Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | Review

Effects of electromagnetic waves on pathogenic viruses and relevant mechanisms: a review

Authors: Yi Xiao, Li Zhao, Ruiyun Peng

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Pathogenic viral infections have become a serious public health issue worldwide. Viruses can infect all cell-based organisms and cause varying injuries and damage, resulting in diseases or even death. With the prevalence of highly pathogenic viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is urgent to develop efficient and safe approaches to inactivate pathogenic viruses. Traditional methods of inactivating pathogenic viruses are practical but have several limitations. Electromagnetic waves, with high penetration capacity, physical resonance, and non-contamination, have emerged as a potential strategy to inactivate pathogenic viruses and have attracted increasing attention. This paper reviews the recent literature on the effects of electromagnetic waves on pathogenic viruses and their mechanisms, as well as promising applications of electromagnetic waves to inactivate pathogenic viruses, to provide new ideas and methods for this inactivation.
Literature
1.
go back to reference Wu Y. A Study on the effects and relevant mechanisms of microwave irradiation and cold plasma on viability of bioaerosol. Peking University. 2013. Wu Y. A Study on the effects and relevant mechanisms of microwave irradiation and cold plasma on viability of bioaerosol. Peking University. 2013.
2.
go back to reference Sun CK, Tsai YC, Chen YE, Liu TM, Chen HY, Wang HC, et al. Resonant dipolar coupling of microwaves with confined acoustic vibrations in a rod-shaped virus. Sci Rep. 2017;7(1):4611.CrossRef Sun CK, Tsai YC, Chen YE, Liu TM, Chen HY, Wang HC, et al. Resonant dipolar coupling of microwaves with confined acoustic vibrations in a rod-shaped virus. Sci Rep. 2017;7(1):4611.CrossRef
3.
go back to reference Siddharta A, Pfaender S, Malassa A, Doerrbecker J, Anggakusuma, Engelmann M, et al. Inactivation of HCV and HIV by microwave: a novel approach for prevention of virus transmission among people who inject drugs. Sci Rep. 2016;6:36619.CrossRef Siddharta A, Pfaender S, Malassa A, Doerrbecker J, Anggakusuma, Engelmann M, et al. Inactivation of HCV and HIV by microwave: a novel approach for prevention of virus transmission among people who inject drugs. Sci Rep. 2016;6:36619.CrossRef
4.
go back to reference Yan SX, Wang RN, Cai YJ, Song YL, Qv HL. Hospital paperwork contamination investigation and experimental observation of microwave disinfection. Chin J Nosocomiology. 1987;4:221–2. Yan SX, Wang RN, Cai YJ, Song YL, Qv HL. Hospital paperwork contamination investigation and experimental observation of microwave disinfection. Chin J Nosocomiology. 1987;4:221–2.
5.
go back to reference Sun W. Preliminary Study on inactivation mechanism and effectiveness of sodium dichloroisocyanusate to bacteriophage MS2. Sichuan University. 2007. Sun W. Preliminary Study on inactivation mechanism and effectiveness of sodium dichloroisocyanusate to bacteriophage MS2. Sichuan University. 2007.
6.
go back to reference Yang L. Preliminary study on inactivation effectiveness and mechanism of O-phthalaldehyde to bacteriophage MS2. Sichuan University. 2007. Yang L. Preliminary study on inactivation effectiveness and mechanism of O-phthalaldehyde to bacteriophage MS2. Sichuan University. 2007.
7.
go back to reference Wu Y, Yao MS. In situ airborne virus inactivation by microwave irradiation. Chin Sci Bull. 2014;59(13):1438–45.CrossRef Wu Y, Yao MS. In situ airborne virus inactivation by microwave irradiation. Chin Sci Bull. 2014;59(13):1438–45.CrossRef
8.
go back to reference Kaczmarczyk LS, Marsay KS, Shevchenko S, Pilossof M, Levi N, Einat M, et al. Corona and polio viruses are sensitive to short pulses of W-band gyrotron radiation. Environ Chem Lett. 2021;19(6):3967–72.CrossRef Kaczmarczyk LS, Marsay KS, Shevchenko S, Pilossof M, Levi N, Einat M, et al. Corona and polio viruses are sensitive to short pulses of W-band gyrotron radiation. Environ Chem Lett. 2021;19(6):3967–72.CrossRef
9.
go back to reference Jonges M, Liu WM, van der Vries E, Jacobi R, Pronk I, Boog C, et al. Influenza virus inactivation for studies of antigenicity and phenotypic neuraminidase inhibitor resistance profiling. J Clin Microbiol. 2010;48(3):928–40.CrossRef Jonges M, Liu WM, van der Vries E, Jacobi R, Pronk I, Boog C, et al. Influenza virus inactivation for studies of antigenicity and phenotypic neuraminidase inhibitor resistance profiling. J Clin Microbiol. 2010;48(3):928–40.CrossRef
10.
go back to reference Zou XZ, Zhang LJ, Liu YJ, Li Y, Zhang JA, Lin FJ, et al. The review of microwave sterilization. Guangdong Trace Elements Science. 2013;20(6):67–70. Zou XZ, Zhang LJ, Liu YJ, Li Y, Zhang JA, Lin FJ, et al. The review of microwave sterilization. Guangdong Trace Elements Science. 2013;20(6):67–70.
11.
go back to reference Li JZ. Non-thermal biological effect of microwave on food microorganism and technology of microwave sterilization. J Southwest Univ Nationalitie (Natural Sci Edition). 2006;6:1219–22. Li JZ. Non-thermal biological effect of microwave on food microorganism and technology of microwave sterilization. J Southwest Univ Nationalitie (Natural Sci Edition). 2006;6:1219–22.
12.
go back to reference Afaghi P, Lapolla MA, Ghandi K. Denaturation of the SARS-CoV-2 spike protein under non-thermal microwave radiation. Sci Rep. 2021;11(1):23373.CrossRef Afaghi P, Lapolla MA, Ghandi K. Denaturation of the SARS-CoV-2 spike protein under non-thermal microwave radiation. Sci Rep. 2021;11(1):23373.CrossRef
13.
go back to reference Yang SC, Lin HC, Liu TM, Lu JT, Hung WT, Huang YR, et al. Efficient structure resonance energy transfer from microwaves to confined acoustic vibrations in viruses. Sci Rep. 2015;5:18030.CrossRef Yang SC, Lin HC, Liu TM, Lu JT, Hung WT, Huang YR, et al. Efficient structure resonance energy transfer from microwaves to confined acoustic vibrations in viruses. Sci Rep. 2015;5:18030.CrossRef
14.
go back to reference Barbora A, Minnes R. Targeted antiviral treatment using non-ionizing radiation therapy for SARS-CoV-2 and viral pandemics preparedness: Technique, methods and practical notes for clinical application. PLoS ONE. 2021;16(5):e0251780.CrossRef Barbora A, Minnes R. Targeted antiviral treatment using non-ionizing radiation therapy for SARS-CoV-2 and viral pandemics preparedness: Technique, methods and practical notes for clinical application. PLoS ONE. 2021;16(5):e0251780.CrossRef
15.
go back to reference Yang HM. Microwave sterilization law and its influencing factors. Chinese Journal of Nosocomiolog. 1993;(04):246–51. Yang HM. Microwave sterilization law and its influencing factors. Chinese Journal of Nosocomiolog. 1993;(04):246–51.
16.
go back to reference Page WJ, Martin WG. Survival of microbial films in the microwave oven. Can J Microbiol. 1978;24(11):1431–3.CrossRef Page WJ, Martin WG. Survival of microbial films in the microwave oven. Can J Microbiol. 1978;24(11):1431–3.CrossRef
17.
go back to reference Elhafi G, Naylor CJ, Savage CE, Jones RC. Microwave or autoclave treatments destroy the infectivity of infectious bronchitis virus and avian pneumovirus but allow detection by reverse transcriptase-polymerase chain reaction. Avian Pathol. 2004;33(3):303–6.CrossRef Elhafi G, Naylor CJ, Savage CE, Jones RC. Microwave or autoclave treatments destroy the infectivity of infectious bronchitis virus and avian pneumovirus but allow detection by reverse transcriptase-polymerase chain reaction. Avian Pathol. 2004;33(3):303–6.CrossRef
18.
go back to reference Ben-Shoshan M, Mandel D, Lubetzky R, Dollberg S, Mimouni FB. Eradication of cytomegalovirus from human milk by microwave irradiation: A pilot study. Breastfeed Med. 2016;11:186–7.CrossRef Ben-Shoshan M, Mandel D, Lubetzky R, Dollberg S, Mimouni FB. Eradication of cytomegalovirus from human milk by microwave irradiation: A pilot study. Breastfeed Med. 2016;11:186–7.CrossRef
19.
go back to reference Wang PJ, Pang YH, Huang SY, Fang JT, Chang SY, Shih SR, et al. Microwave resonant absorption of SARS-CoV-2 viruses. Sci Rep. 2022;12(1):12596.CrossRef Wang PJ, Pang YH, Huang SY, Fang JT, Chang SY, Shih SR, et al. Microwave resonant absorption of SARS-CoV-2 viruses. Sci Rep. 2022;12(1):12596.CrossRef
20.
go back to reference Abraham JP, Plourde BD, Cheng L. Using heat to kill SARS-CoV-2. Rev Med Virol. 2020;30(5):e2115.CrossRef Abraham JP, Plourde BD, Cheng L. Using heat to kill SARS-CoV-2. Rev Med Virol. 2020;30(5):e2115.CrossRef
21.
go back to reference Sabino CP, Sellera FP, Sales-Medina DF, Machado RRG, Durigon EL, Freitas-Junior LH, et al. UV-C (254 nm) lethal doses for SARS-CoV-2. Photodiagnosis Photodyn Ther. 2020;32:101995.CrossRef Sabino CP, Sellera FP, Sales-Medina DF, Machado RRG, Durigon EL, Freitas-Junior LH, et al. UV-C (254 nm) lethal doses for SARS-CoV-2. Photodiagnosis Photodyn Ther. 2020;32:101995.CrossRef
22.
go back to reference Storm N, McKay LGA, Downs SN, Johnson RI, Birru D, de Samber M, et al. Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation. Sci Rep. 2020;10(1):22421.CrossRef Storm N, McKay LGA, Downs SN, Johnson RI, Birru D, de Samber M, et al. Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation. Sci Rep. 2020;10(1):22421.CrossRef
23.
go back to reference Gidari A, Sabbatini S, Bastianelli S, Pierucci S, Busti C, Bartolini D, et al. SARS-CoV-2 survival on surfaces and the effect of UV-C light. Viruses. 2021;13(3):408.CrossRef Gidari A, Sabbatini S, Bastianelli S, Pierucci S, Busti C, Bartolini D, et al. SARS-CoV-2 survival on surfaces and the effect of UV-C light. Viruses. 2021;13(3):408.CrossRef
24.
go back to reference Biryukov J, Boydston JA, Dunning RA, Yeager JJ, Wood S, Ferris A, et al. SARS-CoV-2 is rapidly inactivated at high temperature. Environ Chem Lett. 2021;19(2):1773–7.CrossRef Biryukov J, Boydston JA, Dunning RA, Yeager JJ, Wood S, Ferris A, et al. SARS-CoV-2 is rapidly inactivated at high temperature. Environ Chem Lett. 2021;19(2):1773–7.CrossRef
25.
go back to reference Zhang WF, Yvan QX, Gao DQ. Experimental observation on efficacy of microwave in inactivating virus in piasma. Chin J Disinfection. 2001;2:109–11. Zhang WF, Yvan QX, Gao DQ. Experimental observation on efficacy of microwave in inactivating virus in piasma. Chin J Disinfection. 2001;2:109–11.
26.
go back to reference Calabrò E, Magazù S. Viruses inactivation induced by electromagnetic radiation at resonance frequencies: Possible application on SARS-CoV-2. World J Environ Biosci. 2021;10(1):1–4.CrossRef Calabrò E, Magazù S. Viruses inactivation induced by electromagnetic radiation at resonance frequencies: Possible application on SARS-CoV-2. World J Environ Biosci. 2021;10(1):1–4.CrossRef
27.
go back to reference Gartshore A, Kidd M, Joshi LT. Applications of microwave energy in medicine. Biosensors. 2021;11(4):96.CrossRef Gartshore A, Kidd M, Joshi LT. Applications of microwave energy in medicine. Biosensors. 2021;11(4):96.CrossRef
28.
go back to reference Wang C, Hu XR, Zhang ZW. Airborne disinfection using microwave-based technology: Energy efficient and distinct inactivation mechanism compared with waterborne disinfection. J Aerosol Sci. 2019;137:105437.CrossRef Wang C, Hu XR, Zhang ZW. Airborne disinfection using microwave-based technology: Energy efficient and distinct inactivation mechanism compared with waterborne disinfection. J Aerosol Sci. 2019;137:105437.CrossRef
29.
go back to reference Tsen KT, Tsen SW, Chang CL, Hung CF, Wu TC, Kiang JG. Inactivation of viruses by coherent excitations with a low power visible femtosecond laser. Virol J. 2007;4:50.CrossRef Tsen KT, Tsen SW, Chang CL, Hung CF, Wu TC, Kiang JG. Inactivation of viruses by coherent excitations with a low power visible femtosecond laser. Virol J. 2007;4:50.CrossRef
Metadata
Title
Effects of electromagnetic waves on pathogenic viruses and relevant mechanisms: a review
Authors
Yi Xiao
Li Zhao
Ruiyun Peng
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01889-w

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue