Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | SARS-CoV-2 | Research

Analysis of 3.5 million SARS-CoV-2 sequences reveals unique mutational trends with consistent nucleotide and codon frequencies

Authors: Sarah E. Fumagalli, Nigam H. Padhiar, Douglas Meyer, Upendra Katneni, Haim Bar, Michael DiCuccio, Anton A. Komar, Chava Kimchi-Sarfaty

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Background

Since the onset of the SARS-CoV-2 pandemic, bioinformatic analyses have been performed to understand the nucleotide and synonymous codon usage features and mutational patterns of the virus. However, comparatively few have attempted to perform such analyses on a considerably large cohort of viral genomes while organizing the plethora of available sequence data for a month-by-month analysis to observe changes over time. Here, we aimed to perform sequence composition and mutation analysis of SARS-CoV-2, separating sequences by gene, clade, and timepoints, and contrast the mutational profile of SARS-CoV-2 to other comparable RNA viruses.

Methods

Using a cleaned, filtered, and pre-aligned dataset of over 3.5 million sequences downloaded from the GISAID database, we computed nucleotide and codon usage statistics, including calculation of relative synonymous codon usage values. We then calculated codon adaptation index (CAI) changes and a nonsynonymous/synonymous mutation ratio (dN/dS) over time for our dataset. Finally, we compiled information on the types of mutations occurring for SARS-CoV-2 and other comparable RNA viruses, and generated heatmaps showing codon and nucleotide composition at high entropy positions along the Spike sequence.

Results

We show that nucleotide and codon usage metrics remain relatively consistent over the 32-month span, though there are significant differences between clades within each gene at various timepoints. CAI and dN/dS values vary substantially between different timepoints and different genes, with Spike gene on average showing both the highest CAI and dN/dS values. Mutational analysis showed that SARS-CoV-2 Spike has a higher proportion of nonsynonymous mutations than analogous genes in other RNA viruses, with nonsynonymous mutations outnumbering synonymous ones by up to 20:1. However, at several specific positions, synonymous mutations were overwhelmingly predominant.

Conclusions

Our multifaceted analysis covering both the composition and mutation signature of SARS-CoV-2 gives valuable insight into the nucleotide frequency and codon usage heterogeneity of SARS-CoV-2 over time, and its unique mutational profile compared to other RNA viruses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Katneni UK, Alexaki A, Hunt RC, Schiller T, Dicuccio M, Buehler PW, et al. Coagulopathy and thrombosis as a result of severe COVID-19 infection: a microvascular focus. Thromb Haemost. 2020;120(12):1668–79.PubMedPubMedCentralCrossRef Katneni UK, Alexaki A, Hunt RC, Schiller T, Dicuccio M, Buehler PW, et al. Coagulopathy and thrombosis as a result of severe COVID-19 infection: a microvascular focus. Thromb Haemost. 2020;120(12):1668–79.PubMedPubMedCentralCrossRef
2.
go back to reference Lagassé H, Alexaki A, Simhadri V, Katagiri N, Jankowski W, Sauna Z, et al. Recent advances in (therapeutic protein) drug development [version 1; peer review: 2 approved]. F1000Research. 2017;6:113.PubMedPubMedCentralCrossRef Lagassé H, Alexaki A, Simhadri V, Katagiri N, Jankowski W, Sauna Z, et al. Recent advances in (therapeutic protein) drug development [version 1; peer review: 2 approved]. F1000Research. 2017;6:113.PubMedPubMedCentralCrossRef
3.
go back to reference Massetti GM, Jackson BR, Brooks JT, Perrine CG, Reott E, Hall AJ, et al. Summary of guidance for minimizing the impact of COVID-19 on individual persons, communities, and health care systems: United States, August 2022. Centers for Disease Control and Prevention; 2022. Massetti GM, Jackson BR, Brooks JT, Perrine CG, Reott E, Hall AJ, et al. Summary of guidance for minimizing the impact of COVID-19 on individual persons, communities, and health care systems: United States, August 2022. Centers for Disease Control and Prevention; 2022.
4.
go back to reference Markov PV, Katzourakis A, Stilianakis NI. Antigenic evolution will lead to new SARS-CoV-2 variants with unpredictable severity. Nat Rev Microbiol. 2022;20(5):251–2.PubMedPubMedCentralCrossRef Markov PV, Katzourakis A, Stilianakis NI. Antigenic evolution will lead to new SARS-CoV-2 variants with unpredictable severity. Nat Rev Microbiol. 2022;20(5):251–2.PubMedPubMedCentralCrossRef
5.
go back to reference Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell. 2016;61(3):341–51.PubMedPubMedCentralCrossRef Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell. 2016;61(3):341–51.PubMedPubMedCentralCrossRef
7.
go back to reference Feys HB, Deckmyn H, Vanhoorelbeke K. ADAMTS13 in health and disease. Acta Haematol. 2009;121(2–3):183–5.PubMedCrossRef Feys HB, Deckmyn H, Vanhoorelbeke K. ADAMTS13 in health and disease. Acta Haematol. 2009;121(2–3):183–5.PubMedCrossRef
9.
go back to reference Athey J, Alexaki A, Osipova E, Rostovtsev A, Santana-Quintero LV, Katneni U, et al. A new and updated resource for codon usage tables. BMC Bioinform. 2017;18(1):391.CrossRef Athey J, Alexaki A, Osipova E, Rostovtsev A, Santana-Quintero LV, Katneni U, et al. A new and updated resource for codon usage tables. BMC Bioinform. 2017;18(1):391.CrossRef
10.
12.
go back to reference Sharp PM, Li W-H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986;24(1):28–38.PubMedCrossRef Sharp PM, Li W-H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986;24(1):28–38.PubMedCrossRef
13.
go back to reference Sharp PM, Li W-H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15(3):1281–95.PubMedPubMedCentralCrossRef Sharp PM, Li W-H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15(3):1281–95.PubMedPubMedCentralCrossRef
14.
go back to reference Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S. Virus attenuation by genome-scale changes in codon pair bias. Science. 2008;320(5884):1784–7.PubMedPubMedCentralCrossRef Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S. Virus attenuation by genome-scale changes in codon pair bias. Science. 2008;320(5884):1784–7.PubMedPubMedCentralCrossRef
15.
go back to reference Sharp PM, Li WH. The codon adaptation index–a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15(3):1281–95.PubMedPubMedCentralCrossRef Sharp PM, Li WH. The codon adaptation index–a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15(3):1281–95.PubMedPubMedCentralCrossRef
18.
go back to reference Huston NC, Wan H, Strine MS, de Cesaris Araujo Tavares R, Wilen CB, Pyle AM. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol Cell. 2021;81(3):584-98.e5.PubMedPubMedCentralCrossRef Huston NC, Wan H, Strine MS, de Cesaris Araujo Tavares R, Wilen CB, Pyle AM. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol Cell. 2021;81(3):584-98.e5.PubMedPubMedCentralCrossRef
19.
go back to reference Yu Y, Li Y, Dong Y, Wang X, Li C, Jiang W. Natural selection on synonymous mutations in SARS-CoV-2 and the impact on estimating divergence time. Futur Virol. 2021;16(7):447–50.CrossRef Yu Y, Li Y, Dong Y, Wang X, Li C, Jiang W. Natural selection on synonymous mutations in SARS-CoV-2 and the impact on estimating divergence time. Futur Virol. 2021;16(7):447–50.CrossRef
20.
go back to reference Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. (2020) Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim Biophys (BBA) Acta Mol Basis Dis. 1866;10:165878. Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. (2020) Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim Biophys (BBA) Acta Mol Basis Dis. 1866;10:165878.
21.
go back to reference Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.PubMedCrossRef Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.PubMedCrossRef
23.
go back to reference Wang Y, Chen X-Y, Yang L, Yao Q, Chen KP. Human SARS-CoV-2 has evolved to increase U content and reduce genome size. Int J Biol Macromol. 2022;204:356–63.PubMedPubMedCentralCrossRef Wang Y, Chen X-Y, Yang L, Yao Q, Chen KP. Human SARS-CoV-2 has evolved to increase U content and reduce genome size. Int J Biol Macromol. 2022;204:356–63.PubMedPubMedCentralCrossRef
24.
go back to reference Mogro EG, Bottero D, Lozano MJ. Analysis of SARS-CoV-2 synonymous codon usage evolution throughout the COVID-19 pandemic. Virology. 2022;568:56–71.PubMedCrossRef Mogro EG, Bottero D, Lozano MJ. Analysis of SARS-CoV-2 synonymous codon usage evolution throughout the COVID-19 pandemic. Virology. 2022;568:56–71.PubMedCrossRef
25.
go back to reference Simmonds P. Rampant C→U hypermutation in the genomes of SARS-CoV-2 and other coronaviruses: causes and consequences for their short- and long-term evolutionary trajectories. mSphere. 2020;5(3):e00408-20.PubMedPubMedCentralCrossRef Simmonds P. Rampant C→U hypermutation in the genomes of SARS-CoV-2 and other coronaviruses: causes and consequences for their short- and long-term evolutionary trajectories. mSphere. 2020;5(3):e00408-20.PubMedPubMedCentralCrossRef
26.
27.
go back to reference Nguyen TT, Pathirana PN, Nguyen T, Nguyen QVH, Bhatti A, Nguyen DC, et al. Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (COVID-19 virus). Sci Rep. 2021;11(1):3487.PubMedPubMedCentralCrossRef Nguyen TT, Pathirana PN, Nguyen T, Nguyen QVH, Bhatti A, Nguyen DC, et al. Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (COVID-19 virus). Sci Rep. 2021;11(1):3487.PubMedPubMedCentralCrossRef
28.
go back to reference Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66.PubMedPubMedCentralCrossRef Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66.PubMedPubMedCentralCrossRef
29.
go back to reference Han AX, Parker E, Scholer F, Maurer-Stroh S, Russell CA. Phylogenetic clustering by linear integer programming (PhyCLIP). Mol Biol Evol. 2019;36(7):1580–95.PubMedPubMedCentralCrossRef Han AX, Parker E, Scholer F, Maurer-Stroh S, Russell CA. Phylogenetic clustering by linear integer programming (PhyCLIP). Mol Biol Evol. 2019;36(7):1580–95.PubMedPubMedCentralCrossRef
30.
go back to reference Sriwilaijaroen N, Suzuki Y. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B. 2012;88(6):226–49.CrossRef Sriwilaijaroen N, Suzuki Y. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B. 2012;88(6):226–49.CrossRef
31.
32.
go back to reference Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets. 2017;21(2):131–43.PubMedCrossRef Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets. 2017;21(2):131–43.PubMedCrossRef
33.
go back to reference Sharp PM, Tuohy TM, Mosurski KR. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986;14(13):5125–43.PubMedPubMedCentralCrossRef Sharp PM, Tuohy TM, Mosurski KR. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986;14(13):5125–43.PubMedPubMedCentralCrossRef
34.
go back to reference Chen Z, Boon SS, Wang MH, Chan RWY, Chan PKS. Genomic and evolutionary comparison between SARS-CoV-2 and other human coronaviruses. J Virol Methods. 2021;289:114032.PubMedCrossRef Chen Z, Boon SS, Wang MH, Chan RWY, Chan PKS. Genomic and evolutionary comparison between SARS-CoV-2 and other human coronaviruses. J Virol Methods. 2021;289:114032.PubMedCrossRef
35.
go back to reference Kumar N, Kaushik R, Tennakoon C, Uversky VN, Mishra A, Sood R, et al. Evolutionary signatures governing the codon usage bias in coronaviruses and their implications for viruses infecting various bat species. Viruses. 2021;13(9):1847.PubMedPubMedCentralCrossRef Kumar N, Kaushik R, Tennakoon C, Uversky VN, Mishra A, Sood R, et al. Evolutionary signatures governing the codon usage bias in coronaviruses and their implications for viruses infecting various bat species. Viruses. 2021;13(9):1847.PubMedPubMedCentralCrossRef
36.
go back to reference Şen A, Kargar K, Akgün E, Pınar M. Codon optimization: a mathematical programing approach. Bioinformatics. 2020;36(13):4012–20.PubMedCrossRef Şen A, Kargar K, Akgün E, Pınar M. Codon optimization: a mathematical programing approach. Bioinformatics. 2020;36(13):4012–20.PubMedCrossRef
37.
38.
go back to reference Jeffares DC, Tomiczek B, Sojo V, Dos Reis M. A beginners guide to estimating the non-synonymous to synonymous rate ratio of all protein-coding genes in a genome. Methods in molecular biology. New York: Springer; 2015. p. 65–90. Jeffares DC, Tomiczek B, Sojo V, Dos Reis M. A beginners guide to estimating the non-synonymous to synonymous rate ratio of all protein-coding genes in a genome. Methods in molecular biology. New York: Springer; 2015. p. 65–90.
39.
go back to reference Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72.PubMedPubMedCentralCrossRef Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72.PubMedPubMedCentralCrossRef
40.
go back to reference McKinney W. Data structures for statistical computing in python PROC OF THE 9th PYTHON IN SCIENCE CONF. 2010. McKinney W. Data structures for statistical computing in python PROC OF THE 9th PYTHON IN SCIENCE CONF. 2010.
41.
go back to reference Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5.CrossRef Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5.CrossRef
42.
go back to reference Shannon CE. The mathematical theory of communication 1963. MD Comput. 1997;14(4):306–17.PubMed Shannon CE. The mathematical theory of communication 1963. MD Comput. 1997;14(4):306–17.PubMed
43.
go back to reference Consortium U. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–9.CrossRef Consortium U. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–9.CrossRef
44.
go back to reference Soh SM, Kim Y, Kim C, Jang US, Lee HR. The rapid adaptation of SARS-CoV-2-rise of the variants: transmission and resistance. J Microbiol. 2021;59(9):807–18.PubMedPubMedCentralCrossRef Soh SM, Kim Y, Kim C, Jang US, Lee HR. The rapid adaptation of SARS-CoV-2-rise of the variants: transmission and resistance. J Microbiol. 2021;59(9):807–18.PubMedPubMedCentralCrossRef
45.
go back to reference Hussain S, Rasool ST, Pottathil S. The evolution of severe acute respiratory syndrome coronavirus-2 during pandemic and adaptation to the host. J Mol Evol. 2021;89(6):341–56.PubMedPubMedCentralCrossRef Hussain S, Rasool ST, Pottathil S. The evolution of severe acute respiratory syndrome coronavirus-2 during pandemic and adaptation to the host. J Mol Evol. 2021;89(6):341–56.PubMedPubMedCentralCrossRef
46.
go back to reference Posani E, Dilucca M, Forcelloni S, Pavlopoulou A, Georgakilas AG, Giansanti A. Temporal evolution and adaptation of SARS-CoV-2 codon usage. Front Biosci (Landmark Ed). 2022;27(1):13.PubMedCrossRef Posani E, Dilucca M, Forcelloni S, Pavlopoulou A, Georgakilas AG, Giansanti A. Temporal evolution and adaptation of SARS-CoV-2 codon usage. Front Biosci (Landmark Ed). 2022;27(1):13.PubMedCrossRef
47.
go back to reference Das JK, Roy S. Comparative analysis of human coronaviruses focusing on nucleotide variability and synonymous codon usage patterns. Genomics. 2021;113(4):2177–88.PubMedCrossRef Das JK, Roy S. Comparative analysis of human coronaviruses focusing on nucleotide variability and synonymous codon usage patterns. Genomics. 2021;113(4):2177–88.PubMedCrossRef
48.
go back to reference Ramazzotti D, Angaroni F, Maspero D, Mauri M, D’Aliberti D, Fontana D, et al. Large-scale analysis of SARS-CoV-2 synonymous mutations reveals the adaptation to the human codon usage during the virus evolution. Virus Evolution. 2022;8(1):veac26.CrossRef Ramazzotti D, Angaroni F, Maspero D, Mauri M, D’Aliberti D, Fontana D, et al. Large-scale analysis of SARS-CoV-2 synonymous mutations reveals the adaptation to the human codon usage during the virus evolution. Virus Evolution. 2022;8(1):veac26.CrossRef
49.
50.
go back to reference Tort FL, Castells M, Cristina J. A comprehensive analysis of genome composition and codon usage patterns of emerging coronaviruses. Virus Res. 2020;283:197976.PubMedPubMedCentralCrossRef Tort FL, Castells M, Cristina J. A comprehensive analysis of genome composition and codon usage patterns of emerging coronaviruses. Virus Res. 2020;283:197976.PubMedPubMedCentralCrossRef
51.
go back to reference Zhang Y, Jin X, Wang H, Miao Y, Yang X, Jiang W, et al. SARS-CoV-2 competes with host mRNAs for efficient translation by maintaining the mutations favorable for translation initiation. J Appl Genet. 2021;63(1):159–67.PubMedPubMedCentralCrossRef Zhang Y, Jin X, Wang H, Miao Y, Yang X, Jiang W, et al. SARS-CoV-2 competes with host mRNAs for efficient translation by maintaining the mutations favorable for translation initiation. J Appl Genet. 2021;63(1):159–67.PubMedPubMedCentralCrossRef
52.
go back to reference Rice SH. A stochastic version of the price equation reveals the interplay of deterministic and stochastic processes in evolution. BMC Evol Biol. 2008;8:262.PubMedPubMedCentralCrossRef Rice SH. A stochastic version of the price equation reveals the interplay of deterministic and stochastic processes in evolution. BMC Evol Biol. 2008;8:262.PubMedPubMedCentralCrossRef
53.
go back to reference Kames J, Alexaki A, Holcomb DD, Santana-Quintero LV, Athey JC, Hamasaki-Katagiri N, et al. TissueCoCoPUTs: novel human tissue-specific codon and codon-pair usage tables based on differential tissue gene expression. J Mol Biol. 2020;432(11):3369–78.PubMedCrossRef Kames J, Alexaki A, Holcomb DD, Santana-Quintero LV, Athey JC, Hamasaki-Katagiri N, et al. TissueCoCoPUTs: novel human tissue-specific codon and codon-pair usage tables based on differential tissue gene expression. J Mol Biol. 2020;432(11):3369–78.PubMedCrossRef
54.
go back to reference Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P, Buskirk AR, et al. eIF5A promotes translation of polyproline motifs. Mol Cell. 2013;51(1):35–45.PubMedPubMedCentralCrossRef Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P, Buskirk AR, et al. eIF5A promotes translation of polyproline motifs. Mol Cell. 2013;51(1):35–45.PubMedPubMedCentralCrossRef
55.
go back to reference Krafczyk R, Qi F, Sieber A, Mehler J, Jung K, Frishman D, et al. Proline codon pair selection determines ribosome pausing strength and translation efficiency in bacteria. Commun Biol. 2021;4(1):589.PubMedPubMedCentralCrossRef Krafczyk R, Qi F, Sieber A, Mehler J, Jung K, Frishman D, et al. Proline codon pair selection determines ribosome pausing strength and translation efficiency in bacteria. Commun Biol. 2021;4(1):589.PubMedPubMedCentralCrossRef
56.
go back to reference Walls AC, Park Y-J, Tortorici MA, Wall A, Mcguire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-92.e6.PubMedPubMedCentralCrossRef Walls AC, Park Y-J, Tortorici MA, Wall A, Mcguire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-92.e6.PubMedPubMedCentralCrossRef
57.
go back to reference Nikolaidis M, Papakyriakou A, Chlichlia K, Markoulatos P, Oliver SG, Amoutzias GD. Comparative analysis of SARS-CoV-2 variants of concern, including omicron, highlights their common and distinctive amino acid substitution patterns, especially at the spike ORF. Viruses. 2022;14(4):707.PubMedPubMedCentralCrossRef Nikolaidis M, Papakyriakou A, Chlichlia K, Markoulatos P, Oliver SG, Amoutzias GD. Comparative analysis of SARS-CoV-2 variants of concern, including omicron, highlights their common and distinctive amino acid substitution patterns, especially at the spike ORF. Viruses. 2022;14(4):707.PubMedPubMedCentralCrossRef
58.
59.
go back to reference Castro C, Arnold JJ, Cameron CE. Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Res. 2005;107(2):141–9.PubMedCrossRef Castro C, Arnold JJ, Cameron CE. Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Res. 2005;107(2):141–9.PubMedCrossRef
60.
go back to reference Jin Z, Deval J, Johnson KA, Swinney DC. Characterization of the elongation complex of dengue virus RNA polymerase: assembly, kinetics of nucleotide incorporation, and fidelity. J Biol Chem. 2011;286(3):2067–77.PubMedCrossRef Jin Z, Deval J, Johnson KA, Swinney DC. Characterization of the elongation complex of dengue virus RNA polymerase: assembly, kinetics of nucleotide incorporation, and fidelity. J Biol Chem. 2011;286(3):2067–77.PubMedCrossRef
61.
go back to reference Parvin JD, Moscona A, Pan WT, Leider JM, Palese P. Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type 1. J Virol. 1986;59(2):377–83.PubMedPubMedCentralCrossRef Parvin JD, Moscona A, Pan WT, Leider JM, Palese P. Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type 1. J Virol. 1986;59(2):377–83.PubMedPubMedCentralCrossRef
62.
go back to reference Li J, Du P, Yang L, Zhang J, Song C, Chen D, et al. Two-step fitness selection for intra-host variations in SARS-CoV-2. Cell Rep. 2022;38(2):110205.PubMedCrossRef Li J, Du P, Yang L, Zhang J, Song C, Chen D, et al. Two-step fitness selection for intra-host variations in SARS-CoV-2. Cell Rep. 2022;38(2):110205.PubMedCrossRef
63.
go back to reference Moeller NH, Shi K, Demir Ö, Belica C, Banerjee S, Yin L, et al. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN. Proc Natl Acad Sci U S A. 2022;119(9):e2106379119.PubMedPubMedCentralCrossRef Moeller NH, Shi K, Demir Ö, Belica C, Banerjee S, Yin L, et al. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN. Proc Natl Acad Sci U S A. 2022;119(9):e2106379119.PubMedPubMedCentralCrossRef
64.
go back to reference Eskier D, Suner A, Oktay Y, Karakülah G. Mutations of SARS-CoV-2 nsp14 exhibit strong association with increased genome-wide mutation load. PeerJ. 2020;8:e10181.PubMedPubMedCentralCrossRef Eskier D, Suner A, Oktay Y, Karakülah G. Mutations of SARS-CoV-2 nsp14 exhibit strong association with increased genome-wide mutation load. PeerJ. 2020;8:e10181.PubMedPubMedCentralCrossRef
65.
go back to reference Pauly MD, Procario MC, Lauring AS. A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses. eLife. 2017;6:e26437.PubMedPubMedCentralCrossRef Pauly MD, Procario MC, Lauring AS. A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses. eLife. 2017;6:e26437.PubMedPubMedCentralCrossRef
Metadata
Title
Analysis of 3.5 million SARS-CoV-2 sequences reveals unique mutational trends with consistent nucleotide and codon frequencies
Authors
Sarah E. Fumagalli
Nigam H. Padhiar
Douglas Meyer
Upendra Katneni
Haim Bar
Michael DiCuccio
Anton A. Komar
Chava Kimchi-Sarfaty
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
SARS-CoV-2
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-01982-8

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue