Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter

Authors: Longfei Lu, Lanlan Cai, Nianzhi Jiao, Rui Zhang

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Erythrobacter comprises a widespread and ecologically significant genus of marine bacteria. However, no phage infecting Erythrobacter spp. has been reported to date. This study describes the isolation and characterization of phage vB_EliS-R6L from Erythrobacter.

Methods

Standard virus enrichment and double-layer agar methods were used to isolate and characterize the phage. Morphology was observed by transmission electron microscopy, and a one-step growth curve assay was performed. The phage genome was sequenced using the Illumina Miseq platform and annotated using standard bioinformatics tools. Phylogenetic analyses were performed based on the deduced amino acid sequences of terminase, endolysin, portal protein, and major capsid protein, and genome recruitment analysis was conducted using Jiulong River Estuary Virome, Pacific Ocean Virome and Global Ocean Survey databases.

Results

A novel phage, vB_EliS-R6L, from coastal waters of Xiamen, China, was isolated and found to infect the marine bacterium Erythrobacter litoralis DSM 8509. Morphological observation and genome analysis revealed that phage vB_EliS-R6L is a siphovirus with a 65.7-kb genome that encodes 108 putative gene products. The phage exhibits growth at a wide range of temperature and pH conditions. Genes encoding five methylase-related proteins were found in the genome, and recognition site predictions suggested its resistance to restriction-modification host systems. Genomic comparisons and phylogenetic analyses indicate that phage vB_EliS-R6L is distinct from other known phages. Metagenomic recruitment analysis revealed that vB_EliS-R6L-like phages are widespread in marine environments, with likely distribution in coastal waters.

Conclusions

Isolation of the first Erythrobacter phage (vB_EliS-R6L) will contribute to our understanding of host-phage interactions, the ecology of marine Erythrobacter and viral metagenome annotation efforts.
Literature
1.
go back to reference Shiba T, Simidu U. Erythrobacter longus gen. Nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol. 1982;32:211–7.CrossRef Shiba T, Simidu U. Erythrobacter longus gen. Nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol. 1982;32:211–7.CrossRef
2.
go back to reference Kolber ZS, VanDover CL, Niederman RA, Falkowski PG. Bacterial photosynthesis in surface waters of the open ocean. Nature. 2000;407:177–9.CrossRefPubMed Kolber ZS, VanDover CL, Niederman RA, Falkowski PG. Bacterial photosynthesis in surface waters of the open ocean. Nature. 2000;407:177–9.CrossRefPubMed
3.
go back to reference Yoon J-H, Kang KH, Oh T-K, Park Y-H. Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol. 2004;54:1981–5.CrossRefPubMed Yoon J-H, Kang KH, Oh T-K, Park Y-H. Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol. 2004;54:1981–5.CrossRefPubMed
4.
go back to reference Yoon J-H, Kang KH, Yeo S-H, Oh T-K. Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol. 2005;55:1167–70.CrossRefPubMed Yoon J-H, Kang KH, Yeo S-H, Oh T-K. Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol. 2005;55:1167–70.CrossRefPubMed
5.
go back to reference Lei X, Zhang H, Chen Y, Li Y, Chen Z, Lai Q, et al. Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol. 2015;65:2472–8. Lei X, Zhang H, Chen Y, Li Y, Chen Z, Lai Q, et al. Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol. 2015;65:2472–8.
7.
go back to reference Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science. 2001;292:2492–5. Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science. 2001;292:2492–5.
8.
9.
go back to reference Wei J, Mao Y, Zheng Q, Zhang R, Wang Y. Erythrobacter westpacificensis sp. nov., a marine bacterium isolated from the western Pacific. Curr Microbiol. 2013;66:385–90.CrossRefPubMed Wei J, Mao Y, Zheng Q, Zhang R, Wang Y. Erythrobacter westpacificensis sp. nov., a marine bacterium isolated from the western Pacific. Curr Microbiol. 2013;66:385–90.CrossRefPubMed
10.
go back to reference Zhuang L, Liu Y, Wang L, Wang W, Shao Z. Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol. 2015;65:3714–9.CrossRefPubMed Zhuang L, Liu Y, Wang L, Wang W, Shao Z. Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol. 2015;65:3714–9.CrossRefPubMed
11.
go back to reference Zheng Q, Lin W, Liu Y, Chen C, Jiao N. A comparison of 14 Erythrobacter genomes provides insights into the genomic divergence and scattered distribution of phototrophs. Front Microbiol. 2016;7:984.CrossRefPubMedPubMedCentral Zheng Q, Lin W, Liu Y, Chen C, Jiao N. A comparison of 14 Erythrobacter genomes provides insights into the genomic divergence and scattered distribution of phototrophs. Front Microbiol. 2016;7:984.CrossRefPubMedPubMedCentral
12.
go back to reference Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, et al. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. Nov., sp. nov., Erythromicrobium ramosum gen. Nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol. 1994;44:427–34. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, et al. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. Nov., sp. nov., Erythromicrobium ramosum gen. Nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol. 1994;44:427–34.
13.
go back to reference Röling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, et al. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol. 2002;68:5537–48. Röling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, et al. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol. 2002;68:5537–48.
14.
go back to reference Yurkov V, Jappe J, Vermeglio A. Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol. 1996;62:4195–8.PubMedPubMedCentral Yurkov V, Jappe J, Vermeglio A. Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol. 1996;62:4195–8.PubMedPubMedCentral
15.
go back to reference Hwang Y-O, Kang SG, Woo J-H, Kwon KK, Sato T, Lee EY, et al. Screening enantioselective epoxide hydrolase activities from marine microorganisms: detection of activities in Erythrobacter spp. Mar Biotechnol. 2008;10:366–73. Hwang Y-O, Kang SG, Woo J-H, Kwon KK, Sato T, Lee EY, et al. Screening enantioselective epoxide hydrolase activities from marine microorganisms: detection of activities in Erythrobacter spp. Mar Biotechnol. 2008;10:366–73.
18.
go back to reference Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CrossRefPubMed Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CrossRefPubMed
19.
go back to reference Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria. Nature. 1990;343:60–2.CrossRef Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria. Nature. 1990;343:60–2.CrossRef
20.
go back to reference Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357–60. Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357–60.
21.
go back to reference Huang S, Zhang Y, Chen F, Jiao N. Complete genome sequence of a marine roseophage provides evidence into the evolution of gene transfer agent in alphaproteobacteria. Virol J. 2011;8:124.CrossRefPubMedPubMedCentral Huang S, Zhang Y, Chen F, Jiao N. Complete genome sequence of a marine roseophage provides evidence into the evolution of gene transfer agent in alphaproteobacteria. Virol J. 2011;8:124.CrossRefPubMedPubMedCentral
23.
go back to reference Zhan Y, Huang S, Voget S, Simon M, Chen F. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents. Sci Rep. 2016;6:30372.CrossRefPubMedPubMedCentral Zhan Y, Huang S, Voget S, Simon M, Chen F. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents. Sci Rep. 2016;6:30372.CrossRefPubMedPubMedCentral
24.
go back to reference Fürch T, Preusse M, Tomasch J, Zech H, Wagner-Döbler I, Rabus R, et al. Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade. BMC Microbiol. 2009;9:209. Fürch T, Preusse M, Tomasch J, Zech H, Wagner-Döbler I, Rabus R, et al. Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade. BMC Microbiol. 2009;9:209.
25.
go back to reference Pajunen M, Kiljunen S, Skurnik M. Bacteriophage φYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol. 2000;182:5114–20.CrossRefPubMedPubMedCentral Pajunen M, Kiljunen S, Skurnik M. Bacteriophage φYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol. 2000;182:5114–20.CrossRefPubMedPubMedCentral
26.
go back to reference Alonso MDC, Rodríguez J, Borrego JJ. Characterization of marine bacteriophages isolated from the Alboran Sea (western Mediterranean). J Plankton Res. 2002;24:1079–87.CrossRef Alonso MDC, Rodríguez J, Borrego JJ. Characterization of marine bacteriophages isolated from the Alboran Sea (western Mediterranean). J Plankton Res. 2002;24:1079–87.CrossRef
27.
go back to reference Wu L-T, Chang S-Y, Yen M-R, Yang T-C, Tseng Y-H. Characterization of extended-host-range pseudo-T-even bacteriophage Kpp95 isolated on Klebsiella pneumoniae. Appl Environ Microbiol. 2007;73:2532–40.CrossRefPubMedPubMedCentral Wu L-T, Chang S-Y, Yen M-R, Yang T-C, Tseng Y-H. Characterization of extended-host-range pseudo-T-even bacteriophage Kpp95 isolated on Klebsiella pneumoniae. Appl Environ Microbiol. 2007;73:2532–40.CrossRefPubMedPubMedCentral
28.
go back to reference Cai L, Zhang R, He Y, Feng X, Jiao N. Metagenomic analysis of virioplankton of the subtropical Jiulong River Estuary, China. Viruses. 2016;doi:10.3390/v8020035. Cai L, Zhang R, He Y, Feng X, Jiao N. Metagenomic analysis of virioplankton of the subtropical Jiulong River Estuary, China. Viruses. 2016;doi:10.​3390/​v8020035.
29.
go back to reference Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48.CrossRefPubMed Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48.CrossRefPubMed
30.
31.
go back to reference Zhang Y, Jiao N. Roseophage RDJLΦ 1, infecting the aerobic anoxygenic phototrophic bacterium Roseobacter denitrificans OCh114. Appl Environ Microbiol. 2009;75:1745–9.CrossRefPubMedPubMedCentral Zhang Y, Jiao N. Roseophage RDJLΦ 1, infecting the aerobic anoxygenic phototrophic bacterium Roseobacter denitrificans OCh114. Appl Environ Microbiol. 2009;75:1745–9.CrossRefPubMedPubMedCentral
33.
go back to reference Li B, Zhang S, Long L, Huang S. Characterization and complete genome sequences of three N4-like Roseobacter phages isolated from the South China Sea. Curr Microbiol. 2016;73:409.CrossRefPubMed Li B, Zhang S, Long L, Huang S. Characterization and complete genome sequences of three N4-like Roseobacter phages isolated from the South China Sea. Curr Microbiol. 2016;73:409.CrossRefPubMed
34.
go back to reference Mojica KDA, Brussaard CPD. Factors affecting virus dynamics and microbial host–virus interactions in marine environments. FEMS Microbiol Ecol. 2014;89:495–515.CrossRefPubMed Mojica KDA, Brussaard CPD. Factors affecting virus dynamics and microbial host–virus interactions in marine environments. FEMS Microbiol Ecol. 2014;89:495–515.CrossRefPubMed
35.
go back to reference Delisle AL, Levin RE. Characteristics of three phages infectious for psychrophilic fishery isolates of Pseudomonas putrefaciens. Antonie Van Leeuwenhoek. 1972;38:1–8.CrossRefPubMed Delisle AL, Levin RE. Characteristics of three phages infectious for psychrophilic fishery isolates of Pseudomonas putrefaciens. Antonie Van Leeuwenhoek. 1972;38:1–8.CrossRefPubMed
36.
go back to reference Wiebe WJ, Liston J. Isolation and characterization of a marine bacteriophage. Mar Biol. 1968;1:244–9.CrossRef Wiebe WJ, Liston J. Isolation and characterization of a marine bacteriophage. Mar Biol. 1968;1:244–9.CrossRef
37.
go back to reference Murphy J, Maphony J, Ainsworth S, Nauta A, Sinderen DV. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol. 2013;79:7547–55.CrossRefPubMedPubMedCentral Murphy J, Maphony J, Ainsworth S, Nauta A, Sinderen DV. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol. 2013;79:7547–55.CrossRefPubMedPubMedCentral
38.
go back to reference Kossykh VG, Schlagman SL, Hattman S. Phage T4 DNA [N6-adenine] methyltransferase: overexpression, purification, and characterization. J Biol Chem. 1995;270:14389–93.CrossRefPubMed Kossykh VG, Schlagman SL, Hattman S. Phage T4 DNA [N6-adenine] methyltransferase: overexpression, purification, and characterization. J Biol Chem. 1995;270:14389–93.CrossRefPubMed
39.
go back to reference Dziewit L, Oscik K, Bartosik D, Radlinska M. Molecular characterization of a novel temperate sinorhizobium bacteriophage, ΦLM21, encoding DNA methyltransferase with CcrM-like specificity. J Virol. 2014;88:13111–24.CrossRefPubMedPubMedCentral Dziewit L, Oscik K, Bartosik D, Radlinska M. Molecular characterization of a novel temperate sinorhizobium bacteriophage, ΦLM21, encoding DNA methyltransferase with CcrM-like specificity. J Virol. 2014;88:13111–24.CrossRefPubMedPubMedCentral
40.
go back to reference Sepúlveda-Robles O, Kameyama L, Guarneros G. High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol. 2012;78:4510–5.CrossRefPubMedPubMedCentral Sepúlveda-Robles O, Kameyama L, Guarneros G. High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol. 2012;78:4510–5.CrossRefPubMedPubMedCentral
41.
go back to reference Liang Y, Zhang Y, Zhou C, Chen Z, Yang S, Yan C, et al. Complete genome sequence of the siphovirus Roseophage RDJLΦ 2 infecting Roseobacter denitrificans OCh114. Mar Genom. 2016;25:17–9. Liang Y, Zhang Y, Zhou C, Chen Z, Yang S, Yan C, et al. Complete genome sequence of the siphovirus Roseophage RDJLΦ 2 infecting Roseobacter denitrificans OCh114. Mar Genom. 2016;25:17–9.
42.
go back to reference Vara L, Kana AA, Cahill JL, Rasche ES, Everett GFK. Complete genome sequence of Caulobacter crescentus Siphophage Sansa. Genom Announc. 2015;3:e01131–15.CrossRef Vara L, Kana AA, Cahill JL, Rasche ES, Everett GFK. Complete genome sequence of Caulobacter crescentus Siphophage Sansa. Genom Announc. 2015;3:e01131–15.CrossRef
43.
go back to reference Wang I-N, Smith DL, Young R. Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol. 2000;54:799–825.CrossRefPubMed Wang I-N, Smith DL, Young R. Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol. 2000;54:799–825.CrossRefPubMed
44.
go back to reference Saier MH, Reddy BL. Holins in bacteria, eukaryotes, and archaea: multifunctional xenologues with potential biotechnological and biomedical applications. J Bacteriol. 2015;197:7–17.CrossRefPubMed Saier MH, Reddy BL. Holins in bacteria, eukaryotes, and archaea: multifunctional xenologues with potential biotechnological and biomedical applications. J Bacteriol. 2015;197:7–17.CrossRefPubMed
45.
go back to reference Abbasifar R, Griffiths MW, Sabour PM, Ackermann H-W, Vandersteegen K, Lavigne R, et al. Supersize me: Cronobacter sakazakii phage GAP32. Virology. 2014;46:138–46. Abbasifar R, Griffiths MW, Sabour PM, Ackermann H-W, Vandersteegen K, Lavigne R, et al. Supersize me: Cronobacter sakazakii phage GAP32. Virology. 2014;46:138–46.
46.
go back to reference Zago M, Scaltriti E, Rossetti L, Guffanti A, Armiento A, Fornasari ME, et al. Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage ΦAQ113. Appl Environ Microbiol. 2013;79:4712–8. Zago M, Scaltriti E, Rossetti L, Guffanti A, Armiento A, Fornasari ME, et al. Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage ΦAQ113. Appl Environ Microbiol. 2013;79:4712–8.
48.
go back to reference Nanda AM, Thormann K, Frunzke J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol. 2015;197:410–9.CrossRefPubMedPubMedCentral Nanda AM, Thormann K, Frunzke J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol. 2015;197:410–9.CrossRefPubMedPubMedCentral
49.
go back to reference Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F, et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol. 2007;9:3091–9. Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F, et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol. 2007;9:3091–9.
50.
go back to reference Jiao N, Zhang F, Hong N. Significant roles of bacteriochlorophylla supplemental to chlorophylla in the ocean. ISME J. 2010;4:595–7.CrossRefPubMed Jiao N, Zhang F, Hong N. Significant roles of bacteriochlorophylla supplemental to chlorophylla in the ocean. ISME J. 2010;4:595–7.CrossRefPubMed
51.
go back to reference Stegman MR, Cottrell MT, Kirchman DL. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary. ISME J. 2014;8:2339–48.CrossRefPubMedPubMedCentral Stegman MR, Cottrell MT, Kirchman DL. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary. ISME J. 2014;8:2339–48.CrossRefPubMedPubMedCentral
52.
go back to reference Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, et al. The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol. 2007;189:683–90. Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, et al. The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol. 2007;189:683–90.
53.
go back to reference Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, Pukall R, et al. Dinoroseobacter shibae gen. Nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol. 2005;55:1089–96. Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, Pukall R, et al. Dinoroseobacter shibae gen. Nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol. 2005;55:1089–96.
Metadata
Title
Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter
Authors
Longfei Lu
Lanlan Cai
Nianzhi Jiao
Rui Zhang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0773-x

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue