Skip to main content
Top
Published in: Virology Journal 1/2020

01-12-2020 | Influenza Virus | Research

Characterization of neuraminidase inhibitor-resistant influenza virus isolates from immunocompromised patients in the Republic of Korea

Authors: Heui Man Kim, Namjoo Lee, Mi-Seon Kim, Chun Kang, Yoon-Seok Chung

Published in: Virology Journal | Issue 1/2020

Login to get access

Abstract

Background

The emergence of influenza viruses resistant to anti-influenza drugs is a threat to global public health. The Korea Centers for Disease Control and Prevention operates the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS) to monitor epidemics of influenza and Severe Acute Respiratory Infection (SARI) to identify mutated influenza viruses affecting drug resistance, pathogenesis, and transmission.

Methods

Oropharyngeal swab samples were collected from KINRESS and SARI during the 2018–2019 season. The specimens confirmed influenza virus using real-time RT-PCR on inoculated MDCK cells. HA and NA sequences of the influenza viruses were analyzed for phylogeny and mutations. Neuraminidase inhibition and hemagglutination inhibition assays were utilized to characterize the isolates.

Results

Two A(H1N1)pdm09 isolates harboring an H275Y substitution in the neuraminidase sequence were detected in patients with acute hematologic cancer. They had prolonged respiratory symptoms, with the virus present in the respiratory tract despite oseltamivir and peramivir treatment. Through the neuraminidase inhibition assay, both viruses were found to be resistant to oseltamivir and peramivir, but not to zanamivir. Although hemagglutinin and neuraminidase phylogenetic analyses suggested that the 2 A(H1N1)pdm09 isolates were not identical, their antigenicity was similar to that of the 2018–19 influenza vaccine virus.

Conclusions

Our data indicate the utility of monitoring influenza-infected immunocompromised patients in general hospitals for the early detection of emerging neuraminidase inhibitor-resistant viruses and maintaining continuous laboratory surveillance of patients with influenza-like illness in sentinel clinics to monitor the spread of such new variants. Finally, characterization of the virus can inform the risk assessment for future epidemics and pandemics caused by drug-resistant influenza viruses.
Literature
1.
go back to reference Cooper NJ, Sutton AJ, Abrams KR, Wailoo A, Turner D, Nicholson KG. Effectiveness of neuraminidase inhibitors in treatment and prevention of influenza a and B: systematic review and meta-analyses of randomized controlled trials. BMJ. 2003;326:1235.CrossRef Cooper NJ, Sutton AJ, Abrams KR, Wailoo A, Turner D, Nicholson KG. Effectiveness of neuraminidase inhibitors in treatment and prevention of influenza a and B: systematic review and meta-analyses of randomized controlled trials. BMJ. 2003;326:1235.CrossRef
2.
go back to reference McKimm-Breschkin JL. Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza Other Respir Viruses. 2013;7:25–36.CrossRef McKimm-Breschkin JL. Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza Other Respir Viruses. 2013;7:25–36.CrossRef
4.
go back to reference Moasser E, Moasser A, Zaraket H. Incidence of antiviral drug resistance markers among human influenza a viruses in the eastern Mediterranean region, 2005-2016. Infect Genet Evol. 2019;67:60–6.CrossRef Moasser E, Moasser A, Zaraket H. Incidence of antiviral drug resistance markers among human influenza a viruses in the eastern Mediterranean region, 2005-2016. Infect Genet Evol. 2019;67:60–6.CrossRef
5.
go back to reference Redlberger-Fritz M, Aberle SW, Strassi R, Popow-Kraupp T. Rapid identification of neuraminidase inhibitor resistance mutations in seasonal influenza virus a (H1N1), a (H1N1) 2009, and a (H3N2) subtypes by melting point analysis. Eur J Clin Microbiol Infect Dis. 2012;31:1593–601.CrossRef Redlberger-Fritz M, Aberle SW, Strassi R, Popow-Kraupp T. Rapid identification of neuraminidase inhibitor resistance mutations in seasonal influenza virus a (H1N1), a (H1N1) 2009, and a (H3N2) subtypes by melting point analysis. Eur J Clin Microbiol Infect Dis. 2012;31:1593–601.CrossRef
8.
go back to reference Nguyen HT, Fry AM, Gubareva LV. Neuraminidase inhibitor resistance in influenza viruses and laboratory testing methods. Antivi Ther. 2012;17:159–73.CrossRef Nguyen HT, Fry AM, Gubareva LV. Neuraminidase inhibitor resistance in influenza viruses and laboratory testing methods. Antivi Ther. 2012;17:159–73.CrossRef
9.
go back to reference Weinstock DM, Gubareva LV, Zuccotti G. Prolonged shedding of multidrug-resistant influenza a virus in an immunocompromised patient. New Engl J Med. 2003;348:867–8.CrossRef Weinstock DM, Gubareva LV, Zuccotti G. Prolonged shedding of multidrug-resistant influenza a virus in an immunocompromised patient. New Engl J Med. 2003;348:867–8.CrossRef
10.
go back to reference Choi JH, Kim MS, Lee JY, Lee NJ, Kwon D, Kang MG, et al. Development and evaluation of multiplex real-time RT-PCR assays for seasonal, pandemic a/H1pdm09 and avian a/H5 influenza viruses detection. J Microbiol. 2013;51:252–7.CrossRef Choi JH, Kim MS, Lee JY, Lee NJ, Kwon D, Kang MG, et al. Development and evaluation of multiplex real-time RT-PCR assays for seasonal, pandemic a/H1pdm09 and avian a/H5 influenza viruses detection. J Microbiol. 2013;51:252–7.CrossRef
11.
go back to reference Liu SS, Jiao XY, Wang S, Su WZ, Jiang LZ, Zhang X, et al. Susceptibility of influenza a (H1N1)/pdm2009, seasonal a (H3N2) and B viruses to Oseltamivir in Guangdong, China between 2009 and 2014. Sci Rep. 2017;7:8488.CrossRef Liu SS, Jiao XY, Wang S, Su WZ, Jiang LZ, Zhang X, et al. Susceptibility of influenza a (H1N1)/pdm2009, seasonal a (H3N2) and B viruses to Oseltamivir in Guangdong, China between 2009 and 2014. Sci Rep. 2017;7:8488.CrossRef
12.
go back to reference Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza a viruses. Arch Virol. 2001;146:2275–89.CrossRef Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza a viruses. Arch Virol. 2001;146:2275–89.CrossRef
14.
go back to reference Lackenby A, Besselaar TG, Daniels RS, Fry A, Gregory V, Gubareva LV, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017. Antivir Res. 2018;157:38–46.CrossRef Lackenby A, Besselaar TG, Daniels RS, Fry A, Gregory V, Gubareva LV, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017. Antivir Res. 2018;157:38–46.CrossRef
15.
go back to reference WHO GISRS Antiviral Susceptibility Expert Working Group. Summary of neuraminidase amino acid substitutions associated with reduced inhibition by neuraminidase inhibitors (NAI). Last updated 21 October 2016: World Health Organization; 2016. WHO GISRS Antiviral Susceptibility Expert Working Group. Summary of neuraminidase amino acid substitutions associated with reduced inhibition by neuraminidase inhibitors (NAI). Last updated 21 October 2016: World Health Organization; 2016.
16.
go back to reference World Health Organization. Manual for the laboratory diagnosis and virological surveillance of influenza. 2011. ISBN 9789241518090. World Health Organization. Manual for the laboratory diagnosis and virological surveillance of influenza. 2011. ISBN 9789241518090.
17.
go back to reference Okomo-Adhiambo M, Sleeman K, Ballenger K, Nguyen HT, Mishin VP, Sheu TG, et al. Neuraminidase inhibitor susceptibility testing in human influenza viruses: a laboratory surveillance perspective. Viruses. 2010;2:2269–89.CrossRef Okomo-Adhiambo M, Sleeman K, Ballenger K, Nguyen HT, Mishin VP, Sheu TG, et al. Neuraminidase inhibitor susceptibility testing in human influenza viruses: a laboratory surveillance perspective. Viruses. 2010;2:2269–89.CrossRef
18.
go back to reference Memoli MJ, Athota R, Reed S, Czajkowski L, Bristol T, Proudfoot K, et al. The natural history of influenza infection in the severely immunocompromised vs nonimmunocompromised hosts. Clin Infect Dis. 2013;58:214–24.CrossRef Memoli MJ, Athota R, Reed S, Czajkowski L, Bristol T, Proudfoot K, et al. The natural history of influenza infection in the severely immunocompromised vs nonimmunocompromised hosts. Clin Infect Dis. 2013;58:214–24.CrossRef
19.
go back to reference Trebbien R, Pedersen SS, Vorborg K, Franck KT, Fischer TK. Development of oseltamivir and zanamivir resistance in influenza a (H1N1) pdm09 virus, Denmark, 2014. Euro Surveill. 2017;22:30445.CrossRef Trebbien R, Pedersen SS, Vorborg K, Franck KT, Fischer TK. Development of oseltamivir and zanamivir resistance in influenza a (H1N1) pdm09 virus, Denmark, 2014. Euro Surveill. 2017;22:30445.CrossRef
20.
go back to reference van der Vries E, Stittelaar KJ, van Amerongen G, Veldhuis Kroeze EJ, de Waal L, Fraaij PL, et al. Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised patients and ferrets. PLoS Pathog. 2013;9:e1003343.CrossRef van der Vries E, Stittelaar KJ, van Amerongen G, Veldhuis Kroeze EJ, de Waal L, Fraaij PL, et al. Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised patients and ferrets. PLoS Pathog. 2013;9:e1003343.CrossRef
21.
go back to reference de Vries RP, Zhu X, McBride R, Rigter A, Hanson A, Zhong G, et al. Hemagglutinin receptor specificity and structural analyses of respiratory droplet-transmissible H5N1 viruses. J Virol. 2014;88:768–73.CrossRef de Vries RP, Zhu X, McBride R, Rigter A, Hanson A, Zhong G, et al. Hemagglutinin receptor specificity and structural analyses of respiratory droplet-transmissible H5N1 viruses. J Virol. 2014;88:768–73.CrossRef
Metadata
Title
Characterization of neuraminidase inhibitor-resistant influenza virus isolates from immunocompromised patients in the Republic of Korea
Authors
Heui Man Kim
Namjoo Lee
Mi-Seon Kim
Chun Kang
Yoon-Seok Chung
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2020
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01375-1

Other articles of this Issue 1/2020

Virology Journal 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.