Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Herpes Virus | Research

Cohesin promotes HSV-1 lytic transcription by facilitating the binding of RNA Pol II on viral genes

Authors: Xin Li, Yafen Yu, Fengchao Lang, Guijun Chen, Erlin Wang, Lihong Li, Zhuoran Li, Liping Yang, Xia Cao, Nigel W. Fraser, Jumin Zhou

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Herpes Simplex Virus type I (HSV-1) is a large double-stranded DNA virus that enters productive infection in epithelial cells and reorganizes the host nucleus. Cohesin, a major constituent of interphase and mitotic chromosomes comprised of SMC1, SMC3, and SCC1 (Mcd1/Rad21), SCC3 (SA1/SA2), have diverse functions, including sister chromatid cohesion, DNA double-stranded breaks repair, and transcriptional control. Little is known about the role of cohesin in HSV-1 lytic infection.

Methods

We measured the effect on HSV-1 transcription, genome copy number, and viral titer by depleting cohesin components SMC1 or Rad21 using RNAi, followed by immunofluorescence, qPCR, and ChIP experiments to gain insight into cohesin's function in HSV-1 transcription and replication.

Results

Here, we report that cohesion subunits SMC1 and Rad21 are recruited to the lytic HSV-1 replication compartment. The knockdown results in decreased viral transcription, protein expression, and maturation of viral replication compartments. SMC1 and Rad21 knockdown leads to the reduced overall RNA pol II occupancy level but increased RNA pol II ser5 phosphorylation binding on viral genes. Consistent with this, the knockdown increased H3K27me3 modification on these genes.

Conclusions

These results suggest that cohesin facilitates HSV-1 lytic transcription by promoting RNA Pol II transcription activity and preventing chromatin's silencing on the viral genome.
Appendix
Available only for authorised users
Literature
1.
go back to reference Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. Clin Infect Dis. 1998;26:541–53 (quiz 554-545).PubMedCrossRef Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. Clin Infect Dis. 1998;26:541–53 (quiz 554-545).PubMedCrossRef
2.
go back to reference Fraser KA, Rice SA. Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II. J Virol. 2007;81:5091–101.PubMedPubMedCentralCrossRef Fraser KA, Rice SA. Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II. J Virol. 2007;81:5091–101.PubMedPubMedCentralCrossRef
3.
go back to reference Bastian TW, Rice SA. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression. J Virol. 2009;83:128–39.PubMedCrossRef Bastian TW, Rice SA. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression. J Virol. 2009;83:128–39.PubMedCrossRef
5.
go back to reference Oh J, Ruskoski N, Fraser NW. Chromatin assembly on herpes simplex virus 1 DNA early during a lytic infection is Asf1a dependent. J Virol. 2012;86:12313–21.PubMedPubMedCentralCrossRef Oh J, Ruskoski N, Fraser NW. Chromatin assembly on herpes simplex virus 1 DNA early during a lytic infection is Asf1a dependent. J Virol. 2012;86:12313–21.PubMedPubMedCentralCrossRef
6.
go back to reference Kent JR, Zeng PY, Atanasiu D, Gardner J, Fraser NW, Berger SL. During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription. J Virol. 2004;78:10178–86.PubMedPubMedCentralCrossRef Kent JR, Zeng PY, Atanasiu D, Gardner J, Fraser NW, Berger SL. During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription. J Virol. 2004;78:10178–86.PubMedPubMedCentralCrossRef
7.
go back to reference Placek BJ, Huang J, Kent JR, Dorsey J, Rice L, Fraser NW, Berger SL. The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. J Virol. 2009;83:1416–21.PubMedCrossRef Placek BJ, Huang J, Kent JR, Dorsey J, Rice L, Fraser NW, Berger SL. The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. J Virol. 2009;83:1416–21.PubMedCrossRef
8.
go back to reference Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol. 2008;6:211–21.PubMedCrossRef Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol. 2008;6:211–21.PubMedCrossRef
9.
go back to reference Placek BJ, Berger SL. Chromatin dynamics during herpes simplex virus-1 lytic infection. Biochim Biophys Acta Gene Regul Mech. 2010;1799:223–7.CrossRef Placek BJ, Berger SL. Chromatin dynamics during herpes simplex virus-1 lytic infection. Biochim Biophys Acta Gene Regul Mech. 2010;1799:223–7.CrossRef
10.
11.
go back to reference Dorsett D, Merkenschlager M. Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans. Curr Opin Cell Biol. 2013;25:327–33.PubMedPubMedCentralCrossRef Dorsett D, Merkenschlager M. Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans. Curr Opin Cell Biol. 2013;25:327–33.PubMedPubMedCentralCrossRef
12.
go back to reference Mehta K, Gunasekharan V, Satsuka A, Laimins LA. Human papillomaviruses activate and recruit SMC1 cohesin proteins for the differentiation-dependent life cycle through association with CTCF insulators. Plos Pathog. 2015;11:e1004763.PubMedPubMedCentralCrossRef Mehta K, Gunasekharan V, Satsuka A, Laimins LA. Human papillomaviruses activate and recruit SMC1 cohesin proteins for the differentiation-dependent life cycle through association with CTCF insulators. Plos Pathog. 2015;11:e1004763.PubMedPubMedCentralCrossRef
13.
go back to reference Li DJ, Verma D, Mosbruger T, Swaminathan S. CTCF and Rad21 act as host cell restriction factors for Kaposi’s sarcoma—associated herpesvirus (KSHV) lytic replication by modulating viral gene transcription. Plos Pathog. 2014;10:e1003880.PubMedPubMedCentralCrossRef Li DJ, Verma D, Mosbruger T, Swaminathan S. CTCF and Rad21 act as host cell restriction factors for Kaposi’s sarcoma—associated herpesvirus (KSHV) lytic replication by modulating viral gene transcription. Plos Pathog. 2014;10:e1003880.PubMedPubMedCentralCrossRef
14.
go back to reference Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M, Leslie C, Lieberman PM. An atlas of the Epstein–Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe. 2012;12:233–45.PubMedPubMedCentralCrossRef Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M, Leslie C, Lieberman PM. An atlas of the Epstein–Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe. 2012;12:233–45.PubMedPubMedCentralCrossRef
15.
go back to reference De Leo A, Chen HS, Hu CC, Lieberman PM. Deregulation of KSHV latency conformation by ER-stress and caspase-dependent RAD21-cleavage. PLoS Pathog. 2017;13:e1006596.PubMedPubMedCentralCrossRef De Leo A, Chen HS, Hu CC, Lieberman PM. Deregulation of KSHV latency conformation by ER-stress and caspase-dependent RAD21-cleavage. PLoS Pathog. 2017;13:e1006596.PubMedPubMedCentralCrossRef
16.
go back to reference Chen HS, Wikramasinghe P, Showe L, Lieberman PM. Cohesins repress Kaposi’s sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol. 2012;86:9454–64.PubMedPubMedCentralCrossRef Chen HS, Wikramasinghe P, Showe L, Lieberman PM. Cohesins repress Kaposi’s sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol. 2012;86:9454–64.PubMedPubMedCentralCrossRef
17.
go back to reference Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, Tempera I. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein–Barr virus by mutation of a single CTCF-cohesin binding site. J Virol. 2014;88:1703–13.PubMedPubMedCentralCrossRef Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, Tempera I. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein–Barr virus by mutation of a single CTCF-cohesin binding site. J Virol. 2014;88:1703–13.PubMedPubMedCentralCrossRef
18.
go back to reference Lang F, Li X, Zheng W, Li Z, Lu D, Chen G, Gong D, Yang L, Fu J, Shi P, Zhou J. CTCF prevents genomic instability by promoting homologous recombination-directed DNA double-strand break repair. Proc Natl Acad Sci U S A. 2017;114:10912–7.PubMedPubMedCentralCrossRef Lang F, Li X, Zheng W, Li Z, Lu D, Chen G, Gong D, Yang L, Fu J, Shi P, Zhou J. CTCF prevents genomic instability by promoting homologous recombination-directed DNA double-strand break repair. Proc Natl Acad Sci U S A. 2017;114:10912–7.PubMedPubMedCentralCrossRef
20.
go back to reference Chen Q, Lin L, Smith S, Huang J, Berger SL, Zhou J. CTCF-dependent chromatin boundary element between the latency-associated transcript and ICP0 promoters in the herpes simplex virus type 1 genome. J Virol. 2007;81:5192–201.PubMedPubMedCentralCrossRef Chen Q, Lin L, Smith S, Huang J, Berger SL, Zhou J. CTCF-dependent chromatin boundary element between the latency-associated transcript and ICP0 promoters in the herpes simplex virus type 1 genome. J Virol. 2007;81:5192–201.PubMedPubMedCentralCrossRef
21.
go back to reference Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. Elife. 2017;6:e25776.PubMedPubMedCentralCrossRef Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. Elife. 2017;6:e25776.PubMedPubMedCentralCrossRef
22.
go back to reference Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA, van IJcken WF, et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A. 2014;111:996–1001.PubMedCrossRef Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA, van IJcken WF, et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A. 2014;111:996–1001.PubMedCrossRef
23.
go back to reference Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, et al. Cohesin loss eliminates all loop domains. Cell. 2017;171:305–20.PubMedPubMedCentralCrossRef Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, et al. Cohesin loss eliminates all loop domains. Cell. 2017;171:305–20.PubMedPubMedCentralCrossRef
25.
go back to reference Michaelis C, Ciosk R, Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997;91:35–45.PubMedCrossRef Michaelis C, Ciosk R, Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997;91:35–45.PubMedCrossRef
26.
go back to reference Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature. 2010;467:430–5.PubMedPubMedCentralCrossRef Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature. 2010;467:430–5.PubMedPubMedCentralCrossRef
27.
go back to reference Guo Y, Monahan K, Wu HY, Gertz J, Varley KE, Li W, Myers RM, Maniatis T, Wu Q. CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice. Proc Natl Acad Sci U S A. 2012;109:21081–6.PubMedPubMedCentralCrossRef Guo Y, Monahan K, Wu HY, Gertz J, Varley KE, Li W, Myers RM, Maniatis T, Wu Q. CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice. Proc Natl Acad Sci U S A. 2012;109:21081–6.PubMedPubMedCentralCrossRef
28.
go back to reference Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, Fisher AG, Merkenschlager M. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature. 2009;460:410–3.PubMedPubMedCentralCrossRef Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, Fisher AG, Merkenschlager M. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature. 2009;460:410–3.PubMedPubMedCentralCrossRef
29.
go back to reference Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell. 2008;132:422–33.PubMedCrossRef Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell. 2008;132:422–33.PubMedCrossRef
30.
go back to reference Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature. 2008;451:796–801.PubMedCrossRef Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature. 2008;451:796–801.PubMedCrossRef
31.
go back to reference Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W. C HH, Mirny L, Spitz F: Two independent modes of chromatin organization revealed by cohesin removal. Nature. 2017;551:51–6.PubMedPubMedCentralCrossRef Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W. C HH, Mirny L, Spitz F: Two independent modes of chromatin organization revealed by cohesin removal. Nature. 2017;551:51–6.PubMedPubMedCentralCrossRef
32.
go back to reference Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J. 2008;27:654–66.PubMedPubMedCentralCrossRef Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J. 2008;27:654–66.PubMedPubMedCentralCrossRef
33.
go back to reference Kang H, Wiedmer A, Yuan Y, Robertson E, Lieberman PM. Coordination of KSHV latent and lytic gene control by CTCF-cohesin mediated chromosome conformation. PLoS Pathog. 2011;7:e1002140.PubMedPubMedCentralCrossRef Kang H, Wiedmer A, Yuan Y, Robertson E, Lieberman PM. Coordination of KSHV latent and lytic gene control by CTCF-cohesin mediated chromosome conformation. PLoS Pathog. 2011;7:e1002140.PubMedPubMedCentralCrossRef
34.
go back to reference Lang FC, Li X, Vladimirova O, Hu BX, Chen GJ, Xiao Y, Singh V, Lu DF, Li LH, Han HB, et al. CTCF interacts with the lytic HSV-1 genome to promote viral transcription. Sci Rep. 2017;7:1–15.CrossRef Lang FC, Li X, Vladimirova O, Hu BX, Chen GJ, Xiao Y, Singh V, Lu DF, Li LH, Han HB, et al. CTCF interacts with the lytic HSV-1 genome to promote viral transcription. Sci Rep. 2017;7:1–15.CrossRef
35.
go back to reference Lang FC, Li X, Vladmirova O, Li ZR, Chen GJ, Xiao Y, Li LH, Lu DF, Han HB, Zhou JM. Selective recruitment of host factors by HSV-1 replication centers. Dongwuxue Yanjiu. 2015;36:142–51.PubMedPubMedCentral Lang FC, Li X, Vladmirova O, Li ZR, Chen GJ, Xiao Y, Li LH, Lu DF, Han HB, Zhou JM. Selective recruitment of host factors by HSV-1 replication centers. Dongwuxue Yanjiu. 2015;36:142–51.PubMedPubMedCentral
36.
go back to reference Amelio AL, McAnany PK, Bloom DC. A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities. J Virol. 2006;80:2358–68.PubMedPubMedCentralCrossRef Amelio AL, McAnany PK, Bloom DC. A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities. J Virol. 2006;80:2358–68.PubMedPubMedCentralCrossRef
37.
go back to reference Washington SD, Musarrat F, Ertel MK, Backes GL, Neumann DM. CTCF binding sites in the herpes simplex virus 1 genome display site-specific CTCF occupation, protein recruitment, and insulator function. J Virol. 2018;92:e00156.PubMedPubMedCentralCrossRef Washington SD, Musarrat F, Ertel MK, Backes GL, Neumann DM. CTCF binding sites in the herpes simplex virus 1 genome display site-specific CTCF occupation, protein recruitment, and insulator function. J Virol. 2018;92:e00156.PubMedPubMedCentralCrossRef
38.
go back to reference Lee JS, Raja P, Pan DL, Pesola JM, Coen DM, Knipe DM. CCCTC-binding factor acts as a heterochromatin barrier on herpes simplex viral latent chromatin and contributes to poised latent infection. Mbio. 2018;9:e02372.PubMedPubMedCentralCrossRef Lee JS, Raja P, Pan DL, Pesola JM, Coen DM, Knipe DM. CCCTC-binding factor acts as a heterochromatin barrier on herpes simplex viral latent chromatin and contributes to poised latent infection. Mbio. 2018;9:e02372.PubMedPubMedCentralCrossRef
39.
go back to reference Dembowski JA, DeLuca NA. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes. PLoS Pathog. 2015;11:e1004939.PubMedPubMedCentralCrossRef Dembowski JA, DeLuca NA. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes. PLoS Pathog. 2015;11:e1004939.PubMedPubMedCentralCrossRef
41.
go back to reference Schaaf CA, Kwak H, Koenig A, Misulovin Z, Gohara DW, Watson A, Zhou YJ, Lis JT, Dorsett D. Genome-wide control of RNA polymerase II activity by Cohesin. PLoS Genet. 2013;9:e1003382.PubMedPubMedCentralCrossRef Schaaf CA, Kwak H, Koenig A, Misulovin Z, Gohara DW, Watson A, Zhou YJ, Lis JT, Dorsett D. Genome-wide control of RNA polymerase II activity by Cohesin. PLoS Genet. 2013;9:e1003382.PubMedPubMedCentralCrossRef
42.
go back to reference Wang S, Wang K, Lin R, Zheng C. Herpes simplex virus 1 serine/threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production. J Virol. 2013;87:12814–27.PubMedPubMedCentralCrossRef Wang S, Wang K, Lin R, Zheng C. Herpes simplex virus 1 serine/threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production. J Virol. 2013;87:12814–27.PubMedPubMedCentralCrossRef
43.
go back to reference Showalter SD, Zweig M, Hampar B. Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP 4. Infect Immun. 1981;34:684–92.PubMedPubMedCentralCrossRef Showalter SD, Zweig M, Hampar B. Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP 4. Infect Immun. 1981;34:684–92.PubMedPubMedCentralCrossRef
44.
go back to reference Everett RD, Sourvinos G, Leiper C, Clements JB, Orr A. Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes. J Virol. 2004;78:1903–17.PubMedPubMedCentralCrossRef Everett RD, Sourvinos G, Leiper C, Clements JB, Orr A. Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes. J Virol. 2004;78:1903–17.PubMedPubMedCentralCrossRef
45.
go back to reference Hartig SM. Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol. 2013;102:14–5.CrossRef Hartig SM. Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol. 2013;102:14–5.CrossRef
Metadata
Title
Cohesin promotes HSV-1 lytic transcription by facilitating the binding of RNA Pol II on viral genes
Authors
Xin Li
Yafen Yu
Fengchao Lang
Guijun Chen
Erlin Wang
Lihong Li
Zhuoran Li
Liping Yang
Xia Cao
Nigel W. Fraser
Jumin Zhou
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Herpes Virus
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01495-2

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue