Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Human Immunodeficiency Virus | Research

Anti-human immunodeficiency virus-1 activity of MoMo30 protein isolated from the traditional African medicinal plant Momordica balsamina

Authors: Mahfuz Khan, Amad Diop, Erick Gbodossou, Peng Xiao, Morgan Coleman, Kenya De Barros, Hao Duong, Vincent C. Bond, Virginia Floyd, Kofi Kondwani, Valerie Montgomery Rice, Sandra Harris-Hooker, Francois Villinger, Michael D. Powell

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Background

Plants are used in traditional healing practices of many cultures worldwide. Momordica balsamina is a plant commonly used by traditional African healers as a part of a treatment for HIV/AIDS. It is typically given as a tea to patients with HIV/AIDS. Water-soluble extracts of this plant were found to contain anti-HIV activity.

Methods

We employed cell-based infectivity assays, surface plasmon resonance, and a molecular-cell model of the gp120-CD4 interaction to study the mechanism of action of the MoMo30-plant protein. Using Edman degradation results of the 15 N-terminal amino acids, we determined the gene sequence of the MoMo30-plant protein from an RNAseq library from total RNA extracted from Momordica balsamina.

Results

Here, we identify the active ingredient of water extracts of the leaves of Momordica balsamina as a 30 kDa protein we call MoMo30-plant. We have identified the gene for MoMo30 and found it is homologous to a group of plant lectins known as Hevamine A-like proteins. MoMo30-plant is distinct from other proteins previously reported agents from the Momordica species, such as ribosome-inactivating proteins such as MAP30 and Balsamin. MoMo30-plant binds to gp120 through its glycan groups and functions as a lectin or carbohydrate-binding agent (CBA). It inhibits HIV-1 at nanomolar levels and has minimal cellular toxicity at inhibitory levels.

Conclusions

CBAs like MoMo30 can bind to glycans on the surface of the enveloped glycoprotein of HIV (gp120) and block entry. Exposure to CBAs has two effects on the virus. First, it blocks infection of susceptible cells. Secondly, MoMo30 drives the selection of viruses with altered glycosylation patterns, potentially altering their immunogenicity. Such an agent could represent a change in the treatment strategy for HIV/AIDS that allows a rapid reduction in viral loads while selecting for an underglycosylated virus, potentially facilitating the host immune response.
Appendix
Available only for authorised users
Literature
1.
go back to reference Davids D, Blouws T, Aboyade O, Gibson D, De Jong JT, Van’t Klooster C, Hughes G. Traditional health practitioners’ perceptions, herbal treatment and management of HIV and related opportunistic infections. J Ethnobiol Ethnomed. 2014;10:77.PubMedPubMedCentralCrossRef Davids D, Blouws T, Aboyade O, Gibson D, De Jong JT, Van’t Klooster C, Hughes G. Traditional health practitioners’ perceptions, herbal treatment and management of HIV and related opportunistic infections. J Ethnobiol Ethnomed. 2014;10:77.PubMedPubMedCentralCrossRef
2.
go back to reference van Wyk BE, Albrecht C. A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol. 2008;119:620–9.PubMedCrossRef van Wyk BE, Albrecht C. A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol. 2008;119:620–9.PubMedCrossRef
4.
go back to reference Thomford NE, Dzobo K, Chopera D, Wonkam A, Skelton M, Blackhurst D, Chirikure S, Dandara C. Pharmacogenomics implications of using herbal medicinal plants on African populations in health transition. Pharmaceuticals (Basel). 2015;8:637–63.PubMedCrossRef Thomford NE, Dzobo K, Chopera D, Wonkam A, Skelton M, Blackhurst D, Chirikure S, Dandara C. Pharmacogenomics implications of using herbal medicinal plants on African populations in health transition. Pharmaceuticals (Basel). 2015;8:637–63.PubMedCrossRef
5.
go back to reference Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res. 2008;131:111–20.PubMedCrossRef Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res. 2008;131:111–20.PubMedCrossRef
6.
go back to reference Jeffrey C. A review of the Cucurbitaceae. Bot J Linn Soc. 2008;81:233–47.CrossRef Jeffrey C. A review of the Cucurbitaceae. Bot J Linn Soc. 2008;81:233–47.CrossRef
7.
go back to reference Saboo S, Thorat PK, Tapadiya G, Khadabadi SS. Ancient and recent medicinal uses of cucurbitaceae family. Int J Ther Appl. 2013;9:11–9. Saboo S, Thorat PK, Tapadiya G, Khadabadi SS. Ancient and recent medicinal uses of cucurbitaceae family. Int J Ther Appl. 2013;9:11–9.
8.
9.
go back to reference Karunanayake EH, Jeevathayaparan S, Tennekooon KH. Effect of Momordica charantia fruit juice on streptozotocin-induced diabetes in rats. J Ethnopharmacol. 1990;30:199–204.PubMedCrossRef Karunanayake EH, Jeevathayaparan S, Tennekooon KH. Effect of Momordica charantia fruit juice on streptozotocin-induced diabetes in rats. J Ethnopharmacol. 1990;30:199–204.PubMedCrossRef
10.
go back to reference Ahmed I, Cummings E, Adeghate E, Sharma AK, Singh J. Beneficial effects and mechanism of action of Momordica charantia fruit juice in the treatment of streptozotocin-induced diabetes mellitus in rats. Mol Cell Biochem. 2004;261:63–70.PubMedCrossRef Ahmed I, Cummings E, Adeghate E, Sharma AK, Singh J. Beneficial effects and mechanism of action of Momordica charantia fruit juice in the treatment of streptozotocin-induced diabetes mellitus in rats. Mol Cell Biochem. 2004;261:63–70.PubMedCrossRef
11.
go back to reference Garau C, Adeghate I, Cummings E, Singh J. Beneficial effects and mechanism of action of Momordica charantia in the treatment of diabetes mellitus. Int J Diabetes Metab. 2003;11:46–55. Garau C, Adeghate I, Cummings E, Singh J. Beneficial effects and mechanism of action of Momordica charantia in the treatment of diabetes mellitus. Int J Diabetes Metab. 2003;11:46–55.
12.
go back to reference Licastro F, Franceschi C, Barbieri L, Stirpe F. Toxicity of Momordica charantia lectin and inhibitor for human normal and leukaemic lymphocytes. Virchows Archiv B. 1980;33:257–65.CrossRef Licastro F, Franceschi C, Barbieri L, Stirpe F. Toxicity of Momordica charantia lectin and inhibitor for human normal and leukaemic lymphocytes. Virchows Archiv B. 1980;33:257–65.CrossRef
13.
go back to reference Chan WY, Ng TB, Yeung HW. beta-Momorcharin, a plant glycoprotein, inhibits synthesis of macromolecules in embryos, splenocytes and tumor cells. Int J Biochem. 1992;24:1039–46.PubMedCrossRef Chan WY, Ng TB, Yeung HW. beta-Momorcharin, a plant glycoprotein, inhibits synthesis of macromolecules in embryos, splenocytes and tumor cells. Int J Biochem. 1992;24:1039–46.PubMedCrossRef
14.
go back to reference Grover JK, Yadav SP. Pharmacological actions and potential uses of Momordica charantia; a review. J Ethanopharmacol. 2004;93:123–32.CrossRef Grover JK, Yadav SP. Pharmacological actions and potential uses of Momordica charantia; a review. J Ethanopharmacol. 2004;93:123–32.CrossRef
15.
go back to reference Lee-Huang S, Huang PL, Chen HC, Huang PL, Bourinbaiar A, Huang HI, Kung HF. Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene. 1995;161:151–6.PubMedCrossRef Lee-Huang S, Huang PL, Chen HC, Huang PL, Bourinbaiar A, Huang HI, Kung HF. Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene. 1995;161:151–6.PubMedCrossRef
16.
go back to reference Lee-Huang S, Huang PL, Huang PL, Bourinbaiar AS, Chen HC, Kung HF. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc Natl Acad Sci USA. 1995;92:8818–22.PubMedPubMedCentralCrossRef Lee-Huang S, Huang PL, Huang PL, Bourinbaiar AS, Chen HC, Kung HF. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc Natl Acad Sci USA. 1995;92:8818–22.PubMedPubMedCentralCrossRef
17.
go back to reference Zhu F, Zhou YK, Ji ZL, Chen XR. The plant ribosome-inactivating proteins play important roles in defense against pathogens and insect pest attacks. Front Plant Sci. 2018;9:146.PubMedPubMedCentralCrossRef Zhu F, Zhou YK, Ji ZL, Chen XR. The plant ribosome-inactivating proteins play important roles in defense against pathogens and insect pest attacks. Front Plant Sci. 2018;9:146.PubMedPubMedCentralCrossRef
18.
go back to reference Fan JM, Zhang Q, Xu J, Zhu S, Ke T, Gao DF, Xu YB. Inhibition on Hepatitis B virus in vitro of recombinant MAP30 from bitter melon. Mol Biol Rep. 2009;36:381–8.PubMedCrossRef Fan JM, Zhang Q, Xu J, Zhu S, Ke T, Gao DF, Xu YB. Inhibition on Hepatitis B virus in vitro of recombinant MAP30 from bitter melon. Mol Biol Rep. 2009;36:381–8.PubMedCrossRef
19.
go back to reference Ajji PK, Sonkar SP, Walder K, Puri M. Purification and functional characterization of recombinant balsamin, a ribosome-inactivating protein from Momordica balsamina. Int J Biol Macromol. 2018;114:226–34.PubMedCrossRef Ajji PK, Sonkar SP, Walder K, Puri M. Purification and functional characterization of recombinant balsamin, a ribosome-inactivating protein from Momordica balsamina. Int J Biol Macromol. 2018;114:226–34.PubMedCrossRef
20.
go back to reference Kaur I, Puri M, Ahmed Z, Blanchet FP, Mangeat B, Piguet V. Inhibition of HIV-1 replication by balsamin, a ribosome inactivating protein of Momordica balsamina. PLoS ONE. 2013;8:e73780.PubMedPubMedCentralCrossRef Kaur I, Puri M, Ahmed Z, Blanchet FP, Mangeat B, Piguet V. Inhibition of HIV-1 replication by balsamin, a ribosome inactivating protein of Momordica balsamina. PLoS ONE. 2013;8:e73780.PubMedPubMedCentralCrossRef
21.
go back to reference Mshelia HS, Karumi Y, Dibal NI. Therapeutic effect of Momordica balsamina leaf extract on ethanol-induced gastric ulcer in Wistar rats. Ann Res Hosp. 2017;1:3.CrossRef Mshelia HS, Karumi Y, Dibal NI. Therapeutic effect of Momordica balsamina leaf extract on ethanol-induced gastric ulcer in Wistar rats. Ann Res Hosp. 2017;1:3.CrossRef
22.
go back to reference Thakur GS, Bag M, Sanodiya BS, Bhadouriya P, Debnath M, Prasad GB, Bisen PS. Momordica balsamina: a medicinal and neutraceutical plant for health care management. Curr Pharm Biotechnol. 2009;10:667–82.PubMedCrossRef Thakur GS, Bag M, Sanodiya BS, Bhadouriya P, Debnath M, Prasad GB, Bisen PS. Momordica balsamina: a medicinal and neutraceutical plant for health care management. Curr Pharm Biotechnol. 2009;10:667–82.PubMedCrossRef
23.
go back to reference Balzarini J. Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses? Antivir Chem Chemother. 2007;18:1–11.PubMedCrossRef Balzarini J. Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses? Antivir Chem Chemother. 2007;18:1–11.PubMedCrossRef
25.
go back to reference Mazalovska M, Kouokam JC. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections. Biomed Res Int. 2018;2018:3750646.PubMedPubMedCentralCrossRef Mazalovska M, Kouokam JC. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections. Biomed Res Int. 2018;2018:3750646.PubMedPubMedCentralCrossRef
26.
go back to reference Mitchell CA, Ramessar K, O’Keefe BR. Antiviral lectins: selective inhibitors of viral entry. Antivir Res. 2017;142:37–54.PubMedCrossRef Mitchell CA, Ramessar K, O’Keefe BR. Antiviral lectins: selective inhibitors of viral entry. Antivir Res. 2017;142:37–54.PubMedCrossRef
27.
go back to reference Ribeiro AC, Ferreira R, Freitas R. Chapter 1—plant lectins: bioactivities and bioapplications. In: Atta ur Rahman, editor. Studies in natural products chemistry, vol. 58. Amsterdam: Elsevier; 2018. p. 1–42. Ribeiro AC, Ferreira R, Freitas R. Chapter 1—plant lectins: bioactivities and bioapplications. In: Atta ur Rahman, editor. Studies in natural products chemistry, vol. 58. Amsterdam: Elsevier; 2018. p. 1–42.
28.
go back to reference Pusztai A, Grant G. Assessment of lectin inactivation by heat and digestion. Methods Mol Med. 1998;9:505–14.PubMed Pusztai A, Grant G. Assessment of lectin inactivation by heat and digestion. Methods Mol Med. 1998;9:505–14.PubMed
29.
go back to reference Balzarini J, Van Laethem K, Hatse S, Froeyen M, Peumans W, Van Damme E, Schols D. Carbohydrate-binding agents cause deletions of highly conserved glycosylation sites in HIV GP120: a new therapeutic concept to hit the achilles heel of HIV. J Biol Chem. 2005;280:41005–14.PubMedCrossRef Balzarini J, Van Laethem K, Hatse S, Froeyen M, Peumans W, Van Damme E, Schols D. Carbohydrate-binding agents cause deletions of highly conserved glycosylation sites in HIV GP120: a new therapeutic concept to hit the achilles heel of HIV. J Biol Chem. 2005;280:41005–14.PubMedCrossRef
30.
31.
go back to reference Kesari P, Patil DN, Kumar P, Tomar S, Sharma AK, Kumar P. Structural and functional evolution of chitinase-like proteins from plants. Proteomics. 2015;15:1693–705.PubMedCrossRef Kesari P, Patil DN, Kumar P, Tomar S, Sharma AK, Kumar P. Structural and functional evolution of chitinase-like proteins from plants. Proteomics. 2015;15:1693–705.PubMedCrossRef
32.
go back to reference Terwisscha van Scheltinga AC, Kalk KH, Beintema JJ, Dijkstra BW. Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure. 1994;2:1181–9.PubMedCrossRef Terwisscha van Scheltinga AC, Kalk KH, Beintema JJ, Dijkstra BW. Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure. 1994;2:1181–9.PubMedCrossRef
33.
go back to reference Coleman MI, Khan M, Gbodossou E, Diop A, DeBarros K, Duong H, Bond VC, Floyd V, Kondwani K, Montgomery Rice V, et al. Identification of a novel anti-HIV-1 protein from Momordica balsamina leaf extract. Int J Environ Res Public Health. 2022;19:15227.PubMedPubMedCentralCrossRef Coleman MI, Khan M, Gbodossou E, Diop A, DeBarros K, Duong H, Bond VC, Floyd V, Kondwani K, Montgomery Rice V, et al. Identification of a novel anti-HIV-1 protein from Momordica balsamina leaf extract. Int J Environ Res Public Health. 2022;19:15227.PubMedPubMedCentralCrossRef
34.
go back to reference Di Veroli GY, Fornari C, Goldlust I, Mills G, Koh SB, Bramhall JL, Richards FM, Jodrell DI. An automated fitting procedure and software for dose-response curves with multiphasic features. Sci Rep. 2015;5:14701.PubMedPubMedCentralCrossRef Di Veroli GY, Fornari C, Goldlust I, Mills G, Koh SB, Bramhall JL, Richards FM, Jodrell DI. An automated fitting procedure and software for dose-response curves with multiphasic features. Sci Rep. 2015;5:14701.PubMedPubMedCentralCrossRef
35.
go back to reference He Y, Cheng J, Lu H, Li J, Hu J, Qi Z, Liu Z, Jiang S, Dai Q. Potent HIV fusion inhibitors against Enfuvirtide-resistant HIV-1 strains. Proc Natl Acad Sci USA. 2008;105:16332–7.PubMedPubMedCentralCrossRef He Y, Cheng J, Lu H, Li J, Hu J, Qi Z, Liu Z, Jiang S, Dai Q. Potent HIV fusion inhibitors against Enfuvirtide-resistant HIV-1 strains. Proc Natl Acad Sci USA. 2008;105:16332–7.PubMedPubMedCentralCrossRef
36.
go back to reference Lee-Huang S, Huang PL, Nara PL, Chen HC, Kung HF, Huang P, Huang HI, Huang PL. MAP 30: a new inhibitor of HIV-1 infection and replication. FEBS Lett. 1990;272:12–8.PubMedCrossRef Lee-Huang S, Huang PL, Nara PL, Chen HC, Kung HF, Huang P, Huang HI, Huang PL. MAP 30: a new inhibitor of HIV-1 infection and replication. FEBS Lett. 1990;272:12–8.PubMedCrossRef
37.
go back to reference Wierenga RK. The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett. 2001;492:193–8.PubMedCrossRef Wierenga RK. The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett. 2001;492:193–8.PubMedCrossRef
38.
go back to reference Romero-Romero S, Costas M, Silva Manzano D-A, Kordes S, Rojas-Ortega E, Tapia C, Guerra Y, Shanmugaratnam S, Rodríguez-Romero A, Baker D, et al. The stability landscape of de novo TIM barrels explored by a modular design approach. J Mol Biol. 2021;433:167153–167153.PubMedPubMedCentralCrossRef Romero-Romero S, Costas M, Silva Manzano D-A, Kordes S, Rojas-Ortega E, Tapia C, Guerra Y, Shanmugaratnam S, Rodríguez-Romero A, Baker D, et al. The stability landscape of de novo TIM barrels explored by a modular design approach. J Mol Biol. 2021;433:167153–167153.PubMedPubMedCentralCrossRef
39.
go back to reference Cao L, Diedrich JK, Kulp DW, Pauthner M, He L, Park S-KR, Sok D, Su CY, Delahunty CM, Menis S, et al. Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nat Commun. 2017;8:14954.PubMedPubMedCentralCrossRef Cao L, Diedrich JK, Kulp DW, Pauthner M, He L, Park S-KR, Sok D, Su CY, Delahunty CM, Menis S, et al. Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nat Commun. 2017;8:14954.PubMedPubMedCentralCrossRef
40.
go back to reference Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the structure-function relationships of mannose-specific lectins from plants, algae and fungi. Int J Mol Sci. 2019;20:254.PubMedPubMedCentralCrossRef Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the structure-function relationships of mannose-specific lectins from plants, algae and fungi. Int J Mol Sci. 2019;20:254.PubMedPubMedCentralCrossRef
41.
go back to reference Tesfaye M, Silverstein KA, Nallu S, Wang L, Botanga CJ, Gomez SK, Costa LM, Harrison MJ, Samac DA, Glazebrook J, et al. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes. PLoS ONE. 2013;8:e58992.PubMedPubMedCentralCrossRef Tesfaye M, Silverstein KA, Nallu S, Wang L, Botanga CJ, Gomez SK, Costa LM, Harrison MJ, Samac DA, Glazebrook J, et al. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes. PLoS ONE. 2013;8:e58992.PubMedPubMedCentralCrossRef
42.
go back to reference Sahai AS, Manocha MS. Chitinases of fungi and plants: their involvement in morphogenesis and host—parasite interaction. FEMS Microbiol Rev. 1993;11:317–38.CrossRef Sahai AS, Manocha MS. Chitinases of fungi and plants: their involvement in morphogenesis and host—parasite interaction. FEMS Microbiol Rev. 1993;11:317–38.CrossRef
44.
go back to reference Samac DA, Hironaka CM, Yallaly PE, Shah DM. Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol. 1990;93:907–14.PubMedPubMedCentralCrossRef Samac DA, Hironaka CM, Yallaly PE, Shah DM. Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol. 1990;93:907–14.PubMedPubMedCentralCrossRef
45.
go back to reference Bateman A, Bycroft M. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol. 2000;299:1113–9.PubMedCrossRef Bateman A, Bycroft M. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol. 2000;299:1113–9.PubMedCrossRef
46.
go back to reference Percudani R, Montanini B, Ottonello S. The anti-HIV cyanovirin-N domain is evolutionarily conserved and occurs as a protein module in eukaryotes. Proteins. 2005;60:670–8.PubMedCrossRef Percudani R, Montanini B, Ottonello S. The anti-HIV cyanovirin-N domain is evolutionarily conserved and occurs as a protein module in eukaryotes. Proteins. 2005;60:670–8.PubMedCrossRef
47.
go back to reference Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O’Keefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM, et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother. 1997;41:1521–30.PubMedPubMedCentralCrossRef Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O’Keefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM, et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother. 1997;41:1521–30.PubMedPubMedCentralCrossRef
48.
go back to reference Balzarini J. Inhibition of HIV entry by carbohydrate-binding proteins. Antivir Res. 2006;71:237–47.PubMedCrossRef Balzarini J. Inhibition of HIV entry by carbohydrate-binding proteins. Antivir Res. 2006;71:237–47.PubMedCrossRef
49.
go back to reference Khan M, Garcia-Barrio M, Powell MD. Restoration of wild-type infectivity to human immunodeficiency virus type 1 strains lacking nef by intravirion reverse transcription. J Virol. 2001;75:12081–7.PubMedPubMedCentralCrossRef Khan M, Garcia-Barrio M, Powell MD. Restoration of wild-type infectivity to human immunodeficiency virus type 1 strains lacking nef by intravirion reverse transcription. J Virol. 2001;75:12081–7.PubMedPubMedCentralCrossRef
50.
go back to reference Raymond AD, Campbell-Sims TC, Khan M, Lang M, Huang MB, Bond VC, Powell MD. HIV Type 1 Nef is released from infected cells in CD45(+) microvesicles and is present in the plasma of HIV-infected individuals. AIDS Res Hum Retrovir. 2011;27:167–78.PubMedPubMedCentralCrossRef Raymond AD, Campbell-Sims TC, Khan M, Lang M, Huang MB, Bond VC, Powell MD. HIV Type 1 Nef is released from infected cells in CD45(+) microvesicles and is present in the plasma of HIV-infected individuals. AIDS Res Hum Retrovir. 2011;27:167–78.PubMedPubMedCentralCrossRef
51.
go back to reference Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.PubMedPubMedCentralCrossRef Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.PubMedPubMedCentralCrossRef
52.
go back to reference Hood MA. Comparison of four methods for measuring chitinase activity and the application of the 4-MUF assay in aquatic environments. J Microbiol Methods. 1991;13:151–60.CrossRef Hood MA. Comparison of four methods for measuring chitinase activity and the application of the 4-MUF assay in aquatic environments. J Microbiol Methods. 1991;13:151–60.CrossRef
Metadata
Title
Anti-human immunodeficiency virus-1 activity of MoMo30 protein isolated from the traditional African medicinal plant Momordica balsamina
Authors
Mahfuz Khan
Amad Diop
Erick Gbodossou
Peng Xiao
Morgan Coleman
Kenya De Barros
Hao Duong
Vincent C. Bond
Virginia Floyd
Kofi Kondwani
Valerie Montgomery Rice
Sandra Harris-Hooker
Francois Villinger
Michael D. Powell
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02010-5

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue