Skip to main content
Top
Published in: Virology Journal 1/2020

01-12-2020 | Research

The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice

Authors: Zhihua Feng, Jianghua Chen, Wangwang Liang, Wenzhi Chen, Zhaolong Li, Qi Chen, Shaoli Cai

Published in: Virology Journal | Issue 1/2020

Login to get access

Abstract

Background

African swine fever (ASF) leads to high mortality in domestic pigs and wild boar and is caused by the African swine fever virus (ASFV). Currently, no vaccine is commercially available for prevention, and the epidemic is still spreading. Here, we constructed a recombinant pseudorabies virus (PRV) (PRV-ΔgE/ΔgI/ΔTK-(CD2v)) that expresses the CD2v protein of ASFV and evaluated its effectiveness and safety as a vaccine candidate in mice.

Methods

A homologous recombination fragment containing ASFV CD2v was synthesized and co-transfected into HEK 293 T cells, a knockout vector targeting the PRV TK gene. The transfected cells were infected with PRV-ΔgE/ΔgI, and the recombinant strain (PRV-ΔgE/ΔgI/ΔTK-(CD2v)) was obtained by plaque purification in Vero cells. The expression of ASFV CD2v in the recombinant virus was confirmed by sequencing, Western blotting, and immunofluorescence analysis, and the genetic stability was tested in Vero cells over 20 passages. The virulence, immunogenicity and protective ability of the recombinant virus were further tested in a mouse model.

Results

The PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain is stable in Vero cells, and the processing of CD2v does not depend on ASFV infection. The vaccination of PRV-ΔgE/ΔgI/ΔTK-(CD2v) causes neither pruritus, not a systemic infection and inflammation (with the high expression of interleukin-6 (IL6)). Besides, the virus vaccination can produce anti-CD2v specific antibody and activate a specific cellular immune response, and 100% protect mice from the challenge of the virulent strain (PRV-Fa). The detoxification occurs much earlier upon the recombinant virus vaccination and the amount of detoxification is much lower as well.

Conclusions

The PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain has strong immunogenicity, is safe and effective, and maybe a potential vaccine candidate for the prevention of ASF and Pseudorabies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhao D, Liu R, Zhang X, Li F, Wang J, Zhang J, Liu X, Wang L, Zhang J, Wu X. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg Microbes Infect. 2019;8:438–47. PubMedPubMedCentralCrossRef Zhao D, Liu R, Zhang X, Li F, Wang J, Zhang J, Liu X, Wang L, Zhang J, Wu X. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg Microbes Infect. 2019;8:438–47. PubMedPubMedCentralCrossRef
2.
go back to reference Wang N, Zhao D, Wang JB, Zhang Y, Wang M, Gao Y, Li F, Wang J, Bu Z, Rao Z. Architecture of African swine fever virus and implications for viral assembly. Science. 2019;366:640–4. PubMedCrossRef Wang N, Zhao D, Wang JB, Zhang Y, Wang M, Gao Y, Li F, Wang J, Bu Z, Rao Z. Architecture of African swine fever virus and implications for viral assembly. Science. 2019;366:640–4. PubMedCrossRef
3.
go back to reference Gallardo C, Nurmoja I, Soler A, Delicado V, Simon A, Martin E, Perez C, Nieto R, Arias M. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Vet Microbiol. 2018;219:70–9. CrossRef Gallardo C, Nurmoja I, Soler A, Delicado V, Simon A, Martin E, Perez C, Nieto R, Arias M. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Vet Microbiol. 2018;219:70–9. CrossRef
4.
go back to reference Ge S, Li J, Fan X, Liu F, Li L, Wang Q, Ren W, Bao J, Liu C, Wang H. Molecular characterization of African swine fever virus, China, 2018. Emerg Infect Dis. 2018;24:2131–3. PubMedPubMedCentralCrossRef Ge S, Li J, Fan X, Liu F, Li L, Wang Q, Ren W, Bao J, Liu C, Wang H. Molecular characterization of African swine fever virus, China, 2018. Emerg Infect Dis. 2018;24:2131–3. PubMedPubMedCentralCrossRef
5.
go back to reference Gaudreault NN, Richt JA. Subunit vaccine approaches for African swine fever virus. Vaccine. 2019;7:56. CrossRef Gaudreault NN, Richt JA. Subunit vaccine approaches for African swine fever virus. Vaccine. 2019;7:56. CrossRef
6.
go back to reference Dixon LK, Chapman DAG, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res. 2013;173:3–14. PubMedCrossRef Dixon LK, Chapman DAG, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res. 2013;173:3–14. PubMedCrossRef
7.
go back to reference De Villiers EP, Gallardo C, Arias M, Silva MD, Upton C, Martin R, Bishop RP. Phylogenomic analysis of 11 complete African swine fever virus genome sequences. Virology. 2010;400:128–36. PubMedCrossRef De Villiers EP, Gallardo C, Arias M, Silva MD, Upton C, Martin R, Bishop RP. Phylogenomic analysis of 11 complete African swine fever virus genome sequences. Virology. 2010;400:128–36. PubMedCrossRef
8.
go back to reference Portugal R, Coelho J, Hoper D, Little NS, Smithson C, Upton C, Martins C, Leitao A, Keil GM. Related strains of African swine fever virus with different virulence: genome comparison and analysis. J Gen Virol. 2015;96:408–19. PubMedCrossRef Portugal R, Coelho J, Hoper D, Little NS, Smithson C, Upton C, Martins C, Leitao A, Keil GM. Related strains of African swine fever virus with different virulence: genome comparison and analysis. J Gen Virol. 2015;96:408–19. PubMedCrossRef
9.
go back to reference Freitas FB, Frouco G, Martins C, Ferreira F. African swine fever virus encodes for an E2-ubiquitin conjugating enzyme that is mono- and di-ubiquitinated and required for viral replication cycle. Sci Rep . 2018;8:3471–3471. PubMedPubMedCentralCrossRef Freitas FB, Frouco G, Martins C, Ferreira F. African swine fever virus encodes for an E2-ubiquitin conjugating enzyme that is mono- and di-ubiquitinated and required for viral replication cycle. Sci Rep . 2018;8:3471–3471. PubMedPubMedCentralCrossRef
10.
go back to reference Malogolovkin A, Burmakina G, Titov IA, Sereda AD, Gogin A, Baryshnikova E, Kolbasov DV. Comparative analysis of African swine fever virus genotypes and serogroups. Emerg Infect Dis. 2015;21:312–5. PubMedPubMedCentralCrossRef Malogolovkin A, Burmakina G, Titov IA, Sereda AD, Gogin A, Baryshnikova E, Kolbasov DV. Comparative analysis of African swine fever virus genotypes and serogroups. Emerg Infect Dis. 2015;21:312–5. PubMedPubMedCentralCrossRef
11.
go back to reference Farlow J, Donduashvili M, Kokhreidze M, Kotorashvili A, Vepkhvadze N, Kotaria N, Gulbani A. Intra-epidemic genome variation in highly pathogenic African swine fever virus (ASFV) from the country of Georgia. Virol J. 2018;15:190. PubMedPubMedCentralCrossRef Farlow J, Donduashvili M, Kokhreidze M, Kotorashvili A, Vepkhvadze N, Kotaria N, Gulbani A. Intra-epidemic genome variation in highly pathogenic African swine fever virus (ASFV) from the country of Georgia. Virol J. 2018;15:190. PubMedPubMedCentralCrossRef
12.
go back to reference Kleiboeker SB, Scoles GA, Burrage TG, Sur J. African swine fever virus replication in the midgut epithelium is required for infection of ornithodorosticks. J Virol. 1999;73:8587–98. PubMedPubMedCentralCrossRef Kleiboeker SB, Scoles GA, Burrage TG, Sur J. African swine fever virus replication in the midgut epithelium is required for infection of ornithodorosticks. J Virol. 1999;73:8587–98. PubMedPubMedCentralCrossRef
13.
go back to reference Forman AJ, Wardley RC, Wilkinson PJ. The immunological response of pigs and Guinea pigs to antigens of African swine fever virus. Adv Virol. 1982;74:91–100. Forman AJ, Wardley RC, Wilkinson PJ. The immunological response of pigs and Guinea pigs to antigens of African swine fever virus. Adv Virol. 1982;74:91–100.
14.
go back to reference Blome S, Gabriel C, Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine. 2014;32:3879–82. PubMedCrossRef Blome S, Gabriel C, Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine. 2014;32:3879–82. PubMedCrossRef
15.
go back to reference Ruizgonzalvo F, Rodriguez F, Escribano JM. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African Swine fever virus. Virology. 1996;218:285–9. CrossRef Ruizgonzalvo F, Rodriguez F, Escribano JM. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African Swine fever virus. Virology. 1996;218:285–9. CrossRef
16.
go back to reference Gomezpuertas P, Rodriguez F, Oviedo JM, Brun A, Alonso C, Escribano JM. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology. 1998;243:461–71. CrossRef Gomezpuertas P, Rodriguez F, Oviedo JM, Brun A, Alonso C, Escribano JM. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology. 1998;243:461–71. CrossRef
17.
go back to reference Lokhandwala S, Waghela SD, Bray J, Martin CL, Sangewar N, Charendoff C, Shetti R, Ashley C, Chen C, Berghman L. Induction of robust immune responses in swine by using a cocktail of adenovirus-vectored African swine fever virus antigens. Clin Vaccine Immunol. 2016;23:888–900. PubMedPubMedCentralCrossRef Lokhandwala S, Waghela SD, Bray J, Martin CL, Sangewar N, Charendoff C, Shetti R, Ashley C, Chen C, Berghman L. Induction of robust immune responses in swine by using a cocktail of adenovirus-vectored African swine fever virus antigens. Clin Vaccine Immunol. 2016;23:888–900. PubMedPubMedCentralCrossRef
18.
go back to reference Loperamadrid J, Osorio JE, He Y, Xiang Z, Adams LG, Laughlin RC, Mwangi W, Subramanya S, Neilan JG, Brake D. Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine. Vet Immunol Immunopathol. 2017;185:20–33. CrossRef Loperamadrid J, Osorio JE, He Y, Xiang Z, Adams LG, Laughlin RC, Mwangi W, Subramanya S, Neilan JG, Brake D. Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine. Vet Immunol Immunopathol. 2017;185:20–33. CrossRef
19.
go back to reference Oura CAL, Denyer MS, Takamatsu H, Parkhouse RME. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol. 2005;86:2445–50. PubMedCrossRef Oura CAL, Denyer MS, Takamatsu H, Parkhouse RME. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol. 2005;86:2445–50. PubMedCrossRef
20.
go back to reference Argilaguet J, Perezmartin E, Nofrarias M, Gallardo C, Accensi F, Lacasta A, Mora M, Ballester M, Galindocardiel I, Lopezsoria S. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLOS ONE 2012, 7. Argilaguet J, Perezmartin E, Nofrarias M, Gallardo C, Accensi F, Lacasta A, Mora M, Ballester M, Galindocardiel I, Lopezsoria S. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLOS ONE 2012, 7.
21.
go back to reference Argilaguet J, Perezmartin E, Gallardo C, Salguero FJ, Borrego B, Lacasta A, Accensi F, Diaz I, Nofrarias M, Pujols J. Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine. 2011;29:5379–85. PubMedCrossRef Argilaguet J, Perezmartin E, Gallardo C, Salguero FJ, Borrego B, Lacasta A, Accensi F, Diaz I, Nofrarias M, Pujols J. Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine. 2011;29:5379–85. PubMedCrossRef
22.
go back to reference Lacasta A, Ballester M, Monteagudo PL, Rodriguez JM, Salas ML, Accensi F, Pinapedrero S, Bensaid A, Argilaguet J, Lopezsoria S. Expression library immunization can confer protection against lethal challenge with african swine fever virus. J Virol. 2014;88:13322–32. PubMedPubMedCentralCrossRef Lacasta A, Ballester M, Monteagudo PL, Rodriguez JM, Salas ML, Accensi F, Pinapedrero S, Bensaid A, Argilaguet J, Lopezsoria S. Expression library immunization can confer protection against lethal challenge with african swine fever virus. J Virol. 2014;88:13322–32. PubMedPubMedCentralCrossRef
23.
go back to reference King K, Chapman D, Argilaguet J, Fishbourne E, Hutet E, Cariolet R, Hutchings G, Oura CAL, Netherton CL, Moffat K. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine. 2011;29:4593–600. PubMedPubMedCentralCrossRef King K, Chapman D, Argilaguet J, Fishbourne E, Hutet E, Cariolet R, Hutchings G, Oura CAL, Netherton CL, Moffat K. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine. 2011;29:4593–600. PubMedPubMedCentralCrossRef
24.
go back to reference Boinas F, Hutchings GH, Dixon LK, Wilkinson PJ. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J Gen Virol. 2004;85:2177–87. PubMedCrossRef Boinas F, Hutchings GH, Dixon LK, Wilkinson PJ. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J Gen Virol. 2004;85:2177–87. PubMedCrossRef
25.
go back to reference Odonnell V, Holinka LG, Gladue DP, Sanford BJ, Krug PW, Lu X, Arzt J, Reese B, Carrillo C, Risatti GR. African swine fever virus georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J Virol. 2015;89:6048–56. CrossRef Odonnell V, Holinka LG, Gladue DP, Sanford BJ, Krug PW, Lu X, Arzt J, Reese B, Carrillo C, Risatti GR. African swine fever virus georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J Virol. 2015;89:6048–56. CrossRef
26.
go back to reference Gallardo C, Sanchez EG, Pereznunez D, Nogal M, De Leon P, Carrascosa AL, Nieto R, Soler A, Arias ML, Revilla Y. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine. 2018;36:2694–704. PubMedCrossRef Gallardo C, Sanchez EG, Pereznunez D, Nogal M, De Leon P, Carrascosa AL, Nieto R, Soler A, Arias ML, Revilla Y. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine. 2018;36:2694–704. PubMedCrossRef
27.
go back to reference Sanchez EG, Quintas A, Pereznunez D, Nogal M, Barroso S, Carrascosa AL, Revilla Y. African swine fever virus uses macropinocytosis to enter host cells. PLOS Pathogens 2012, 8. Sanchez EG, Quintas A, Pereznunez D, Nogal M, Barroso S, Carrascosa AL, Revilla Y. African swine fever virus uses macropinocytosis to enter host cells. PLOS Pathogens 2012, 8.
28.
go back to reference Sanchez EG, Pereznunez D, Revilla Y. Mechanisms of entry and endosomal pathway of African Swine fever virus. Vaccine. 2017;5:42. CrossRef Sanchez EG, Pereznunez D, Revilla Y. Mechanisms of entry and endosomal pathway of African Swine fever virus. Vaccine. 2017;5:42. CrossRef
29.
go back to reference Tong W, Li G, Liang C, Liu F, Tian Q, Cao Y, Li L, Zheng X, Zheng H, Tong G. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains. Antiviral Res. 2016;130:110–7. PubMedCrossRef Tong W, Li G, Liang C, Liu F, Tian Q, Cao Y, Li L, Zheng X, Zheng H, Tong G. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains. Antiviral Res. 2016;130:110–7. PubMedCrossRef
30.
go back to reference Ye C, Zhang Q, Tian Z, Zheng H, Zhao K, Liu F, Guo J, Tong W, Jiang C, Wang S. Genomic characterization of emergent pseudorabies virus in China reveals marked sequence divergence: Evidence for the existence of two major genotypes. Virology. 2015;483:32–43. PubMedCrossRef Ye C, Zhang Q, Tian Z, Zheng H, Zhao K, Liu F, Guo J, Tong W, Jiang C, Wang S. Genomic characterization of emergent pseudorabies virus in China reveals marked sequence divergence: Evidence for the existence of two major genotypes. Virology. 2015;483:32–43. PubMedCrossRef
31.
go back to reference Verpoest S, Cay B, Favoreel H, De Regge N. Age dependent differences in pseudorabies virus neuropathogenesis and associated cytokine expression. J Virol. 2017, 91. Verpoest S, Cay B, Favoreel H, De Regge N. Age dependent differences in pseudorabies virus neuropathogenesis and associated cytokine expression. J Virol. 2017, 91.
32.
go back to reference Laval K, Vernejoul JB, Van Cleemput J, Koyuncu OO, Enquist LW. Virulent pseudorabies virus infection induces a specific and lethal systemic inflammatory response in mice. J Virol. 2018, 92. Laval K, Vernejoul JB, Van Cleemput J, Koyuncu OO, Enquist LW. Virulent pseudorabies virus infection induces a specific and lethal systemic inflammatory response in mice. J Virol. 2018, 92.
33.
go back to reference An T, Peng J, Tian Z, Zhao H, Li N, Liu Y, Chen J, Leng C, Sun Y, Chang D. Pseudorabies virus variant in Bartha-K61-Vaccinated Pigs, China, 2012. Emerg Infect Dis. 2013;19:1749–55. PubMedPubMedCentralCrossRef An T, Peng J, Tian Z, Zhao H, Li N, Liu Y, Chen J, Leng C, Sun Y, Chang D. Pseudorabies virus variant in Bartha-K61-Vaccinated Pigs, China, 2012. Emerg Infect Dis. 2013;19:1749–55. PubMedPubMedCentralCrossRef
34.
go back to reference Zhu L, Yi Y, Xu Z, Cheng L, Tang S, Guo W. Growth, physicochemical properties, and morphogenesis of Chinese wild-type PRV Fa and its gene-deleted mutant strain PRV SA215. Virol J. 2011;8:272–272. PubMedPubMedCentralCrossRef Zhu L, Yi Y, Xu Z, Cheng L, Tang S, Guo W. Growth, physicochemical properties, and morphogenesis of Chinese wild-type PRV Fa and its gene-deleted mutant strain PRV SA215. Virol J. 2011;8:272–272. PubMedPubMedCentralCrossRef
35.
go back to reference Tang Y, Liu J, Wang T, An T, Sun M, Wang S, Fang Q, Hou L, Tian Z, Cai X. Live attenuated pseudorabies virus developed using the CRISPR/Cas9 system. Virus Res. 2016;225:33–9. PubMedCrossRef Tang Y, Liu J, Wang T, An T, Sun M, Wang S, Fang Q, Hou L, Tian Z, Cai X. Live attenuated pseudorabies virus developed using the CRISPR/Cas9 system. Virus Res. 2016;225:33–9. PubMedCrossRef
36.
37.
go back to reference Mettenleiter TC. Immunobiology of pseudorabies (Aujeszky’s disease). Vet Immunol Immunopathol. 1996;54:221–9. PubMedCrossRef Mettenleiter TC. Immunobiology of pseudorabies (Aujeszky’s disease). Vet Immunol Immunopathol. 1996;54:221–9. PubMedCrossRef
38.
go back to reference Van Oirschot JT, Kaashoek MJ, Rijsewijk FAM, Stegeman JA. The use of marker vaccines in eradication of herpesviruses. J Biotechnol. 1996;44:75–81. PubMedCrossRef Van Oirschot JT, Kaashoek MJ, Rijsewijk FAM, Stegeman JA. The use of marker vaccines in eradication of herpesviruses. J Biotechnol. 1996;44:75–81. PubMedCrossRef
39.
go back to reference Tong W, Zheng H, Li G, Gao F, Shan T, Zhou Y, Yu H, Jiang Y, Yu L, Li L. Recombinant pseudorabies virus expressing E2 of classical swine fever virus (CSFV) protects against both virulent pseudorabies virus and CSFV. Antiviral Res. 2020;173:104652. PubMedCrossRef Tong W, Zheng H, Li G, Gao F, Shan T, Zhou Y, Yu H, Jiang Y, Yu L, Li L. Recombinant pseudorabies virus expressing E2 of classical swine fever virus (CSFV) protects against both virulent pseudorabies virus and CSFV. Antiviral Res. 2020;173:104652. PubMedCrossRef
40.
go back to reference Chen Y, Guo W, Xu Z, Yan Q, Luo Y, Shi Q, Chen D, Zhu L, Wang X. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine. Virol J. 2011;8:307–307. PubMedPubMedCentralCrossRef Chen Y, Guo W, Xu Z, Yan Q, Luo Y, Shi Q, Chen D, Zhu L, Wang X. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine. Virol J. 2011;8:307–307. PubMedPubMedCentralCrossRef
41.
go back to reference Zhang K, Huang J, Wang Q, He Y, Xu Z, Xiang M, Wu B, Chen H. Recombinant pseudorabies virus expressing P12A and 3C of FMDV can partially protect piglets against FMDV challenge. Res Vet Sci. 2011;91:90–4. PubMedCrossRef Zhang K, Huang J, Wang Q, He Y, Xu Z, Xiang M, Wu B, Chen H. Recombinant pseudorabies virus expressing P12A and 3C of FMDV can partially protect piglets against FMDV challenge. Res Vet Sci. 2011;91:90–4. PubMedCrossRef
42.
43.
go back to reference Borca MV, Carrillo C, Zsak L, Laegreid WW, Kutish GF, Neilan JG, Burrage TG, Rock DL. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol. 1998;72:2881–9. PubMedPubMedCentralCrossRef Borca MV, Carrillo C, Zsak L, Laegreid WW, Kutish GF, Neilan JG, Burrage TG, Rock DL. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol. 1998;72:2881–9. PubMedPubMedCentralCrossRef
44.
go back to reference Argilaguet J, Perezmartin E, Lopez S, Goethe M, Escribano JM, Giesow K, Keil GM, Rodriguez F. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res. 2013;98:61–5. PubMedCrossRef Argilaguet J, Perezmartin E, Lopez S, Goethe M, Escribano JM, Giesow K, Keil GM, Rodriguez F. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res. 2013;98:61–5. PubMedCrossRef
45.
go back to reference Chen W, Zhao D, He X, Liu R, Wang Z, Zhang X, Li F, Shan D, Chen H, Zhang J. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci China Life Sci. 2020:1–12. Chen W, Zhao D, He X, Liu R, Wang Z, Zhang X, Li F, Shan D, Chen H, Zhang J. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci China Life Sci. 2020:1–12.
46.
go back to reference Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, Hayden DS, Fisher JW, Jiang M, Menegas W. Atypical behaviour and connectivity in SHANK3 -mutant macaques. Nature. 2019;570:326–31. PubMedCrossRef Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, Hayden DS, Fisher JW, Jiang M, Menegas W. Atypical behaviour and connectivity in SHANK3 -mutant macaques. Nature. 2019;570:326–31. PubMedCrossRef
47.
go back to reference Hubner A, Petersen B, Keil GM, Niemann H, Mettenleiter TC, Fuchs W. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L). Sci Rep. 2018;8:1449–1449. PubMedPubMedCentralCrossRef Hubner A, Petersen B, Keil GM, Niemann H, Mettenleiter TC, Fuchs W. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L). Sci Rep. 2018;8:1449–1449. PubMedPubMedCentralCrossRef
48.
go back to reference Cong L, Ran FA, Cox DD, Lin S, Barretto RPJ, Habib N, Hsu P, Wu X, Jiang W, Marraffini LA. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23. PubMedPubMedCentralCrossRef Cong L, Ran FA, Cox DD, Lin S, Barretto RPJ, Habib N, Hsu P, Wu X, Jiang W, Marraffini LA. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23. PubMedPubMedCentralCrossRef
49.
go back to reference Rowlands RJ, Duarte MM, Boinas F, Hutchings G, Dixon LK. The CD2v protein enhances African swine fever virus replication in the tick vector Ornithodoros erraticus. Virology. 2009;393:319–28. PubMedCrossRef Rowlands RJ, Duarte MM, Boinas F, Hutchings G, Dixon LK. The CD2v protein enhances African swine fever virus replication in the tick vector Ornithodoros erraticus. Virology. 2009;393:319–28. PubMedCrossRef
50.
go back to reference Hahn WC, Menu E, Bothwell ALM, Sims PJ, Bierer BE. Overlapping but nonidentical binding sites on CD2 for CD58 and a second ligand CD59. Science. 1992;256:1805–7. PubMedCrossRef Hahn WC, Menu E, Bothwell ALM, Sims PJ, Bierer BE. Overlapping but nonidentical binding sites on CD2 for CD58 and a second ligand CD59. Science. 1992;256:1805–7. PubMedCrossRef
51.
go back to reference Caruso A, Licenziati S, Corulli M, Canaris AD, De Francesco MA, Fiorentini S, Peroni L, Fallacara F, Dima F, Balsari A. Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. Cytometry. 1997;27:71–6. PubMedCrossRef Caruso A, Licenziati S, Corulli M, Canaris AD, De Francesco MA, Fiorentini S, Peroni L, Fallacara F, Dima F, Balsari A. Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. Cytometry. 1997;27:71–6. PubMedCrossRef
52.
go back to reference Bianchi ATJ, Moonenleusen HW, Van Milligen F, Savelkoul HFJ, Zwart RJ, Kimman TG. A mouse model to study immunity against pseudorabies virus infection: significance of CD4+ and CD8+ cells in protective immunity. Vaccine. 1998;16:1550–8. PubMedCrossRef Bianchi ATJ, Moonenleusen HW, Van Milligen F, Savelkoul HFJ, Zwart RJ, Kimman TG. A mouse model to study immunity against pseudorabies virus infection: significance of CD4+ and CD8+ cells in protective immunity. Vaccine. 1998;16:1550–8. PubMedCrossRef
53.
go back to reference Neilan JG, Zsak L, Lu Z, Burrage TG, Kutish GF, Rock DL. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology. 2004;319:337–42. PubMedCrossRef Neilan JG, Zsak L, Lu Z, Burrage TG, Kutish GF, Rock DL. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology. 2004;319:337–42. PubMedCrossRef
Metadata
Title
The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice
Authors
Zhihua Feng
Jianghua Chen
Wangwang Liang
Wenzhi Chen
Zhaolong Li
Qi Chen
Shaoli Cai
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2020
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01450-7

Other articles of this Issue 1/2020

Virology Journal 1/2020 Go to the issue