Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Interferon | Research

Mechanism of interaction between virus and host is inferred from the changes of gene expression in macrophages infected with African swine fever virus CN/GS/2018 strain

Authors: Bo Yang, Chaochao Shen, Dajun Zhang, Ting Zhang, Xijuan Shi, Jinke Yang, Yu Hao, Dengshuai Zhao, Huimei Cui, Xingguo Yuan, Xuehui Chen, Keshan Zhang, Haixue Zheng, Xiangtao Liu

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

African swine fever virus (ASFV) is a highly lethal virus that can infect porcine alveolar macrophages (PAMs). Since ASFV, China has dealt with a heavy blow to the pig industry. However, the effect of infection of ASFV strains isolated from China on PAM transcription level is not yet clarified.

Methods

In this study, RNA sequencing (RNA-seq) was used to detect the differential expression of genes in PAMs at different time points after ASFV-CN/GS/2018 infection. The fluorescent quantitative polymerase chain reaction (qPCR) method was used to confirm the altered expression of related genes in PAMs infected with ASFV.

Results

A total of 1154 differentially expressed genes were identified after ASFV-CN/GS/2018 infection, of which 816 were upregulated, and 338 were downregulated. GO and KEGG analysis showed that these genes were dynamically enriched in various biological processes, including innate immune response, inflammatory response, chemokines, and apoptosis. Furthermore, qPCR verified that the DEAD box polypeptide 58 (DDX58), Interferon-induced helicase C domain-containing protein 1 (IFIH1), Toll-like receptor 3 (TLR3), and TLR7 of PAMs were upregulated after ASFV infection, while TLR4 and TLR6 had a significant downward trend during ASFV infection. The expression of some factors related to antiviral and inflammation was altered significantly after ASFV infection, among which interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), IFIT2, Interleukin-6 (IL-6) were upregulated, and Ewing’s tumor-associated antigen 1 homolog (ETAA1) and Prosaposin receptor GPR37 (GPR37) were downregulated. In addition, we discovered that ASFV infection is involved in the regulation of chemokine expression in PAMs, and the chemokines, such as C-X-C motif chemokine 8 (CXCL8) and CXCL10, were upregulated after infection. However, the expression of chemokine receptor C-X-C chemokine receptor type 2 (CXCR2) is downregulated. Also, that the transcriptional levels of pro-apoptotic and anti-apoptotic factors changed after infection.

Conclusions

After ASFV-CN/GS/2018 infection, the expression of some antiviral and inflammatory factors in PAMs changed significantly. The ASFV infection may activates the RLR and TLR signaling pathways. In addition, ASFV infection is involved in regulating of chemokine expression in PAMs and host cell apoptosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Penrith ML. Current status of African swine fever. CABI Agric Biosci. 2020;1:11.CrossRef Penrith ML. Current status of African swine fever. CABI Agric Biosci. 2020;1:11.CrossRef
2.
go back to reference Montgomery RE. On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol Ther. 1921;34:243–62. Montgomery RE. On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol Ther. 1921;34:243–62.
3.
go back to reference Galindo I, Alonso C. African swine fever virus: a review. Viruses Basel. 2017;9:103.CrossRef Galindo I, Alonso C. African swine fever virus: a review. Viruses Basel. 2017;9:103.CrossRef
4.
go back to reference Mazur-Panasiuk N, Zmudzki J, Wozniakowski G. African swine fever virus—persistence in different environmental conditions and the possibility of its indirect transmission. J Vet Res. 2019;63:303–10.PubMedPubMedCentralCrossRef Mazur-Panasiuk N, Zmudzki J, Wozniakowski G. African swine fever virus—persistence in different environmental conditions and the possibility of its indirect transmission. J Vet Res. 2019;63:303–10.PubMedPubMedCentralCrossRef
5.
go back to reference Alonso C, Borca M, Dixon L, Revilla Y, Rodriguez F, Escribano JM, Consortium IR. ICTV virus taxonomy profile: Aasfarviridae. J Gen Virol. 2018;99:613–4.PubMedCrossRef Alonso C, Borca M, Dixon L, Revilla Y, Rodriguez F, Escribano JM, Consortium IR. ICTV virus taxonomy profile: Aasfarviridae. J Gen Virol. 2018;99:613–4.PubMedCrossRef
6.
7.
go back to reference Pikalo J, Zani L, Huehr J, Beer M, Biome S. Pathogenesis of African swine fever in domestic pigs and European wild boar—lessons learned from recent animal trials. Virus Res. 2019;271:PubMedCrossRef Pikalo J, Zani L, Huehr J, Beer M, Biome S. Pathogenesis of African swine fever in domestic pigs and European wild boar—lessons learned from recent animal trials. Virus Res. 2019;271:PubMedCrossRef
8.
go back to reference Wilkinson PJ. The persistence of African swine fever in Africa and the Mediterranean. Prev Vet Med. 1984;2:71–82.CrossRef Wilkinson PJ. The persistence of African swine fever in Africa and the Mediterranean. Prev Vet Med. 1984;2:71–82.CrossRef
9.
go back to reference Wu K, Liu J, Wang L, Fan S, Li Z, Li Y, Yi L, Ding H, Zhao M, Chen J. Current state of global African swine fever vaccine development under the prevalence and transmission of ASF in China. Vaccines. 2020;8:531.CrossRefPubMedCentral Wu K, Liu J, Wang L, Fan S, Li Z, Li Y, Yi L, Ding H, Zhao M, Chen J. Current state of global African swine fever vaccine development under the prevalence and transmission of ASF in China. Vaccines. 2020;8:531.CrossRefPubMedCentral
10.
go back to reference Garcia-Belmonte R, Perez-Nunez D, Pittau M, Richt JA, Revilla Y. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway. J Virol. 2019;93:e02298–18.PubMedPubMedCentralCrossRef Garcia-Belmonte R, Perez-Nunez D, Pittau M, Richt JA, Revilla Y. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway. J Virol. 2019;93:e02298–18.PubMedPubMedCentralCrossRef
11.
go back to reference Arias M, de la Torre A, Dixon L, Gallardo C, Jori F, Laddomada A, Martins C, Michael Parkhouse R, Revilla Y, Rodriguez F, Sanchez-Vizcaino J-M. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines. 2017;5:35.CrossRefPubMedCentral Arias M, de la Torre A, Dixon L, Gallardo C, Jori F, Laddomada A, Martins C, Michael Parkhouse R, Revilla Y, Rodriguez F, Sanchez-Vizcaino J-M. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines. 2017;5:35.CrossRefPubMedCentral
12.
go back to reference Rock DL. Challenges for African swine fever vaccine development-" … perhaps the end of the beginning". Vet Microbiol. 2017;206:52–8.PubMedCrossRef Rock DL. Challenges for African swine fever vaccine development-" … perhaps the end of the beginning". Vet Microbiol. 2017;206:52–8.PubMedCrossRef
13.
go back to reference Fraczyk M, Wozniakowski G, Kowalczyk A, Bocian L, Kozak E, Niemczuk K, Pejsak Z. Evolution of African swine fever virus genes related to evasion of host immune response. Vet Microbiol. 2016;193:133–44.PubMedCrossRef Fraczyk M, Wozniakowski G, Kowalczyk A, Bocian L, Kozak E, Niemczuk K, Pejsak Z. Evolution of African swine fever virus genes related to evasion of host immune response. Vet Microbiol. 2016;193:133–44.PubMedCrossRef
14.
go back to reference Wang X, Wu J, Wu Y, Chen H, Zhang S, Li J, Xin T, Jia H, Hou S, Jiang Y, Zhu H, Guo X. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1. Biochem Biophys Res Commun. 2018;506:437–43.PubMedCrossRef Wang X, Wu J, Wu Y, Chen H, Zhang S, Li J, Xin T, Jia H, Hou S, Jiang Y, Zhu H, Guo X. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1. Biochem Biophys Res Commun. 2018;506:437–43.PubMedCrossRef
15.
go back to reference Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:1–19. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:1–19.
16.
go back to reference Wang Y, Zhang H, Lu Y, Wang F, Liu L, Liu J, Liu X. Comparative transcriptome analysis of zebrafish (Danio rerio) brain and spleen infected with spring viremia of carp virus (SVCV). Fish Shellfish Immunol. 2017;69:35–45.CrossRefPubMed Wang Y, Zhang H, Lu Y, Wang F, Liu L, Liu J, Liu X. Comparative transcriptome analysis of zebrafish (Danio rerio) brain and spleen infected with spring viremia of carp virus (SVCV). Fish Shellfish Immunol. 2017;69:35–45.CrossRefPubMed
18.
go back to reference Zhang F, Hopwood P, Abrams C, Downing A, Murray F, Talbot R, Archibald A, Lowden S, Dixon L. Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. J Virol. 2006;80:10514–21.PubMedPubMedCentralCrossRef Zhang F, Hopwood P, Abrams C, Downing A, Murray F, Talbot R, Archibald A, Lowden S, Dixon L. Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. J Virol. 2006;80:10514–21.PubMedPubMedCentralCrossRef
19.
go back to reference Zhu J, Ramanathan P, Bishop E, O’Donnell V, Gladue D, Borca M. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLoS ONE. 2019;14:e0223955.PubMedPubMedCentralCrossRef Zhu J, Ramanathan P, Bishop E, O’Donnell V, Gladue D, Borca M. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLoS ONE. 2019;14:e0223955.PubMedPubMedCentralCrossRef
20.
go back to reference Carrascosa A, Santarén J, Viñuela E. Production and titration of African swine fever virus in porcine alveolar macrophages. J Virol Methods. 1982;3:303–10.PubMedCrossRef Carrascosa A, Santarén J, Viñuela E. Production and titration of African swine fever virus in porcine alveolar macrophages. J Virol Methods. 1982;3:303–10.PubMedCrossRef
21.
go back to reference Schmittgen T, Livak K. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.PubMedCrossRef Schmittgen T, Livak K. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.PubMedCrossRef
23.
go back to reference Fang J, Qiao S, Wang K, Li R, Wang L, Li H, Zhang G. Quantitative proteomic analysis of global protein acetylation in PRRSV-infected pulmonary alveolar macrophages. Proteomics. 2021;21:e2000019.PubMedCrossRef Fang J, Qiao S, Wang K, Li R, Wang L, Li H, Zhang G. Quantitative proteomic analysis of global protein acetylation in PRRSV-infected pulmonary alveolar macrophages. Proteomics. 2021;21:e2000019.PubMedCrossRef
24.
go back to reference Sakuratani T, Takeuchi T, Yasufuku I, Iwata Y, Saigo C, Kito Y, Yoshida K. Downregulation of ARID1A in gastric cancer cells: a putative protective molecular mechanism against the Harakiri-mediated apoptosis pathway. Virchows Arch. 2021;478:401–11.PubMedCrossRef Sakuratani T, Takeuchi T, Yasufuku I, Iwata Y, Saigo C, Kito Y, Yoshida K. Downregulation of ARID1A in gastric cancer cells: a putative protective molecular mechanism against the Harakiri-mediated apoptosis pathway. Virchows Arch. 2021;478:401–11.PubMedCrossRef
25.
go back to reference Fallahi H, Godini R. System-level responses to cisplatin in pro-apoptotic stages of breast cancer MCF-7 cell line. Comput Biol Chem. 2019;83:107155.PubMedCrossRef Fallahi H, Godini R. System-level responses to cisplatin in pro-apoptotic stages of breast cancer MCF-7 cell line. Comput Biol Chem. 2019;83:107155.PubMedCrossRef
26.
go back to reference Afonso CL, Piccone ME, Zaffuto KM, Neilan J, Kutish GF, Lu Z, Balinsky CA, Gibb TR, Bean TJ, Zsak L, Rock DL. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol. 2004;78:1858–64.PubMedPubMedCentralCrossRef Afonso CL, Piccone ME, Zaffuto KM, Neilan J, Kutish GF, Lu Z, Balinsky CA, Gibb TR, Bean TJ, Zsak L, Rock DL. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol. 2004;78:1858–64.PubMedPubMedCentralCrossRef
28.
go back to reference Jaing C, Rowland R, Allen J, Certoma A, Thissen J, Bingham J, Rowe B, White J, Wynne J, Johnson D, Gaudreault N, Williams D. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses. Sci Rep. 2017;7:10115.PubMedPubMedCentralCrossRef Jaing C, Rowland R, Allen J, Certoma A, Thissen J, Bingham J, Rowe B, White J, Wynne J, Johnson D, Gaudreault N, Williams D. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses. Sci Rep. 2017;7:10115.PubMedPubMedCentralCrossRef
29.
go back to reference Hu B, Huo Y, Chen G, Yang L, Wu D, Zhou J. Functional prediction of differentially expressed lncRNAs in HSV-1 infected human foreskin fibroblasts. Virol J. 2016;13:137.PubMedPubMedCentralCrossRef Hu B, Huo Y, Chen G, Yang L, Wu D, Zhou J. Functional prediction of differentially expressed lncRNAs in HSV-1 infected human foreskin fibroblasts. Virol J. 2016;13:137.PubMedPubMedCentralCrossRef
30.
go back to reference Chiang J, Sparrer K, van Gent M, Lässig C, Huang T, Osterrieder N, Hopfner K, Gack M. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat Immunol. 2018;19:53–62.PubMedCrossRef Chiang J, Sparrer K, van Gent M, Lässig C, Huang T, Osterrieder N, Hopfner K, Gack M. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat Immunol. 2018;19:53–62.PubMedCrossRef
31.
go back to reference Miosge LA, Sontani Y, Chuah A, Horikawa K, Russell TA, Mei Y, Wagle MV, Howard DR, Enders A, Tscharke DC. Systems-guided forward genetic screen reveals a critical role of the replication stress response protein ETAA1 in T cell clonal expansion. Proc Natl Acad Sci USA. 2017;114:E5216–25.PubMedPubMedCentralCrossRef Miosge LA, Sontani Y, Chuah A, Horikawa K, Russell TA, Mei Y, Wagle MV, Howard DR, Enders A, Tscharke DC. Systems-guided forward genetic screen reveals a critical role of the replication stress response protein ETAA1 in T cell clonal expansion. Proc Natl Acad Sci USA. 2017;114:E5216–25.PubMedPubMedCentralCrossRef
32.
go back to reference Bang S, Xie Y, Zhang Z, Wang Z, Xu Z, Ji R. GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J Clin Investig. 2018;128:3568–82.PubMedPubMedCentralCrossRef Bang S, Xie Y, Zhang Z, Wang Z, Xu Z, Ji R. GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J Clin Investig. 2018;128:3568–82.PubMedPubMedCentralCrossRef
33.
go back to reference Wack A, Openshaw P, O’Garra A. Contribution of cytokines to pathology and protection in virus infection. Curr Opin Virol. 2011;1:184–95.PubMedCrossRef Wack A, Openshaw P, O’Garra A. Contribution of cytokines to pathology and protection in virus infection. Curr Opin Virol. 2011;1:184–95.PubMedCrossRef
35.
36.
go back to reference Fishbourne E, Abrams C, Takamatsu H, Dixon L. Modulation of chemokine and chemokine receptor expression following infection of porcine macrophages with African swine fever virus. Vet Microbiol. 2013;162:937–43.PubMedPubMedCentralCrossRef Fishbourne E, Abrams C, Takamatsu H, Dixon L. Modulation of chemokine and chemokine receptor expression following infection of porcine macrophages with African swine fever virus. Vet Microbiol. 2013;162:937–43.PubMedPubMedCentralCrossRef
37.
go back to reference Galindo I, Hernáez B, Muñoz-Moreno R, Cuesta-Geijo M, Dalmau-Mena I, Alonso C. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis. 2012;3:e341.PubMedPubMedCentralCrossRef Galindo I, Hernáez B, Muñoz-Moreno R, Cuesta-Geijo M, Dalmau-Mena I, Alonso C. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis. 2012;3:e341.PubMedPubMedCentralCrossRef
38.
go back to reference Carrascosa AL, Bustos MJ, Nogal ML, de Buitrago GG, Revilla Y. Apoptosis induced in an early step of African swine fever virus entry into Vero cells does not require virus replication. Virology. 2002;294:372–82.PubMedCrossRef Carrascosa AL, Bustos MJ, Nogal ML, de Buitrago GG, Revilla Y. Apoptosis induced in an early step of African swine fever virus entry into Vero cells does not require virus replication. Virology. 2002;294:372–82.PubMedCrossRef
39.
go back to reference Alonso C, Miskin J, Hernáez B, Fernandez-Zapatero P, Soto L, Cantó C, Rodríguez-Crespo I, Dixon L, Escribano J. African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol. 2001;75:9819–27.PubMedPubMedCentralCrossRef Alonso C, Miskin J, Hernáez B, Fernandez-Zapatero P, Soto L, Cantó C, Rodríguez-Crespo I, Dixon L, Escribano J. African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol. 2001;75:9819–27.PubMedPubMedCentralCrossRef
40.
go back to reference Hernaez B, Cabezas M, Muñoz-Moreno R, Galindo I, Cuesta-Geijo M, Alonso C. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med. 2013;13:305–16.PubMedCrossRef Hernaez B, Cabezas M, Muñoz-Moreno R, Galindo I, Cuesta-Geijo M, Alonso C. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med. 2013;13:305–16.PubMedCrossRef
41.
go back to reference Nogal M, González de Buitrago G, Rodríguez C, Cubelos B, Carrascosa A, Salas M, Revilla Y. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol. 2001;75:2535–43.PubMedPubMedCentralCrossRef Nogal M, González de Buitrago G, Rodríguez C, Cubelos B, Carrascosa A, Salas M, Revilla Y. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol. 2001;75:2535–43.PubMedPubMedCentralCrossRef
42.
go back to reference Hurtado C, Granja A, Bustos M, Nogal M, González de Buitrago G, de Yébenes V, Salas M, Revilla Y, Carrascosa A. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology. 2004;326:160–70.PubMedCrossRef Hurtado C, Granja A, Bustos M, Nogal M, González de Buitrago G, de Yébenes V, Salas M, Revilla Y, Carrascosa A. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology. 2004;326:160–70.PubMedCrossRef
43.
go back to reference Roe M, Bloxham D, White D, Ross-Russell R, Tasker R, O’Donnell D. Lymphocyte apoptosis in acute respiratory syncytial virus bronchiolitis. Clin Exp Immunol. 2004;137:139–45.PubMedPubMedCentralCrossRef Roe M, Bloxham D, White D, Ross-Russell R, Tasker R, O’Donnell D. Lymphocyte apoptosis in acute respiratory syncytial virus bronchiolitis. Clin Exp Immunol. 2004;137:139–45.PubMedPubMedCentralCrossRef
44.
go back to reference Simões M, Freitas F, Leitão A, Martins C, Ferreira F. African swine fever virus replication events and cell nucleus: new insights and perspectives. Virus Res. 2019;270:197667.PubMedCrossRef Simões M, Freitas F, Leitão A, Martins C, Ferreira F. African swine fever virus replication events and cell nucleus: new insights and perspectives. Virus Res. 2019;270:197667.PubMedCrossRef
45.
go back to reference Sobhy H. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Adv Virol. 2017;162:3567–85. Sobhy H. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Adv Virol. 2017;162:3567–85.
46.
go back to reference Simões M, Martins C, Ferreira F. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus. Virus Res. 2015;210:1–7.PubMedCrossRef Simões M, Martins C, Ferreira F. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus. Virus Res. 2015;210:1–7.PubMedCrossRef
47.
go back to reference Simões M, Martins C, Ferreira F. Host DNA damage response facilitates African swine fever virus infection. Vet Microbiol. 2013;165:140–7.PubMedCrossRef Simões M, Martins C, Ferreira F. Host DNA damage response facilitates African swine fever virus infection. Vet Microbiol. 2013;165:140–7.PubMedCrossRef
48.
go back to reference Simões M, Rino J, Pinheiro I, Martins C, Ferreira F. Alterations of nuclear architecture and epigenetic signatures during African swine fever virus infection. Viruses. 2015;7:4978–96.PubMedPubMedCentralCrossRef Simões M, Rino J, Pinheiro I, Martins C, Ferreira F. Alterations of nuclear architecture and epigenetic signatures during African swine fever virus infection. Viruses. 2015;7:4978–96.PubMedPubMedCentralCrossRef
Metadata
Title
Mechanism of interaction between virus and host is inferred from the changes of gene expression in macrophages infected with African swine fever virus CN/GS/2018 strain
Authors
Bo Yang
Chaochao Shen
Dajun Zhang
Ting Zhang
Xijuan Shi
Jinke Yang
Yu Hao
Dengshuai Zhao
Huimei Cui
Xingguo Yuan
Xuehui Chen
Keshan Zhang
Haixue Zheng
Xiangtao Liu
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Interferon
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01637-6

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue