Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | SARS-CoV-2 | Research

Intragenomic rearrangements involving 5′-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses

Authors: Roberto Patarca, William A. Haseltine

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Background

Variation of the betacoronavirus SARS-CoV-2 has been the bane of COVID-19 control. Documented variation includes point mutations, deletions, insertions, and recombination among closely or distantly related coronaviruses. Here, we describe yet another aspect of genome variation by beta- and alphacoronaviruses that was first documented in an infectious isolate of the betacoronavirus SARS-CoV-2, obtained from 3 patients in Hong Kong that had a 5′-untranslated region segment at the end of the ORF6 gene that in its new location translated into an ORF6 protein with a predicted modified carboxyl terminus. While comparing the amino acid sequences of translated ORF8 genes in the GenBank database, we found a subsegment of the same 5′-UTR-derived amino acid sequence modifying the distal end of ORF8 of an isolate from the United States and decided to carry out a systematic search.

Methods

Using the nucleotide and in the case of SARS-CoV-2 also the translated amino acid sequence in three reading frames of the genomic termini of coronaviruses as query sequences, we searched for 5′-UTR sequences in regions other than the 5′-UTR in SARS-CoV-2 and reference strains of alpha-, beta-, gamma-, and delta-coronaviruses.

Results

We here report numerous genomic insertions of 5′-untranslated region sequences into coding regions of SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses, but not delta- or gammacoronaviruses. To our knowledge this is the first systematic description of such insertions. In many cases, these insertions would change viral protein sequences and further foster genomic flexibility and viral adaptability through insertion of transcription regulatory sequences in novel positions within the genome. Among human Embecorivus betacoronaviruses, for instance, from 65% to all of the surveyed sequences in publicly available databases contain inserted 5′-UTR sequences.

Conclusion

The intragenomic rearrangements involving 5′-untranslated region sequences described here, which in several cases affect highly conserved genes with a low propensity for recombination, may underlie the generation of variants homotypic with those of concern or interest and with potentially differing pathogenic profiles. Intragenomic rearrangements thus add to our appreciation of how variants of SARS-CoV-2 and other beta- and alphacoronaviruses may arise.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635–64.PubMedPubMedCentralCrossRef Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635–64.PubMedPubMedCentralCrossRef
3.
go back to reference Pollett S, Conte MA, Sanborn M, Jarman RG, Lidl GM, et al. A comparative recombination of analysis of human coronaviruses and implications for the SARS-CoV-2 pandemic. Sci Rep. 2021;11:17365.PubMedPubMedCentralCrossRef Pollett S, Conte MA, Sanborn M, Jarman RG, Lidl GM, et al. A comparative recombination of analysis of human coronaviruses and implications for the SARS-CoV-2 pandemic. Sci Rep. 2021;11:17365.PubMedPubMedCentralCrossRef
4.
5.
go back to reference Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020;395(10223):497–506.PubMedCrossRef Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020;395(10223):497–506.PubMedCrossRef
7.
go back to reference Menachery VD, Yount BL Jr, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015;21(12):1508–13.PubMedPubMedCentralCrossRef Menachery VD, Yount BL Jr, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015;21(12):1508–13.PubMedPubMedCentralCrossRef
8.
go back to reference Caserta LC, Martins M, Butt SL, et al. White-tailed deer (Odocoileus virginianus) may serve as a wildlife reservoir for nearly extinct SARS-CoV-2 variants of concern. Proc Natl Acad Sci USA. 2023;120(6): e2215067120.PubMedCrossRef Caserta LC, Martins M, Butt SL, et al. White-tailed deer (Odocoileus virginianus) may serve as a wildlife reservoir for nearly extinct SARS-CoV-2 variants of concern. Proc Natl Acad Sci USA. 2023;120(6): e2215067120.PubMedCrossRef
9.
go back to reference Song H-D, Tu C-C, Zhang G-W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24:490–502.CrossRef Song H-D, Tu C-C, Zhang G-W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24:490–502.CrossRef
10.
go back to reference Latinne A, Hu B, Olival KJ, et al. Origin and cross-species transmission of bat coronaviruses in China. Nat Commun. 2020;11(1):1–5.CrossRef Latinne A, Hu B, Olival KJ, et al. Origin and cross-species transmission of bat coronaviruses in China. Nat Commun. 2020;11(1):1–5.CrossRef
12.
go back to reference Woo PC, Lau SK, Huang Y, Yuen KY. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med. 2009;234(10):1117–27.CrossRef Woo PC, Lau SK, Huang Y, Yuen KY. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med. 2009;234(10):1117–27.CrossRef
13.
go back to reference Amoutzias GD, Nikolaidis M, Tryfonopoulou E, et al. The remarkable evolutionary plasticity of coronaviruses by mutation and recombination: insights for the COVID-19 pandemic and the future evolutionary paths of SARS-CoV-2. Viruses. 2022;14:78.PubMedPubMedCentralCrossRef Amoutzias GD, Nikolaidis M, Tryfonopoulou E, et al. The remarkable evolutionary plasticity of coronaviruses by mutation and recombination: insights for the COVID-19 pandemic and the future evolutionary paths of SARS-CoV-2. Viruses. 2022;14:78.PubMedPubMedCentralCrossRef
15.
go back to reference Decaro N, Mari V, Campolo M, et al. Recombinant canine coronaviruses related to transmissible gastroenteritis virus of Swine and circulating in dogs. J Virol. 2009;83(3):1532–7.PubMedCrossRef Decaro N, Mari V, Campolo M, et al. Recombinant canine coronaviruses related to transmissible gastroenteritis virus of Swine and circulating in dogs. J Virol. 2009;83(3):1532–7.PubMedCrossRef
16.
go back to reference Goldstein SA, Brown J, Pedersen BS, Quinlan AR, Elde NC. Extensive recombination-driven coronavirus diversification expands the pool of potential pandemic pathogens. Genome Biol Evol. 2022;14(12):evac161.PubMedPubMedCentralCrossRef Goldstein SA, Brown J, Pedersen BS, Quinlan AR, Elde NC. Extensive recombination-driven coronavirus diversification expands the pool of potential pandemic pathogens. Genome Biol Evol. 2022;14(12):evac161.PubMedPubMedCentralCrossRef
17.
go back to reference Gussow AB, Auslander N, Faure G, et al. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc Nat Acad Sci USA. 2020;117(26):15193.PubMedPubMedCentralCrossRef Gussow AB, Auslander N, Faure G, et al. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc Nat Acad Sci USA. 2020;117(26):15193.PubMedPubMedCentralCrossRef
19.
go back to reference Thorne LG, Bouhaddou M, Reuschl AK, et al. Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature. 2022;602(7897):487–95.PubMedCrossRef Thorne LG, Bouhaddou M, Reuschl AK, et al. Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature. 2022;602(7897):487–95.PubMedCrossRef
20.
go back to reference Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol. 2007;81:20–9.PubMedCrossRef Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol. 2007;81:20–9.PubMedCrossRef
21.
go back to reference Bobay L-M, O’Donnell AC, Ochman H. Recombination events are concentrated in the spike protein region of betacoronaviruses. PLoS Genet. 2020;16: e1009272.PubMedPubMedCentralCrossRef Bobay L-M, O’Donnell AC, Ochman H. Recombination events are concentrated in the spike protein region of betacoronaviruses. PLoS Genet. 2020;16: e1009272.PubMedPubMedCentralCrossRef
22.
go back to reference Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. 2020;5:1408–17.PubMedCrossRef Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. 2020;5:1408–17.PubMedCrossRef
23.
go back to reference Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017;25:35–48.PubMedCrossRef Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017;25:35–48.PubMedCrossRef
24.
go back to reference Forni D, Cagliani R, Sironi M. Recombination and positive selection differentially shaped the diversity of betacoronavirus subgenera. Viruses. 2020;12:1313.PubMedPubMedCentralCrossRef Forni D, Cagliani R, Sironi M. Recombination and positive selection differentially shaped the diversity of betacoronavirus subgenera. Viruses. 2020;12:1313.PubMedPubMedCentralCrossRef
25.
go back to reference Lau SKP, Wong EYM, Tsang CC, et al. Discovery and sequence analysis of four deltacoronaviruses from birds in the Middle East reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission. J Virol. 2018;92:e00265-e318.PubMedPubMedCentralCrossRef Lau SKP, Wong EYM, Tsang CC, et al. Discovery and sequence analysis of four deltacoronaviruses from birds in the Middle East reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission. J Virol. 2018;92:e00265-e318.PubMedPubMedCentralCrossRef
27.
go back to reference Yang Y, Yan W, Hall AB, Jiang X. Characterizing transcriptional regulatory sequences in coronaviruses and their role in recombination. Mol Biol Evol. 2021;38:1241–8.PubMedCrossRef Yang Y, Yan W, Hall AB, Jiang X. Characterizing transcriptional regulatory sequences in coronaviruses and their role in recombination. Mol Biol Evol. 2021;38:1241–8.PubMedCrossRef
29.
go back to reference Bentley K, Keep SM, Armesto M, Britton P. Identification of a noncanonically transcribed subgenomic mrna of infectious bronchitis virus and other gammacoronaviruses. J Virol. 2013;87:2128–36.PubMedPubMedCentralCrossRef Bentley K, Keep SM, Armesto M, Britton P. Identification of a noncanonically transcribed subgenomic mrna of infectious bronchitis virus and other gammacoronaviruses. J Virol. 2013;87:2128–36.PubMedPubMedCentralCrossRef
31.
go back to reference Graham RL, Baric RS. Recombination, reservoirs, and the modular spike. Mechanisms of coronavirus cross-species transmission. J Virol. 2010;84:3134–46.PubMedCrossRef Graham RL, Baric RS. Recombination, reservoirs, and the modular spike. Mechanisms of coronavirus cross-species transmission. J Virol. 2010;84:3134–46.PubMedCrossRef
32.
go back to reference Graham RL, Deing DJ, Deming ME, et al. Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform. Commun Biol. 2018;1(1):1–10.CrossRef Graham RL, Deing DJ, Deming ME, et al. Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform. Commun Biol. 2018;1(1):1–10.CrossRef
33.
go back to reference Lytras S, Hughes J, Martin D, et al. Exploring the natural origins of SARS-CoV-2 in the light of recombination. Genome Biol Evol. 2022;5:evac018.CrossRef Lytras S, Hughes J, Martin D, et al. Exploring the natural origins of SARS-CoV-2 in the light of recombination. Genome Biol Evol. 2022;5:evac018.CrossRef
35.
go back to reference Madhugiri R, Karl N, Petersen D, et al. Structural and functional conservation of cis-acting RNA elements in coronavirus 5′-terminal genome regions. Virology. 2018;517:44–55.PubMedCrossRef Madhugiri R, Karl N, Petersen D, et al. Structural and functional conservation of cis-acting RNA elements in coronavirus 5′-terminal genome regions. Virology. 2018;517:44–55.PubMedCrossRef
36.
go back to reference Miao Z, Tidu A, Eriani G, Martin F. Secondary structure of the SARS-CoV-2 5′-UTR. RNA Biol. 2021;18(4):447–56.PubMedCrossRef Miao Z, Tidu A, Eriani G, Martin F. Secondary structure of the SARS-CoV-2 5′-UTR. RNA Biol. 2021;18(4):447–56.PubMedCrossRef
37.
go back to reference Zhang X, Liao C-L, Lai M. Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription both in trans and in cis. J Virol. 1994;8(8):4738–46.CrossRef Zhang X, Liao C-L, Lai M. Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription both in trans and in cis. J Virol. 1994;8(8):4738–46.CrossRef
38.
go back to reference Chen SC, Olsthoorn RCL. Group-specific structural features of the 5′-proximal sequences of coronavirus genomic RNAs. Virology. 2010;401(1):29–41.PubMedCrossRef Chen SC, Olsthoorn RCL. Group-specific structural features of the 5′-proximal sequences of coronavirus genomic RNAs. Virology. 2010;401(1):29–41.PubMedCrossRef
39.
go back to reference Tse H, Lung DC, Wong SC, et al. Emergence of a severe acute respiratory syndrome coronavirus 2 virus variant with novel genomic architecture in Hong Kong. Clin Infect Dis. 2021;73(9):1696–9.PubMedCrossRef Tse H, Lung DC, Wong SC, et al. Emergence of a severe acute respiratory syndrome coronavirus 2 virus variant with novel genomic architecture in Hong Kong. Clin Infect Dis. 2021;73(9):1696–9.PubMedCrossRef
40.
41.
go back to reference Islam MR, Hoque MN, Rahman MS, et al. Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Sci Rep. 2020;10(1):14004.PubMedPubMedCentralCrossRef Islam MR, Hoque MN, Rahman MS, et al. Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Sci Rep. 2020;10(1):14004.PubMedPubMedCentralCrossRef
42.
go back to reference Hassan SS, Choudhury PP, Dayhoff GW 2nd, et al. The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Arch Biochem Biophys. 2022;717: 109124.PubMedPubMedCentralCrossRef Hassan SS, Choudhury PP, Dayhoff GW 2nd, et al. The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Arch Biochem Biophys. 2022;717: 109124.PubMedPubMedCentralCrossRef
43.
go back to reference Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.PubMedPubMedCentralCrossRef Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.PubMedPubMedCentralCrossRef
44.
go back to reference Bikandi J, San Millán R, Rementeria A, Garaizar J. In silico analysis of complete bacterial genomes: PCR, AFLP-PCR, and endonuclease restriction. Bioinformatics. 2004;20:798–9.PubMedCrossRef Bikandi J, San Millán R, Rementeria A, Garaizar J. In silico analysis of complete bacterial genomes: PCR, AFLP-PCR, and endonuclease restriction. Bioinformatics. 2004;20:798–9.PubMedCrossRef
47.
go back to reference Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Global Chall. 2017;1:33–46.CrossRef Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Global Chall. 2017;1:33–46.CrossRef
50.
51.
go back to reference Kerpedjiev P, Hammer S, Hofacker IL. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics. 2015;31:3377–9.PubMedPubMedCentralCrossRef Kerpedjiev P, Hammer S, Hofacker IL. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics. 2015;31:3377–9.PubMedPubMedCentralCrossRef
54.
go back to reference Temmam S, Vongphayloth K, Baquero Salazar E, et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 2022;604(7905):330–6.PubMedCrossRef Temmam S, Vongphayloth K, Baquero Salazar E, et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 2022;604(7905):330–6.PubMedCrossRef
55.
57.
go back to reference Harrison GP, Mayo MS, Hunter E, Lever AM. Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5′ and 3′ of the catalytic site. Nucleic Acids Res. 1998;26(14):3433–42.PubMedPubMedCentralCrossRef Harrison GP, Mayo MS, Hunter E, Lever AM. Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5′ and 3′ of the catalytic site. Nucleic Acids Res. 1998;26(14):3433–42.PubMedPubMedCentralCrossRef
58.
go back to reference Franco-Muñoz C, Álvarez-Díaz DA, Laiton-Donato K, et al. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infect Genet Evol. 2020;85: 104557.PubMedPubMedCentralCrossRef Franco-Muñoz C, Álvarez-Díaz DA, Laiton-Donato K, et al. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infect Genet Evol. 2020;85: 104557.PubMedPubMedCentralCrossRef
59.
go back to reference Johnson BA, Zhou Y, Lokugamage KG, et al. Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathog. 2022;18(6): e1010627.PubMedPubMedCentralCrossRef Johnson BA, Zhou Y, Lokugamage KG, et al. Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathog. 2022;18(6): e1010627.PubMedPubMedCentralCrossRef
60.
go back to reference Mourier T, Shuaib M, Hala S, et al. SARS-CoV-2 genomes from Saudi Arabia implicate nucleocapsid mutations in host response and increased viral load. Nat Commun. 2022;13:601.PubMedPubMedCentralCrossRef Mourier T, Shuaib M, Hala S, et al. SARS-CoV-2 genomes from Saudi Arabia implicate nucleocapsid mutations in host response and increased viral load. Nat Commun. 2022;13:601.PubMedPubMedCentralCrossRef
61.
go back to reference Wu H, Xing N, Meng K, et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe. 2021;29:1788–801.PubMedPubMedCentralCrossRef Wu H, Xing N, Meng K, et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe. 2021;29:1788–801.PubMedPubMedCentralCrossRef
63.
go back to reference Lauber C, Goeman JJ, Parquet MDC, et al. The footprint of genome architecture in the largest genome expansion in RNA viruses. PLoS Pathogen. 2013;9: e1003500.CrossRef Lauber C, Goeman JJ, Parquet MDC, et al. The footprint of genome architecture in the largest genome expansion in RNA viruses. PLoS Pathogen. 2013;9: e1003500.CrossRef
64.
go back to reference Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-NCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536–44.CrossRef Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-NCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536–44.CrossRef
65.
go back to reference Slanina H, Madhugiri R, Bylapudi G, et al. Coronavirus replication-transcription complex: vital and selective NMPylation of a conserved site in nsp9 by the NiRAN-RdRp subunit. Proc Natl Acad Sci USA. 2021;118(6): e2022310118.PubMedPubMedCentralCrossRef Slanina H, Madhugiri R, Bylapudi G, et al. Coronavirus replication-transcription complex: vital and selective NMPylation of a conserved site in nsp9 by the NiRAN-RdRp subunit. Proc Natl Acad Sci USA. 2021;118(6): e2022310118.PubMedPubMedCentralCrossRef
66.
go back to reference Yan L, Ge J, Zheng L, Zhang Y, et al. Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis. Cell. 2021;184(1):184-193.e10.PubMedCrossRef Yan L, Ge J, Zheng L, Zhang Y, et al. Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis. Cell. 2021;184(1):184-193.e10.PubMedCrossRef
67.
go back to reference Dwivedy A, Mariadasse R, Ahmad M, et al. Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2. PLoS Comput Biol. 2021;17(9): e1009384.PubMedPubMedCentralCrossRef Dwivedy A, Mariadasse R, Ahmad M, et al. Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2. PLoS Comput Biol. 2021;17(9): e1009384.PubMedPubMedCentralCrossRef
68.
go back to reference Lehmann KC, Gulyaeva A, Zevenhoven-Dobbe JC, et al. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res. 2015;43(17):8416–34.PubMedPubMedCentralCrossRef Lehmann KC, Gulyaeva A, Zevenhoven-Dobbe JC, et al. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res. 2015;43(17):8416–34.PubMedPubMedCentralCrossRef
69.
71.
go back to reference Vijgen L, Keyaerts E, Moës E, et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol. 2005;79:1595–604.PubMedPubMedCentralCrossRef Vijgen L, Keyaerts E, Moës E, et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol. 2005;79:1595–604.PubMedPubMedCentralCrossRef
72.
go back to reference Mounir S, Talbot PJ. Molecular characterization of the S protein gene of human coronavirus OC43. J Gen Virol. 1993;74:1981–7.PubMedCrossRef Mounir S, Talbot PJ. Molecular characterization of the S protein gene of human coronavirus OC43. J Gen Virol. 1993;74:1981–7.PubMedCrossRef
73.
go back to reference Wang L, Qiao X, Zhang S, et al. Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-κB activation. Virulence. 2018;9(1):1685–98.PubMedPubMedCentralCrossRef Wang L, Qiao X, Zhang S, et al. Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-κB activation. Virulence. 2018;9(1):1685–98.PubMedPubMedCentralCrossRef
75.
go back to reference Sola I, Almazán F, Zúñiga S, Enjuanes L. Continuous and discontinuous RNA synthesis in coronaviruses. Ann Rev Virol. 2015;2(1):265–88.CrossRef Sola I, Almazán F, Zúñiga S, Enjuanes L. Continuous and discontinuous RNA synthesis in coronaviruses. Ann Rev Virol. 2015;2(1):265–88.CrossRef
77.
go back to reference Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–92.PubMedCrossRef Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–92.PubMedCrossRef
78.
go back to reference Rottier PJM, Nakamura K, Schellen P, Volders H, Hajema BJ. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J Virol. 2005;79:14122–30.PubMedPubMedCentralCrossRef Rottier PJM, Nakamura K, Schellen P, Volders H, Hajema BJ. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J Virol. 2005;79:14122–30.PubMedPubMedCentralCrossRef
79.
go back to reference Neches RY, Kyrpides NC, Ouzounis CA. Atypical divergence of SARS-CoV-2 Orf8 from Orf7a within the coronavirus lineage suggests potential stealthy viral strategies in immune evasion. MBio. 2021;12(1):e03014-e3020.PubMedPubMedCentralCrossRef Neches RY, Kyrpides NC, Ouzounis CA. Atypical divergence of SARS-CoV-2 Orf8 from Orf7a within the coronavirus lineage suggests potential stealthy viral strategies in immune evasion. MBio. 2021;12(1):e03014-e3020.PubMedPubMedCentralCrossRef
80.
go back to reference Flower TG, Buffalo CZ, Hooy RM, et al. Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proc Natl Acad Sci USA. 2021;118(2): e2021785118.PubMedCrossRef Flower TG, Buffalo CZ, Hooy RM, et al. Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proc Natl Acad Sci USA. 2021;118(2): e2021785118.PubMedCrossRef
81.
go back to reference Redondo N, Zaldívar-López S, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns. Front Immunol. 2021;12: 708264.PubMedPubMedCentralCrossRef Redondo N, Zaldívar-López S, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns. Front Immunol. 2021;12: 708264.PubMedPubMedCentralCrossRef
82.
go back to reference Zhang Y, Chen Y, Li Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci USA. 2021;118(23): e2024202118.PubMedPubMedCentralCrossRef Zhang Y, Chen Y, Li Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci USA. 2021;118(23): e2024202118.PubMedPubMedCentralCrossRef
83.
go back to reference Li JY, Liao CH, Wang Q, et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res. 2020;286: 198074.PubMedPubMedCentralCrossRef Li JY, Liao CH, Wang Q, et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res. 2020;286: 198074.PubMedPubMedCentralCrossRef
84.
go back to reference Valcarcel A, Bensussen A, Álvarez-Buylla ER, Díaz J. Structural analysis of SARS-CoV-2 ORF8 protein: pathogenic and therapeutic implications. Front Genet. 2021;12: 693227.PubMedPubMedCentralCrossRef Valcarcel A, Bensussen A, Álvarez-Buylla ER, Díaz J. Structural analysis of SARS-CoV-2 ORF8 protein: pathogenic and therapeutic implications. Front Genet. 2021;12: 693227.PubMedPubMedCentralCrossRef
85.
go back to reference Stukalov A, Girault V, Grass V, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature. 2021;594(7862):246–52.PubMedCrossRef Stukalov A, Girault V, Grass V, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature. 2021;594(7862):246–52.PubMedCrossRef
86.
87.
go back to reference Gordon DE, Hiatt J, Bouhaddou M, et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science. 2020;370(6521):eabe9403.PubMedPubMedCentralCrossRef Gordon DE, Hiatt J, Bouhaddou M, et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science. 2020;370(6521):eabe9403.PubMedPubMedCentralCrossRef
88.
go back to reference Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489-1501.e15.PubMedPubMedCentralCrossRef Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489-1501.e15.PubMedPubMedCentralCrossRef
89.
90.
go back to reference Yang R, Zhao Q, Rao J, et al. SARS-CoV-2 accessory protein ORF7b mediates tumor necrosis factor-α-induced apoptosis in cells. Front Microbiol. 2021;12: 654709.PubMedPubMedCentralCrossRef Yang R, Zhao Q, Rao J, et al. SARS-CoV-2 accessory protein ORF7b mediates tumor necrosis factor-α-induced apoptosis in cells. Front Microbiol. 2021;12: 654709.PubMedPubMedCentralCrossRef
92.
go back to reference He R, Leeson A, Ballantine M, et al. Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res. 2004;105(2):121–5.PubMedPubMedCentralCrossRef He R, Leeson A, Ballantine M, et al. Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res. 2004;105(2):121–5.PubMedPubMedCentralCrossRef
93.
go back to reference Lu S, Ye Q, Singh D, Cao Y, et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat Commun. 2021;12(1):502.PubMedPubMedCentralCrossRef Lu S, Ye Q, Singh D, Cao Y, et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat Commun. 2021;12(1):502.PubMedPubMedCentralCrossRef
96.
go back to reference Lo C-Y, Tsai T-L, Lin C-N, et al. Interaction of coronavirus nucleocapsid protein with the 5′- and 3′-ends of the coronavirus genome is involved in genome circularization and negative strand RNA synthesis. FEBS J. 2019;2019(286):3222–39.CrossRef Lo C-Y, Tsai T-L, Lin C-N, et al. Interaction of coronavirus nucleocapsid protein with the 5′- and 3′-ends of the coronavirus genome is involved in genome circularization and negative strand RNA synthesis. FEBS J. 2019;2019(286):3222–39.CrossRef
97.
go back to reference Carlson CR, Asfaha JB, Ghent CM, et al. Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Mol Cell. 2020;80(6):1092–103.PubMedPubMedCentralCrossRef Carlson CR, Asfaha JB, Ghent CM, et al. Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Mol Cell. 2020;80(6):1092–103.PubMedPubMedCentralCrossRef
98.
go back to reference Kemp BE, Graves DJ, Benjamini E, Krebs EG. Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J Biol Chem. 1977;252(14):4888–94.PubMedCrossRef Kemp BE, Graves DJ, Benjamini E, Krebs EG. Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J Biol Chem. 1977;252(14):4888–94.PubMedCrossRef
99.
go back to reference Kennelly PJ, Krebs EG. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991;266(24):15555–8.PubMedCrossRef Kennelly PJ, Krebs EG. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991;266(24):15555–8.PubMedCrossRef
100.
go back to reference Surjit M, Kumar R, Mishra RN, et al. The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J Virol. 2005;79(17):11476–86.PubMedPubMedCentralCrossRef Surjit M, Kumar R, Mishra RN, et al. The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J Virol. 2005;79(17):11476–86.PubMedPubMedCentralCrossRef
101.
go back to reference Tugaeva KV, Hawkins DEDP, Smith JLR, et al. The mechanism of SARS-CoV-2 nucleocapsid protein recognition by the human 14-3-3 proteins. J Mol Biol. 2021;433(8): 166875.PubMedPubMedCentralCrossRef Tugaeva KV, Hawkins DEDP, Smith JLR, et al. The mechanism of SARS-CoV-2 nucleocapsid protein recognition by the human 14-3-3 proteins. J Mol Biol. 2021;433(8): 166875.PubMedPubMedCentralCrossRef
102.
go back to reference Tung HYL, Limtung P. Mutations in the phosphorylation sites of SARS-CoV-2 encoded nucleocapsid protein and structure model of sequestration by protein 14-3-3. Biochem Biophys Res Comm. 2020;532:134–8.PubMedCrossRef Tung HYL, Limtung P. Mutations in the phosphorylation sites of SARS-CoV-2 encoded nucleocapsid protein and structure model of sequestration by protein 14-3-3. Biochem Biophys Res Comm. 2020;532:134–8.PubMedCrossRef
103.
104.
go back to reference Jaroszewski L, Iyer M, et al. The interplay of SARS-CoV-2 evolution and constraints imposed by the structure and functionality of its proteins. PLoS Comput Biol. 2021;17(7): e1009147.PubMedPubMedCentralCrossRef Jaroszewski L, Iyer M, et al. The interplay of SARS-CoV-2 evolution and constraints imposed by the structure and functionality of its proteins. PLoS Comput Biol. 2021;17(7): e1009147.PubMedPubMedCentralCrossRef
105.
go back to reference Oliveira SC, de Magalhães MTQ, Homan EJ. Immunoinformatic analysis of SARS-CoV-2 nucleocapsid protein and identification of COVID-19 vaccine targets. Front Immunol. 2020;11: 587615.PubMedPubMedCentralCrossRef Oliveira SC, de Magalhães MTQ, Homan EJ. Immunoinformatic analysis of SARS-CoV-2 nucleocapsid protein and identification of COVID-19 vaccine targets. Front Immunol. 2020;11: 587615.PubMedPubMedCentralCrossRef
106.
go back to reference Tan YW, Fang S, Fan H, Lescar J, Liu DX. Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acids Res. 2006;34(17):4816–25.PubMedPubMedCentralCrossRef Tan YW, Fang S, Fan H, Lescar J, Liu DX. Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acids Res. 2006;34(17):4816–25.PubMedPubMedCentralCrossRef
107.
go back to reference Zhou M, Collisson EW. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3′ genomic RNA. Virus Res. 2000;67(1):31–9.PubMedPubMedCentralCrossRef Zhou M, Collisson EW. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3′ genomic RNA. Virus Res. 2000;67(1):31–9.PubMedPubMedCentralCrossRef
108.
109.
go back to reference Matthews KL, Coleman CM, van der Meer Y, Snijder EJ, Frieman MB. The ORF4b-encoded accessory proteins of middle east respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol. 2014;95(Pt 4):874.PubMedPubMedCentralCrossRef Matthews KL, Coleman CM, van der Meer Y, Snijder EJ, Frieman MB. The ORF4b-encoded accessory proteins of middle east respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol. 2014;95(Pt 4):874.PubMedPubMedCentralCrossRef
110.
go back to reference Niemeyer D, Zillinger T, Muth D, et al. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol. 2013;87(22):12489–95.PubMedPubMedCentralCrossRef Niemeyer D, Zillinger T, Muth D, et al. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol. 2013;87(22):12489–95.PubMedPubMedCentralCrossRef
111.
go back to reference Siu KL, Yeung ML, Kok KH, et al. Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol. 2014;88(9):4866–76.PubMedPubMedCentralCrossRef Siu KL, Yeung ML, Kok KH, et al. Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol. 2014;88(9):4866–76.PubMedPubMedCentralCrossRef
112.
go back to reference Yang Y, Zhang L, Geng H, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of middle east respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell. 2013;4(12):951–61.PubMedPubMedCentralCrossRef Yang Y, Zhang L, Geng H, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of middle east respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell. 2013;4(12):951–61.PubMedPubMedCentralCrossRef
113.
go back to reference Bello-Perez M, Hurtado-Tamayo J, Requena-Platek R, et al. MERS-CoV ORF4b is a virulence factor involved in the inflammatory pathology induced in the lungs of mice. PLoS Pathog. 2022;18(9): e1010834.PubMedPubMedCentralCrossRef Bello-Perez M, Hurtado-Tamayo J, Requena-Platek R, et al. MERS-CoV ORF4b is a virulence factor involved in the inflammatory pathology induced in the lungs of mice. PLoS Pathog. 2022;18(9): e1010834.PubMedPubMedCentralCrossRef
114.
go back to reference Beidas M, Chehadeh W. Effect of human coronavirus OC43 structural and accessory proteins on the transcriptional activation of antiviral response elements. Intervirology. 2018;61(1):30–5.PubMedCrossRef Beidas M, Chehadeh W. Effect of human coronavirus OC43 structural and accessory proteins on the transcriptional activation of antiviral response elements. Intervirology. 2018;61(1):30–5.PubMedCrossRef
115.
go back to reference Beidas M, Chehadeh W. PCR array profiling of antiviral genes in human embryonic kidney cells expressing human coronavirus OC43 structural and accessory proteins. Arch Virol. 2018;163:2065–72.PubMedPubMedCentralCrossRef Beidas M, Chehadeh W. PCR array profiling of antiviral genes in human embryonic kidney cells expressing human coronavirus OC43 structural and accessory proteins. Arch Virol. 2018;163:2065–72.PubMedPubMedCentralCrossRef
116.
go back to reference Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antiviral Res. 2018;149:58–74.PubMedCrossRef Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antiviral Res. 2018;149:58–74.PubMedCrossRef
117.
go back to reference Imbert I, Snijder EJ, Dimitrova M, et al. The SARS-coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res. 2008;133(2):136–48.PubMedPubMedCentralCrossRef Imbert I, Snijder EJ, Dimitrova M, et al. The SARS-coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res. 2008;133(2):136–48.PubMedPubMedCentralCrossRef
118.
go back to reference Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio. 2013;4(4):e00524-e613.PubMedPubMedCentralCrossRef Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio. 2013;4(4):e00524-e613.PubMedPubMedCentralCrossRef
119.
go back to reference Hagemeijer MC, Monastyrska I, Griffith J, et al. Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. Virology. 2014;458:125–35.PubMedCrossRef Hagemeijer MC, Monastyrska I, Griffith J, et al. Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. Virology. 2014;458:125–35.PubMedCrossRef
120.
go back to reference Pustovalova Y, Gorbatyuk O, Li Y, et al. Backbone and Ile, Leu, Val methyl group resonance assignment of CoV-Y domain of SARS-CoV-2 non-structural protein 3. Biomol NMR Assign. 2021;18:1–6. Pustovalova Y, Gorbatyuk O, Li Y, et al. Backbone and Ile, Leu, Val methyl group resonance assignment of CoV-Y domain of SARS-CoV-2 non-structural protein 3. Biomol NMR Assign. 2021;18:1–6.
122.
123.
go back to reference Ortego J, Sola I, Almazan F, et al. Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology. 2003;308(1):13–22.PubMedCrossRef Ortego J, Sola I, Almazan F, et al. Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology. 2003;308(1):13–22.PubMedCrossRef
124.
go back to reference Pascual-Iglesias A, Sanchez CM, Penzes Z, et al. Recombinant chimeric transmissible gastroenteritis virus (TGEV)—porcine epidemic diarrhea virus (PEDV) virus provides protection against virulent PEDV. Viruses. 2019;11(8):682.PubMedPubMedCentralCrossRef Pascual-Iglesias A, Sanchez CM, Penzes Z, et al. Recombinant chimeric transmissible gastroenteritis virus (TGEV)—porcine epidemic diarrhea virus (PEDV) virus provides protection against virulent PEDV. Viruses. 2019;11(8):682.PubMedPubMedCentralCrossRef
125.
go back to reference Meng B, Kemp SA, Papa G, et al. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep. 2021;35(13):109292.PubMedPubMedCentralCrossRef Meng B, Kemp SA, Papa G, et al. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep. 2021;35(13):109292.PubMedPubMedCentralCrossRef
126.
127.
go back to reference McCarthy KR, Rennick LJ, Nambulli S, et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science. 2021;371(6534):1139–42.PubMedPubMedCentralCrossRef McCarthy KR, Rennick LJ, Nambulli S, et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science. 2021;371(6534):1139–42.PubMedPubMedCentralCrossRef
128.
go back to reference Panzera Y, Ramos N, Calleros L, et al. Transmission cluster of COVID-19 cases from Uruguay: emergence and spreading of a novel SARS-CoV-2 ORF6 deletion. Mem Inst Oswaldo Cruz. 2022;116: e210275.PubMedPubMedCentralCrossRef Panzera Y, Ramos N, Calleros L, et al. Transmission cluster of COVID-19 cases from Uruguay: emergence and spreading of a novel SARS-CoV-2 ORF6 deletion. Mem Inst Oswaldo Cruz. 2022;116: e210275.PubMedPubMedCentralCrossRef
129.
go back to reference Panzera Y, Cortinas MN, Marandino A, et al. Emergence and spreading of the largest SARS-CoV-2 deletion in the Delta AY.20 lineage from Uruguay. Gene Rep. 2022;29:101703.PubMedPubMedCentralCrossRef Panzera Y, Cortinas MN, Marandino A, et al. Emergence and spreading of the largest SARS-CoV-2 deletion in the Delta AY.20 lineage from Uruguay. Gene Rep. 2022;29:101703.PubMedPubMedCentralCrossRef
130.
go back to reference Su YCF, Anderson DE, Young BE, et al. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2. MBio. 2020;11(4):e01610-e1620.PubMedPubMedCentralCrossRef Su YCF, Anderson DE, Young BE, et al. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2. MBio. 2020;11(4):e01610-e1620.PubMedPubMedCentralCrossRef
131.
go back to reference Young BE, Fong SW, Chan YH, et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet. 2020;396(10251):603–11.PubMedPubMedCentralCrossRef Young BE, Fong SW, Chan YH, et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet. 2020;396(10251):603–11.PubMedPubMedCentralCrossRef
132.
go back to reference Mazur-Panasiuk N, Rabalski L, Gromowski T, et al. Expansion of a SARS-CoV-2 delta variant with an 872 nt deletion encompassing ORF7a, ORF7b and ORF8, Poland, July to August 2021. Euro Surveill. 2021;26(39):2100902.PubMedPubMedCentralCrossRef Mazur-Panasiuk N, Rabalski L, Gromowski T, et al. Expansion of a SARS-CoV-2 delta variant with an 872 nt deletion encompassing ORF7a, ORF7b and ORF8, Poland, July to August 2021. Euro Surveill. 2021;26(39):2100902.PubMedPubMedCentralCrossRef
133.
go back to reference Addetia A, Xie H, Roychoudhury P, et al. Identification of multiple large deletions in ORF7a resulting in in-frame gene fusions in clinical SARS-CoV-2 isolates. J Clin Virol. 2020;129: 104523.PubMedPubMedCentralCrossRef Addetia A, Xie H, Roychoudhury P, et al. Identification of multiple large deletions in ORF7a resulting in in-frame gene fusions in clinical SARS-CoV-2 isolates. J Clin Virol. 2020;129: 104523.PubMedPubMedCentralCrossRef
135.
go back to reference Ouzounis CA. A recent origin of Orf3a from M protein across the coronavirus lineage arising by sharp divergence. Comput Struct Biotechnol J. 2020;18:4093–102.PubMedPubMedCentralCrossRef Ouzounis CA. A recent origin of Orf3a from M protein across the coronavirus lineage arising by sharp divergence. Comput Struct Biotechnol J. 2020;18:4093–102.PubMedPubMedCentralCrossRef
Metadata
Title
Intragenomic rearrangements involving 5′-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses
Authors
Roberto Patarca
William A. Haseltine
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-01998-0

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue