Tree-Like Structures. Curr Protoc Bioinformatics. 2020;69(1):1–18.CrossRef Yu G. Using ggtree to visualize data on Tree-Like Structures. Curr Protoc Bioinformatics. 2020;69(1):1–18.CrossRef
38.
go back to reference Farris JS. Estimating phylogenetic trees from Distance Matrices. Am Nat. 1972;106(951):645–68.CrossRef Farris JS. Estimating phylogenetic trees from Distance Matrices. Am Nat. 1972;106(951):645–68.CrossRef
39.
go back to reference Moraru C, Varsani A, Kropinski AM. VIRIDIC—A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses. 2020;12(11):1–10.CrossRef Moraru C, Varsani A, Kropinski AM. VIRIDIC—A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses. 2020;12(11):1–10.CrossRef
40.
go back to reference Cornelissen A. The T7-Related Pseudomonas putida Phage Q15 Displays Virion-Associated Biofilm Degradation Properties. 2010;6. Cornelissen A. The T7-Related Pseudomonas putida Phage Q15 Displays Virion-Associated Biofilm Degradation Properties. 2010;6.
41.
go back to reference Lelchat F, Mocaer PY, Ojima T, Michel G, Sarthou G, Bucciarelli E, et al. Viral degradation of marine bacterial exopolysaccharides. FEMS Microbiol Ecol. 2019;95(7):1–11.CrossRef Lelchat F, Mocaer PY, Ojima T, Michel G, Sarthou G, Bucciarelli E, et al. Viral degradation of marine bacterial exopolysaccharides. FEMS Microbiol Ecol. 2019;95(7):1–11.CrossRef
42.
go back to reference Schmelcher M, Loessner MJ. Bacteriophage endolysins: applications for food safety. Curr Opin Biotechnol. 2016;37:76–87.PubMedCrossRef Schmelcher M, Loessner MJ. Bacteriophage endolysins: applications for food safety. Curr Opin Biotechnol. 2016;37:76–87.PubMedCrossRef
43.
go back to reference Knecht LE, Veljkovic M, Fieseler L. Diversity and function of phage encoded depolymerases. Front Microbiol. 2020;10:1–16.CrossRef Knecht LE, Veljkovic M, Fieseler L. Diversity and function of phage encoded depolymerases. Front Microbiol. 2020;10:1–16.CrossRef
44.
go back to reference Cornelissen A, Ceyssens PJ, T’Syen J, van Praet H, Noben JP, Shaburova OV et al. The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties.PLoS One. 2011;6(4). Cornelissen A, Ceyssens PJ, T’Syen J, van Praet H, Noben JP, Shaburova OV et al. The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties.PLoS One. 2011;6(4).
45.
go back to reference Sasikala D, Srinivasan P. Characterization of potential lytic bacteriophage against Vibrio alginolyticus and its therapeutic implications on biofilm dispersal. Microb Pathog. 2016;101:24–35.PubMedCrossRef Sasikala D, Srinivasan P. Characterization of potential lytic bacteriophage against Vibrio alginolyticus and its therapeutic implications on biofilm dispersal. Microb Pathog. 2016;101:24–35.PubMedCrossRef
46.
go back to reference Majkowska-Skrobek G, Latka A, Berisio R, Squeglia F, Maciejewska B, Briers Y, et al. Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front Microbiol. 2018;9:1–12.CrossRef Majkowska-Skrobek G, Latka A, Berisio R, Squeglia F, Maciejewska B, Briers Y, et al. Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front Microbiol. 2018;9:1–12.CrossRef
47.
go back to reference Cao Y, Zhang Y, Lan W, Sun X. Characterization of vB_VpaP_MGD2, a newly isolated bacteriophage with biocontrol potential against multidrug-resistant Vibrio parahaemolyticus. Arch Virol. 2021;166(2):413–26.PubMedCrossRef Cao Y, Zhang Y, Lan W, Sun X. Characterization of vB_VpaP_MGD2, a newly isolated bacteriophage with biocontrol potential against multidrug-resistant Vibrio parahaemolyticus. Arch Virol. 2021;166(2):413–26.PubMedCrossRef
48.
go back to reference Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib NA, Jambari NN, Hara H et al. Isolation and Characterization of Six Vibrio parahaemolyticus Lytic Bacteriophages from Seafood Samples.Front Microbiol. 2021;12. Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib NA, Jambari NN, Hara H et al. Isolation and Characterization of Six Vibrio parahaemolyticus Lytic Bacteriophages from Seafood Samples.Front Microbiol. 2021;12.
49.
go back to reference Ding T, Sun H, Pan Q, Zhao F, Zhang Z, Ren H. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Res. 2020;286:198080.PubMedCrossRef Ding T, Sun H, Pan Q, Zhao F, Zhang Z, Ren H. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Res. 2020;286:198080.PubMedCrossRef
50.
go back to reference Lal TM, Sano M, Ransangan J. Genome characterization of a novel vibriophage VpKK5 (Siphoviridae) specific to fish pathogenic strain of Vibrio parahaemolyticus. J Basic Microbiol. 2016;56(8):872–88.PubMedCrossRef Lal TM, Sano M, Ransangan J. Genome characterization of a novel vibriophage VpKK5 (Siphoviridae) specific to fish pathogenic strain of Vibrio parahaemolyticus. J Basic Microbiol. 2016;56(8):872–88.PubMedCrossRef
51.
go back to reference Matamp N, Bhat SG. Genome characterization of novel lytic myoviridae bacteriophage ϕVP-1 enhances its applicability against MDR-biofilm-forming Vibrio parahaemolyticus. Arch Virol. 2020;165(2):387–96.PubMedCrossRef Matamp N, Bhat SG. Genome characterization of novel lytic myoviridae bacteriophage ϕVP-1 enhances its applicability against MDR-biofilm-forming Vibrio parahaemolyticus. Arch Virol. 2020;165(2):387–96.PubMedCrossRef
52.
go back to reference Thammatinna K, Egan MKE, Htoo HH, Khanna K, Sugie J, Nideffer JF, et al. A novel vibriophage exhibits inhibitory activity against host protein synthesis machinery. Sci Rep. 2020;10:1–14.CrossRef Thammatinna K, Egan MKE, Htoo HH, Khanna K, Sugie J, Nideffer JF, et al. A novel vibriophage exhibits inhibitory activity against host protein synthesis machinery. Sci Rep. 2020;10:1–14.CrossRef
53.
go back to reference Yin Y, Ni P, Liu D, Yang S, Almeida A, Guo Q, et al. Bacteriophage potential against Vibrio parahaemolyticus biofilms. Food Control. 2019;98:156–63.CrossRef Yin Y, Ni P, Liu D, Yang S, Almeida A, Guo Q, et al. Bacteriophage potential against Vibrio parahaemolyticus biofilms. Food Control. 2019;98:156–63.CrossRef
54.
go back to reference Zhang H, Yang Z, Zhou Y, Bao H, Wang R, Li T, et al. Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. Int J Food Microbiol. 2018;275:24–31.PubMedCrossRef Zhang H, Yang Z, Zhou Y, Bao H, Wang R, Li T, et al. Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. Int J Food Microbiol. 2018;275:24–31.PubMedCrossRef
55.
go back to reference Abedon ST, Hyman P, Thomas C. Experimental examination of Bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol. 2003;69(12):7499–506.PubMedPubMedCentralCrossRef Abedon ST, Hyman P, Thomas C. Experimental examination of Bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol. 2003;69(12):7499–506.PubMedPubMedCentralCrossRef
56.
go back to reference Mäntynen S, Sundberg LR, Oksanen HM, Poranen MM. Half a century of research on membrane-containing bacteriophages: Bringing new concepts to modern virology.Viruses. 2019;11(1). Mäntynen S, Sundberg LR, Oksanen HM, Poranen MM. Half a century of research on membrane-containing bacteriophages: Bringing new concepts to modern virology.Viruses. 2019;11(1).
57.
go back to reference Turner D, Kropinski AM, Adriaenssens EM. A roadmap for genome-based phage taxonomy. Viruses. 2021;13(3):1–10.CrossRef Turner D, Kropinski AM, Adriaenssens EM. A roadmap for genome-based phage taxonomy. Viruses. 2021;13(3):1–10.CrossRef
58.
go back to reference Tom EF, Molineux IJ, Paff ML, Bull JJ. Experimental evolution of UV resistance in a phage. PeerJ. 2018;2018(7):1–20. Tom EF, Molineux IJ, Paff ML, Bull JJ. Experimental evolution of UV resistance in a phage. PeerJ. 2018;2018(7):1–20.
59.
go back to reference Paspaleva K, Moolenaar GF, Goosen N. Damage recognition by UV damage endonuclease from Schizosaccharomyces pombe. DNA Repair (Amst). 2009;8(5):600–11.PubMedCrossRef Paspaleva K, Moolenaar GF, Goosen N. Damage recognition by UV damage endonuclease from Schizosaccharomyces pombe. DNA Repair (Amst). 2009;8(5):600–11.PubMedCrossRef
60.
go back to reference Yasui A. Alternative excision repair pathways.Cold Spring Harb Perspect Biol. 2013;5(6). Yasui A. Alternative excision repair pathways.Cold Spring Harb Perspect Biol. 2013;5(6).
61.
go back to reference Warner HR, Persson ML, Bensen RJ, Mosbaugh DW, Linn S. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease. Nucleic Acids Res. 1981;9(22):6083–92.PubMedPubMedCentralCrossRef Warner HR, Persson ML, Bensen RJ, Mosbaugh DW, Linn S. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease. Nucleic Acids Res. 1981;9(22):6083–92.PubMedPubMedCentralCrossRef
62.
go back to reference Friedberg EC, King JJ. Dark repair of ultraviolet-irradiated deoxyribonucleic acid by bacteriophage T4: purification and characterization of a dimer-specific phage-induced endonuclease. J Bacteriol. 1971;106(2):500–7.PubMedPubMedCentralCrossRef Friedberg EC, King JJ. Dark repair of ultraviolet-irradiated deoxyribonucleic acid by bacteriophage T4: purification and characterization of a dimer-specific phage-induced endonuclease. J Bacteriol. 1971;106(2):500–7.PubMedPubMedCentralCrossRef
63.
go back to reference Friedberg EC, Walker GC, Siede W. DNA repair and mutagenesis. Washington, DC: ASM Press; 1995. Friedberg EC, Walker GC, Siede W. DNA repair and mutagenesis. Washington, DC: ASM Press; 1995.
64.
go back to reference Lloyd RS, van Houten B. In DNA repair mechanisms: Impact on Human Diseases and Cancer. In: Vos JM, editor. DNA damage recognition. Austin: Biomedical Publishers; 1995. pp. 25–66. Lloyd RS, van Houten B. In DNA repair mechanisms: Impact on Human Diseases and Cancer. In: Vos JM, editor. DNA damage recognition. Austin: Biomedical Publishers; 1995. pp. 25–66.
66.
go back to reference Goosen N, Moolenaar GF. Role of ATP hydrolysis by UvrA and UvrB during nucleotide excision repair. Res Microbiol. 2001;152:401–9.PubMedCrossRef Goosen N, Moolenaar GF. Role of ATP hydrolysis by UvrA and UvrB during nucleotide excision repair. Res Microbiol. 2001;152:401–9.PubMedCrossRef
67.
go back to reference Truglio JJ, Rhau B, Croteau DL, Wang L, Skorvaga M, Karakas E, et al. Structural insights into the first incision reaction during nucleotide excision repair. EMBO J. 2005;24(5):885–94.PubMedPubMedCentralCrossRef Truglio JJ, Rhau B, Croteau DL, Wang L, Skorvaga M, Karakas E, et al. Structural insights into the first incision reaction during nucleotide excision repair. EMBO J. 2005;24(5):885–94.PubMedPubMedCentralCrossRef
68.
go back to reference Fraikin N, Goormaghtigh F, Melderena L, Van. Type II Toxin-Antitoxin Systems: Evolution and Revolutions.J Bacteriol. 2020. Fraikin N, Goormaghtigh F, Melderena L, Van. Type II Toxin-Antitoxin Systems: Evolution and Revolutions.J Bacteriol. 2020.
69.
go back to reference Makarova KS, Grishin NV, Koonin EV. The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics. 2006;22(21):2581–4.PubMedCrossRef Makarova KS, Grishin NV, Koonin EV. The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics. 2006;22(21):2581–4.PubMedCrossRef
70.
go back to reference Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes.Biol Direct. 2009;4. Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes.Biol Direct. 2009;4.
71.
go back to reference Zhang S-P, Wang Q, Quan S-W, Yu X-Q, Wang Y, Guo D-D, et al. Type II toxin–antitoxin system in bacteria: activation, function, and mode of action. Biophys Rep. 2020;6:68–79.CrossRef Zhang S-P, Wang Q, Quan S-W, Yu X-Q, Wang Y, Guo D-D, et al. Type II toxin–antitoxin system in bacteria: activation, function, and mode of action. Biophys Rep. 2020;6:68–79.CrossRef
72.
go back to reference Daimon Y, Narita SI, Akiyama Y. Activation of toxin-antitoxin system toxins suppresses lethality caused by the loss of σE in Escherichia coli. J Bacteriol. 2015;197(14):2316–24.PubMedPubMedCentralCrossRef Daimon Y, Narita SI, Akiyama Y. Activation of toxin-antitoxin system toxins suppresses lethality caused by the loss of σE in Escherichia coli. J Bacteriol. 2015;197(14):2316–24.PubMedPubMedCentralCrossRef
73.
go back to reference Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, et al. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J. 2014;459(2):333–44.PubMedCrossRef Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, et al. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J. 2014;459(2):333–44.PubMedCrossRef
74.
go back to reference Tang F, Bossers A, Harders F, Lu C, Smith H. Comparative genomic analysis of twelve Streptococcus suis (pro)phages. Genomics. 2013;101(6):336–44.PubMedCrossRef Tang F, Bossers A, Harders F, Lu C, Smith H. Comparative genomic analysis of twelve Streptococcus suis (pro)phages. Genomics. 2013;101(6):336–44.PubMedCrossRef
75.
go back to reference Niu YD, Cook SR, Wang J, Klima CL, Hsu YH, Kropinski AM et al. Comparative analysis of multiple inducible phages from Mannheimia haemolytica.BMC Microbiol. 2015;15(1). Niu YD, Cook SR, Wang J, Klima CL, Hsu YH, Kropinski AM et al. Comparative analysis of multiple inducible phages from Mannheimia haemolytica.BMC Microbiol. 2015;15(1).
76.
go back to reference Turner D, Ackermann HW, Kropinski AM, Lavigne R, Sutton JM, Reynolds DM. Comparative analysis of 37 Acinetobacter bacteriophages. Viruses. 2018;10(1):1–25. Turner D, Ackermann HW, Kropinski AM, Lavigne R, Sutton JM, Reynolds DM. Comparative analysis of 37 Acinetobacter bacteriophages. Viruses. 2018;10(1):1–25.
77.
go back to reference Song S, Wood TK. A primary physiological role of Toxin/Antitoxin Systems is phage inhibition. Front Microbiol. 2020;11:1–7.CrossRef Song S, Wood TK. A primary physiological role of Toxin/Antitoxin Systems is phage inhibition. Front Microbiol. 2020;11:1–7.CrossRef
78.
go back to reference Byers DM, Gong H. Cover Image Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochem Cell Biol. 2007;85(6):649–62.PubMedCrossRef Byers DM, Gong H. Cover Image Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochem Cell Biol. 2007;85(6):649–62.PubMedCrossRef
79.
go back to reference Lu L, Cai L, Jiao N, Zhang R. Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virol J. 2017;14(1):1–15.CrossRef Lu L, Cai L, Jiao N, Zhang R. Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virol J. 2017;14(1):1–15.CrossRef
80.
go back to reference Forcone K, Coutinho FH, Cavalcanti GS, Silveira CB. Prophage genomics and ecology in the family Rhodobacteraceae.Microorganisms. 2021;9(6). Forcone K, Coutinho FH, Cavalcanti GS, Silveira CB. Prophage genomics and ecology in the family Rhodobacteraceae.Microorganisms. 2021;9(6).
81.
go back to reference Torriani A, Ludtke DN. The molecular biology of bacterial growth. Boston: Jones and Bantell Publishers; 1985. pp. 224–42. Torriani A, Ludtke DN. The molecular biology of bacterial growth. Boston: Jones and Bantell Publishers; 1985. pp. 224–42.
83.
go back to reference Kim SK, Makino K, Amemura M, Shinagawa H, Nakata A. Molecular analysis of the phoH gene, belonging to the phosphate regulon in Escherichia coli. J Bacteriol. 1993;175(5):1316–24.PubMedPubMedCentralCrossRef Kim SK, Makino K, Amemura M, Shinagawa H, Nakata A. Molecular analysis of the phoH gene, belonging to the phosphate regulon in Escherichia coli. J Bacteriol. 1993;175(5):1316–24.PubMedPubMedCentralCrossRef
84.
go back to reference Maina AN, Mwaura FB, Jumba M, Kiefts K, El-Din HTN, Aziz RK. Novel PhoH-encoding vibriophages with lytic activity against environmental Vibrio strains. Arch Microbiol. 2021;203:5321–31.PubMedCrossRef Maina AN, Mwaura FB, Jumba M, Kiefts K, El-Din HTN, Aziz RK. Novel PhoH-encoding vibriophages with lytic activity against environmental Vibrio strains. Arch Microbiol. 2021;203:5321–31.PubMedCrossRef
85.
go back to reference Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS, Ciecko A, et al. Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol. 2003;185(17):5220–33.PubMedPubMedCentralCrossRef Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS, Ciecko A, et al. Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol. 2003;185(17):5220–33.PubMedPubMedCentralCrossRef
86.
go back to reference Baudoux AC, Hendrix RW, Lander GC, Bailly X, Podell S, Paillard C, et al. Genomic and functional analysis of Vibrio phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses. Environ Microbiol. 2012;14(8):2071–86.PubMedPubMedCentralCrossRef Baudoux AC, Hendrix RW, Lander GC, Bailly X, Podell S, Paillard C, et al. Genomic and functional analysis of Vibrio phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses. Environ Microbiol. 2012;14(8):2071–86.PubMedPubMedCentralCrossRef
87.
go back to reference Rong C, Zhou K, Li S, Xiao K, Xu Y, Zhang R et al. Isolation and Characterization of a Novel Cyanophage Encoding Multiple Auxiliary Metabolic Genes.Viruses. 2022;14(5). Rong C, Zhou K, Li S, Xiao K, Xu Y, Zhang R et al. Isolation and Characterization of a Novel Cyanophage Encoding Multiple Auxiliary Metabolic Genes.Viruses. 2022;14(5).
88.
go back to reference Hatfull GF, Dedrick RM, Schooley RT. Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med. 2022;73:197–211.PubMedCrossRef Hatfull GF, Dedrick RM, Schooley RT. Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med. 2022;73:197–211.PubMedCrossRef
89.
go back to reference Loessner MJ. Bacteriophage endolysins - current state of research and applications. Curr Opin Microbiol. 2005;8(4):480–7.PubMedCrossRef Loessner MJ. Bacteriophage endolysins - current state of research and applications. Curr Opin Microbiol. 2005;8(4):480–7.PubMedCrossRef
90.
go back to reference Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141–51.PubMedCrossRef Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141–51.PubMedCrossRef
91.
go back to reference Wang W, Li M, Lin H, Wang J, Mao X. The Vibrio parahaemolyticus-infecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure. Arch Virol. 2016;161(10):2645–52.PubMedCrossRef Wang W, Li M, Lin H, Wang J, Mao X. The Vibrio parahaemolyticus-infecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure. Arch Virol. 2016;161(10):2645–52.PubMedCrossRef
Metadata
Title
Isolation and characterization of a novel phage belonging to a new genus against Vibrio parahaemolyticus
Authors
Yubing Chen
Wenqing Li
Keming Shi
Zheng Fang
Yunlan Yang
Rui Zhang
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Vibrionaceae
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02036-9

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue