Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Research

High throughput sequencing from Angolan citrus accessions discloses the presence of emerging CTV strains

Authors: Aderito Tomàs Pais da Cunha, Michela Chiumenti, Laurindo Chambula Ladeira, Raied Abou Kubaa, Giuliana Loconsole, Vitantonio Pantaleo, Angelantonio Minafra

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Citrus industry is worldwide dramatically affected by outbreaks of Citrus tristeza virus (CTV). Controls should be applied to nurseries, which could act as diversity hotspots for CTV. Early detection and characterization of dangerous or emerging strains of this virus greatly help to prevent outbreaks of disease. This is particularly relevant in those growing regions where no dedicated certification programs are currently in use.

Methods

Double-stranded RNA extracted from Citrus spp. samples, collected in two locations in Angola, were pooled and submitted to a random-primed RNA-seq. This technique was performed to acquire a higher amount of data in the survey, before the amplification and sequencing of genes from single plants. To confirm the CTV infection in individual plants, as suggested by RNA-seq information from the pooled samples, the analysis was integrated with multiple molecular marker amplification (MMM) for the main known CTV strains (T30, T36, VT and T3).

Results

From the analysis of HTS data, several assembled contigs were identified as CTV and classified according to their similarity to the established strains. By the MMM amplification, only five individual accessions out of the eleven pooled samples, resulted to be infected by CTV. Amplified coat protein genes from the five positive sources were cloned and sequenced and submitted to phylogenetic analysis, while a near-complete CTV genome was also reconstructed by the fusion of three overlapping contigs.

Conclusion

Phylogenetic analysis of the ORF1b and CP genes, retrieved by de novo assembly and RT-PCR, respectively, revealed the presence of a wide array of CTV strains in the surveyed citrus-growing spots in Angola. Importantly, molecular variants among those identified from HTS showed high similarity with known severe strains as well as to recently described and emerging strains in other citrus-growing regions, such as S1 (California) or New Clade (Uruguay).
Appendix
Available only for authorised users
Literature
3.
go back to reference Silva G, Fonseca F, Santos C, Nolasco G. Presence of citrus tristeza virus in Angola and São Tomé e Príncipe: characterization of isolates based on coat protein gene analysis. J Plant Pathol. 2007;89(1):149–52. Silva G, Fonseca F, Santos C, Nolasco G. Presence of citrus tristeza virus in Angola and São Tomé e Príncipe: characterization of isolates based on coat protein gene analysis. J Plant Pathol. 2007;89(1):149–52.
4.
go back to reference Loconsole G, Önelge N, Potere O, Giampetruzzi A, Bozan O, Satar S, De Stradis A, Savino V, Yokomi RK, Saponari M. Identification and characterization of Citrus yellow vein clearing virus, a putative new member of the genus Mandarivirus. Phytopathology. 2012;102:1168–75.CrossRef Loconsole G, Önelge N, Potere O, Giampetruzzi A, Bozan O, Satar S, De Stradis A, Savino V, Yokomi RK, Saponari M. Identification and characterization of Citrus yellow vein clearing virus, a putative new member of the genus Mandarivirus. Phytopathology. 2012;102:1168–75.CrossRef
6.
go back to reference Roy A, Stone AL, Shao J, Otero-Colina G, Wei G, Choudhary N, Achor D, Levy L, Nakhla MK, Hartung JS, Schneider WL, Brlansky RH. Identification and molecular characterization of nuclear Citrus leprosis virus, a member of the proposed Dichorhavirus genus infecting multiple Citrus species in Mexico. Phytopathology. 2015. https://doi.org/10.1094/PHYTO-09-14-0245-R.CrossRefPubMed Roy A, Stone AL, Shao J, Otero-Colina G, Wei G, Choudhary N, Achor D, Levy L, Nakhla MK, Hartung JS, Schneider WL, Brlansky RH. Identification and molecular characterization of nuclear Citrus leprosis virus, a member of the proposed Dichorhavirus genus infecting multiple Citrus species in Mexico. Phytopathology. 2015. https://​doi.​org/​10.​1094/​PHYTO-09-14-0245-R.CrossRefPubMed
12.
18.
go back to reference Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477. Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477.
30.
go back to reference Ghasemzadeh A, ter Haar MM, Shams-Bakhsh M, Pirovano W, Pantaleo V. Shannon Entropy to evaluate Substitution Rate Variation Among Viral Nucleotide Positions in Datasets of Viral siRNAs. In: Pantaleo V, Chiumenti M, editors. Viral Metagenomics Methods in Molecular Biology, vol. 1746. New York: Humana Press; 2018. https://doi.org/10.1007/978-1-4939-7683-6_15.CrossRef Ghasemzadeh A, ter Haar MM, Shams-Bakhsh M, Pirovano W, Pantaleo V. Shannon Entropy to evaluate Substitution Rate Variation Among Viral Nucleotide Positions in Datasets of Viral siRNAs. In: Pantaleo V, Chiumenti M, editors. Viral Metagenomics Methods in Molecular Biology, vol. 1746. New York: Humana Press; 2018. https://​doi.​org/​10.​1007/​978-1-4939-7683-6_​15.CrossRef
Metadata
Title
High throughput sequencing from Angolan citrus accessions discloses the presence of emerging CTV strains
Authors
Aderito Tomàs Pais da Cunha
Michela Chiumenti
Laurindo Chambula Ladeira
Raied Abou Kubaa
Giuliana Loconsole
Vitantonio Pantaleo
Angelantonio Minafra
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01535-x

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue