Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | Influenza | Research

Tripartite motif-containing protein 46 accelerates influenza A H7N9 virus infection by promoting K48-linked ubiquitination of TBK1

Authors: Wei Su, Xian-Tian Lin, Shuai Zhao, Xiao-Qin Zheng, Yu-Qing Zhou, Lan-Lan Xiao, Hui Chen, Zheng-Yu Zhang, Li-Jun Zhang, Xiao-Xin Wu

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Background

Avian influenza A H7N9 emerged in 2013, threatening public health and causing acute respiratory distress syndrome, and even death, in the human population. However, the underlying mechanism by which H7N9 virus causes human infection remains elusive.

Methods

Herein, we infected A549 cells with H7N9 virus for different times and assessed tripartite motif-containing protein 46 (TRIM46) expression. To determine the role of TRIM46 in H7N9 infection, we applied lentivirus-based TRIM46 short hairpin RNA sequences and overexpression plasmids to explore virus replication, and changes in type I interferons and interferon regulatory factor 3 (IRF3) phosphorylation levels in response to silencing and overexpression of TRIM46. Finally, we used Co-immunoprecipitation and ubiquitination assays to examine the mechanism by which TRIM46 mediated the activity of TANK-binding kinase 1 (TBK1).

Results

Type I interferons play an important role in defending virus infection. Here, we found that TRIM46 levels were significantly increased during H7N9 virus infection. Furthermore, TRIM46 knockdown inhibited H7N9 virus replication compared to that in the control group, while the production of type I interferons increased. Meanwhile, overexpression of TRIM46 promoted H7N9 virus replication and decrease the production of type I interferons. In addition, the level of phosphorylated IRF3, an important interferon regulatory factor, was increased in TRIM46-silenced cells, but decreased in TRIM46 overexpressing cells. Mechanistically, we observed that TRIM46 could interact with TBK1 to induce its K48-linked ubiquitination, which promoted H7N9 virus infection.

Conclusion

Our results suggest that TRIM46 negatively regulates the human innate immune response against H7N9 virus infection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liu WJ, Xiao H, Dai L, Liu D, Chen J, Qi X, et al. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic. Front Med. 2021;15(4):507–27.PubMedPubMedCentralCrossRef Liu WJ, Xiao H, Dai L, Liu D, Chen J, Qi X, et al. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic. Front Med. 2021;15(4):507–27.PubMedPubMedCentralCrossRef
2.
go back to reference Su S, Gu M, Liu D, Cui J, Gao GF, Zhou J, et al. Epidemiology, evolution, and pathogenesis of h7n9 influenza viruses in five epidemic waves since 2013 in China. Trends Microbiol. 2017;25(9):713–28.PubMedCrossRef Su S, Gu M, Liu D, Cui J, Gao GF, Zhou J, et al. Epidemiology, evolution, and pathogenesis of h7n9 influenza viruses in five epidemic waves since 2013 in China. Trends Microbiol. 2017;25(9):713–28.PubMedCrossRef
3.
go back to reference Zhu H, Lam TT, Smith DK, Guan Y. Emergence and development of H7N9 influenza viruses in China. Curr Opin Virol. 2016;16:106–13.PubMedCrossRef Zhu H, Lam TT, Smith DK, Guan Y. Emergence and development of H7N9 influenza viruses in China. Curr Opin Virol. 2016;16:106–13.PubMedCrossRef
4.
go back to reference Zhang Q, Shi J, Deng G, Guo J, Zeng X, He X, et al. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science. 2013;341(6144):410–4.PubMedCrossRef Zhang Q, Shi J, Deng G, Guo J, Zeng X, He X, et al. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science. 2013;341(6144):410–4.PubMedCrossRef
5.
go back to reference Shi J, Deng G, Kong H, Gu C, Ma S, Yin X, et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res. 2017;27(12):1409–21.PubMedPubMedCentralCrossRef Shi J, Deng G, Kong H, Gu C, Ma S, Yin X, et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res. 2017;27(12):1409–21.PubMedPubMedCentralCrossRef
6.
go back to reference Yin X, Deng G, Zeng X, Cui P, Hou Y, Liu Y, et al. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China. PLoS Pathog. 2021;17(4):e1009561.PubMedPubMedCentralCrossRef Yin X, Deng G, Zeng X, Cui P, Hou Y, Liu Y, et al. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China. PLoS Pathog. 2021;17(4):e1009561.PubMedPubMedCentralCrossRef
7.
go back to reference Liang L, Jiang L, Li J, Zhao Q, Wang J, He X, et al. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in mammals. MBio. 2019;10(3):e01162-e1219.PubMedPubMedCentralCrossRef Liang L, Jiang L, Li J, Zhao Q, Wang J, He X, et al. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in mammals. MBio. 2019;10(3):e01162-e1219.PubMedPubMedCentralCrossRef
8.
go back to reference Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013;368(20):1888–97.PubMedCrossRef Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013;368(20):1888–97.PubMedCrossRef
9.
go back to reference Wan X, Li J, Wang Y, Yu X, He X, Shi J, et al. H7N9 virus infection triggers lethal cytokine storm by activating gasdermin E-mediated pyroptosis of lung alveolar epithelial cells. Natl Sci Rev. 2022;9(1):nwab137.PubMedCrossRef Wan X, Li J, Wang Y, Yu X, He X, Shi J, et al. H7N9 virus infection triggers lethal cytokine storm by activating gasdermin E-mediated pyroptosis of lung alveolar epithelial cells. Natl Sci Rev. 2022;9(1):nwab137.PubMedCrossRef
10.
go back to reference Carty M, Guy C, Bowie AG. Detection of viral infections by innate immunity. Biochem Pharmacol. 2021;183:114316.PubMedCrossRef Carty M, Guy C, Bowie AG. Detection of viral infections by innate immunity. Biochem Pharmacol. 2021;183:114316.PubMedCrossRef
11.
13.
15.
go back to reference Zhang J, Qiu Q, Wang H, Chen C, Luo D. TRIM46 contributes to high glucose-induced ferroptosis and cell growth inhibition in human retinal capillary endothelial cells by facilitating GPX4 ubiquitination. Exp Cell Res. 2021;407(2):112800.PubMedCrossRef Zhang J, Qiu Q, Wang H, Chen C, Luo D. TRIM46 contributes to high glucose-induced ferroptosis and cell growth inhibition in human retinal capillary endothelial cells by facilitating GPX4 ubiquitination. Exp Cell Res. 2021;407(2):112800.PubMedCrossRef
16.
go back to reference Tantai J, Pan X, Chen Y, Shen Y, Ji C. TRIM46 activates AKT/HK2 signaling by modifying PHLPP2 ubiquitylation to promote glycolysis and chemoresistance of lung cancer cells. Cell Death Dis. 2022;13(3):285.PubMedPubMedCentralCrossRef Tantai J, Pan X, Chen Y, Shen Y, Ji C. TRIM46 activates AKT/HK2 signaling by modifying PHLPP2 ubiquitylation to promote glycolysis and chemoresistance of lung cancer cells. Cell Death Dis. 2022;13(3):285.PubMedPubMedCentralCrossRef
17.
go back to reference Ren XB, Zhao J, Liang XF, Guo XD, Jiang SB, Xiang YZ. Identification TRIM46 as a potential biomarker and therapeutic target for clear cell renal cell carcinoma through comprehensive bioinformatics analyses. Front Med (Lausanne). 2021;8:785331.CrossRef Ren XB, Zhao J, Liang XF, Guo XD, Jiang SB, Xiang YZ. Identification TRIM46 as a potential biomarker and therapeutic target for clear cell renal cell carcinoma through comprehensive bioinformatics analyses. Front Med (Lausanne). 2021;8:785331.CrossRef
18.
go back to reference Hsu SF, Su WC, Jeng KS, Lai MM. A host susceptibility gene, DR1, facilitates influenza A virus replication by suppressing host innate immunity and enhancing viral RNA replication. J Virol. 2015;89(7):3671–82.PubMedPubMedCentralCrossRef Hsu SF, Su WC, Jeng KS, Lai MM. A host susceptibility gene, DR1, facilitates influenza A virus replication by suppressing host innate immunity and enhancing viral RNA replication. J Virol. 2015;89(7):3671–82.PubMedPubMedCentralCrossRef
19.
go back to reference Shin D, Lee J, Park JH, Min JY. Double plant homeodomain fingers 2 (DPF2) promotes the immune escape of influenza virus by suppressing beta interferon production. J Virol. 2017;91(12):e02260.PubMedPubMedCentralCrossRef Shin D, Lee J, Park JH, Min JY. Double plant homeodomain fingers 2 (DPF2) promotes the immune escape of influenza virus by suppressing beta interferon production. J Virol. 2017;91(12):e02260.PubMedPubMedCentralCrossRef
21.
go back to reference Sun X, Feng W, Guo Y, Wang Q, Dong C, Zhang M, et al. MCPIP1 attenuates the innate immune response to influenza A virus by suppressing RIG-I expression in lung epithelial cells. J Med Virol. 2018;90(2):204–11.PubMedCrossRef Sun X, Feng W, Guo Y, Wang Q, Dong C, Zhang M, et al. MCPIP1 attenuates the innate immune response to influenza A virus by suppressing RIG-I expression in lung epithelial cells. J Med Virol. 2018;90(2):204–11.PubMedCrossRef
22.
go back to reference Li M, Qi W, Chang Q, Chen R, Zhen D, Liao M, et al. Influenza A virus protein PA-X suppresses host Ankrd17-mediated immune responses. Microbiol Immunol. 2021;65(1):48–59.PubMedCrossRef Li M, Qi W, Chang Q, Chen R, Zhen D, Liao M, et al. Influenza A virus protein PA-X suppresses host Ankrd17-mediated immune responses. Microbiol Immunol. 2021;65(1):48–59.PubMedCrossRef
23.
go back to reference Gao S, Song L, Li J, Zhang Z, Peng H, Jiang W, et al. Influenza A virus-encoded NS1 virulence factor protein inhibits innate immune response by targeting IKK. Cell Microbiol. 2012;14(12):1849–66.PubMedCrossRef Gao S, Song L, Li J, Zhang Z, Peng H, Jiang W, et al. Influenza A virus-encoded NS1 virulence factor protein inhibits innate immune response by targeting IKK. Cell Microbiol. 2012;14(12):1849–66.PubMedCrossRef
24.
go back to reference Tseng YY, Kuan CY, Mibayashi M, Chen CJ, Palese P, Albrecht RA, et al. Interaction between NS1 and cellular MAVS contributes to NS1 mitochondria targeting. Viruses. 2021;13(10):1909.PubMedPubMedCentralCrossRef Tseng YY, Kuan CY, Mibayashi M, Chen CJ, Palese P, Albrecht RA, et al. Interaction between NS1 and cellular MAVS contributes to NS1 mitochondria targeting. Viruses. 2021;13(10):1909.PubMedPubMedCentralCrossRef
27.
go back to reference Liu B, Li NL, Shen Y, Bao X, Fabrizio T, Elbahesh H, et al. The C-terminal tail of TRIM56 dictates antiviral restriction of influenza A and B viruses by impeding viral RNA synthesis. J Virol. 2016;90(9):4369–82.PubMedPubMedCentralCrossRef Liu B, Li NL, Shen Y, Bao X, Fabrizio T, Elbahesh H, et al. The C-terminal tail of TRIM56 dictates antiviral restriction of influenza A and B viruses by impeding viral RNA synthesis. J Virol. 2016;90(9):4369–82.PubMedPubMedCentralCrossRef
28.
go back to reference Wu X, Wang J, Wang S, Wu F, Chen Z, Li C, et al. Inhibition of influenza A virus replication by TRIM14 via Its multifaceted protein-protein interaction with NP. Front Microbiol. 2019;10:344.PubMedPubMedCentralCrossRef Wu X, Wang J, Wang S, Wu F, Chen Z, Li C, et al. Inhibition of influenza A virus replication by TRIM14 via Its multifaceted protein-protein interaction with NP. Front Microbiol. 2019;10:344.PubMedPubMedCentralCrossRef
29.
go back to reference Lee HR, Lee MK, Kim CW, Kim M. TRIM proteins and their roles in the influenza virus life cycle. Microorganisms. 2020;8(9):1424.PubMedCentralCrossRef Lee HR, Lee MK, Kim CW, Kim M. TRIM proteins and their roles in the influenza virus life cycle. Microorganisms. 2020;8(9):1424.PubMedCentralCrossRef
30.
go back to reference Sun N, Jiang L, Ye M, Wang Y, Wang G, Wan X, et al. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2. Protein Cell. 2020;11(12):894–914.PubMedPubMedCentralCrossRef Sun N, Jiang L, Ye M, Wang Y, Wang G, Wan X, et al. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2. Protein Cell. 2020;11(12):894–914.PubMedPubMedCentralCrossRef
31.
go back to reference Wang X, Xiong J, Zhou D, Zhang S, Wang L, Tian Q, et al. TRIM34 modulates influenza virus-activated programmed cell death by targeting Z-DNA-binding protein 1 for K63-linked polyubiquitination. J Biol Chem. 2022;298(3):101611.PubMedPubMedCentralCrossRef Wang X, Xiong J, Zhou D, Zhang S, Wang L, Tian Q, et al. TRIM34 modulates influenza virus-activated programmed cell death by targeting Z-DNA-binding protein 1 for K63-linked polyubiquitination. J Biol Chem. 2022;298(3):101611.PubMedPubMedCentralCrossRef
32.
go back to reference Xue B, Li H, Guo M, Wang J, Xu Y, Zou X, et al. TRIM21 promotes innate immune response to RNA viral infection through Lys27-linked polyubiquitination of MAVS. J Virol. 2018;92(14):e00321.PubMedPubMedCentralCrossRef Xue B, Li H, Guo M, Wang J, Xu Y, Zou X, et al. TRIM21 promotes innate immune response to RNA viral infection through Lys27-linked polyubiquitination of MAVS. J Virol. 2018;92(14):e00321.PubMedPubMedCentralCrossRef
33.
go back to reference Xing J, Zhang A, Minze LJ, Li XC, Zhang Z. TRIM29 negatively regulates the type I IFN production in response to RNA virus. J Immunol. 2018;201(1):183–92.PubMedCrossRef Xing J, Zhang A, Minze LJ, Li XC, Zhang Z. TRIM29 negatively regulates the type I IFN production in response to RNA virus. J Immunol. 2018;201(1):183–92.PubMedCrossRef
34.
go back to reference Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3(6):920–40.PubMedPubMedCentralCrossRef Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3(6):920–40.PubMedPubMedCentralCrossRef
36.
37.
go back to reference Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441(7089):101–5.PubMedCrossRef Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441(7089):101–5.PubMedCrossRef
40.
go back to reference Sui L, Zhao Y, Wang W, Wu P, Wang Z, Yu Y, et al. SARS-CoV-2 membrane protein inhibits type I interferon production through ubiquitin-mediated degradation of TBK1. Front Immunol. 2021;12:662989.PubMedPubMedCentralCrossRef Sui L, Zhao Y, Wang W, Wu P, Wang Z, Yu Y, et al. SARS-CoV-2 membrane protein inhibits type I interferon production through ubiquitin-mediated degradation of TBK1. Front Immunol. 2021;12:662989.PubMedPubMedCentralCrossRef
41.
go back to reference Huang L, Liu H, Zhang K, Meng Q, Hu L, Zhang Y, et al. Ubiquitin-conjugating enzyme 2S enhances viral replication by inhibiting type I IFN production through recruiting USP15 to Deubiquitinate TBK1. Cell Rep. 2020;32(7):108044.PubMedCrossRef Huang L, Liu H, Zhang K, Meng Q, Hu L, Zhang Y, et al. Ubiquitin-conjugating enzyme 2S enhances viral replication by inhibiting type I IFN production through recruiting USP15 to Deubiquitinate TBK1. Cell Rep. 2020;32(7):108044.PubMedCrossRef
42.
go back to reference Zhan Z, Cao H, Xie X, Yang L, Zhang P, Chen Y, et al. Phosphatase PP4 negatively regulates type I IFN production and antiviral innate immunity by dephosphorylating and deactivating TBK1. J Immunol. 2015;195(8):3849–57.PubMedCrossRef Zhan Z, Cao H, Xie X, Yang L, Zhang P, Chen Y, et al. Phosphatase PP4 negatively regulates type I IFN production and antiviral innate immunity by dephosphorylating and deactivating TBK1. J Immunol. 2015;195(8):3849–57.PubMedCrossRef
43.
go back to reference Li D, Yang W, Ren J, Ru Y, Zhang K, Fu S, et al. The E3 Ubiquitin ligase TBK1 mediates the degradation of multiple picornavirus VP3 proteins by phosphorylation and ubiquitination. J Virol. 2019;93(23):e01438.PubMedPubMedCentralCrossRef Li D, Yang W, Ren J, Ru Y, Zhang K, Fu S, et al. The E3 Ubiquitin ligase TBK1 mediates the degradation of multiple picornavirus VP3 proteins by phosphorylation and ubiquitination. J Virol. 2019;93(23):e01438.PubMedPubMedCentralCrossRef
44.
go back to reference Song G, Liu B, Li Z, Wu H, Wang P, Zhao K, et al. E3 ubiquitin ligase RNF128 promotes innate antiviral immunity through K63-linked ubiquitination of TBK1. Nat Immunol. 2016;17(12):1342–51.PubMedCrossRef Song G, Liu B, Li Z, Wu H, Wang P, Zhao K, et al. E3 ubiquitin ligase RNF128 promotes innate antiviral immunity through K63-linked ubiquitination of TBK1. Nat Immunol. 2016;17(12):1342–51.PubMedCrossRef
45.
go back to reference Huang L, Xu W, Liu H, Xue M, Liu X, Zhang K, et al. African swine fever virus pI215L negatively regulates cGAS-STING signaling pathway through recruiting RNF138 to inhibit K63-linked ubiquitination of TBK1. J Immunol. 2021;207(11):2754–69.PubMedCrossRef Huang L, Xu W, Liu H, Xue M, Liu X, Zhang K, et al. African swine fever virus pI215L negatively regulates cGAS-STING signaling pathway through recruiting RNF138 to inhibit K63-linked ubiquitination of TBK1. J Immunol. 2021;207(11):2754–69.PubMedCrossRef
Metadata
Title
Tripartite motif-containing protein 46 accelerates influenza A H7N9 virus infection by promoting K48-linked ubiquitination of TBK1
Authors
Wei Su
Xian-Tian Lin
Shuai Zhao
Xiao-Qin Zheng
Yu-Qing Zhou
Lan-Lan Xiao
Hui Chen
Zheng-Yu Zhang
Li-Jun Zhang
Xiao-Xin Wu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01907-x

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue