Skip to main content
Top
Published in: Virology Journal 1/2020

01-12-2020 | Dengue Virus | Review

Role of RNA-binding proteins during the late stages of Flavivirus replication cycle

Authors: Mayra Diosa-Toro, K. Reddisiva Prasanth, Shelton S. Bradrick, Mariano A. Garcia Blanco

Published in: Virology Journal | Issue 1/2020

Login to get access

Abstract

The genus Flavivirus encompasses several worldwide-distributed arthropod-borne viruses including, dengue virus, Japanese encephalitis virus, West Nile virus, yellow fever virus, Zika virus, and tick-borne encephalitis virus. Infection with these viruses manifest with symptoms ranging from febrile illness to life- threatening hypotensive shock and encephalitis. Therefore, flaviviruses pose a great risk to public health. Currently, preventive measures are falling short to control epidemics and there are no antivirals against any Flavivirus.
Flaviviruses carry a single stranded positive-sense RNA genome that plays multiple roles in infected cells: it is translated into viral proteins, used as template for genome replication, it is the precursor of the subgenomic flaviviral RNA and it is assembled into new virions. Furthermore, viral RNA genomes are also packaged into extracellular vesicles, e.g. exosomes, which represent an alternate mode of virus dissemination.
Because RNA molecules are at the center of Flavivirus replication cycle, viral and host RNA-binding proteins (RBPs) are critical determinants of infection. Numerous studies have revealed the function of RBPs during Flavivirus infection, particularly at the level of RNA translation and replication. These proteins, however, are also critical participants at the late stages of the replication cycle. Here we revise the function of host RBPs and the viral proteins capsid, NS2A and NS3, during the packaging of viral RNA and the assembly of new virus particles. Furthermore, we go through the evidence pointing towards the importance of host RBPs in mediating cellular RNA export with the idea that the biogenesis of exosomes harboring Flavivirus RNA would follow an analogous pathway.
Literature
2.
go back to reference Reed W, Carroll J, Agramonte A. The etiology of yellow fever: An additional note. J Am Med Assoc. 1901;XXXVI(7):431–40.CrossRef Reed W, Carroll J, Agramonte A. The etiology of yellow fever: An additional note. J Am Med Assoc. 1901;XXXVI(7):431–40.CrossRef
3.
go back to reference Reed W, Carroll J. Yellow fever : 100 years of discovery The etiology of yellow fever : an additional note. JAMA Class. 2008;36(8):1–3. Reed W, Carroll J. Yellow fever : 100 years of discovery The etiology of yellow fever : an additional note. JAMA Class. 2008;36(8):1–3.
4.
go back to reference Blitvich BJ, Firth AE. Insect-specific flaviviruses: A systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses. 2015;7:1927–59.PubMedPubMedCentralCrossRef Blitvich BJ, Firth AE. Insect-specific flaviviruses: A systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses. 2015;7:1927–59.PubMedPubMedCentralCrossRef
8.
go back to reference Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11(7):1–20.CrossRef Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11(7):1–20.CrossRef
10.
go back to reference Barrett AD, Teuwen DE. Yellow fever vaccine - how does it work and why do rare cases of serious adverse events take place? Curr Opin Immunol. 2009;21(3):308–13.PubMedCrossRef Barrett AD, Teuwen DE. Yellow fever vaccine - how does it work and why do rare cases of serious adverse events take place? Curr Opin Immunol. 2009;21(3):308–13.PubMedCrossRef
12.
go back to reference Heinz FX, Holzmann H, Essl A, Kundi M. Field effectiveness of vaccination against tick-borne encephalitis. Vaccine. 2007;25(43):7559–67.PubMedCrossRef Heinz FX, Holzmann H, Essl A, Kundi M. Field effectiveness of vaccination against tick-borne encephalitis. Vaccine. 2007;25(43):7559–67.PubMedCrossRef
14.
go back to reference Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N Engl J Med. 2018;379(4):327–40.PubMedCrossRef Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N Engl J Med. 2018;379(4):327–40.PubMedCrossRef
18.
go back to reference Li L, Lok S-M, Yu I, Zhang Y, Kuhn RJ, Chen J, et al. The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation. Science (80- ). 2008;319(March):1830–5.CrossRef Li L, Lok S-M, Yu I, Zhang Y, Kuhn RJ, Chen J, et al. The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation. Science (80- ). 2008;319(March):1830–5.CrossRef
19.
go back to reference Yu I, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, et al. Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation. Science (80- ). 2008;319(5871):1834–7.CrossRef Yu I, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, et al. Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation. Science (80- ). 2008;319(5871):1834–7.CrossRef
20.
go back to reference Smith TJ, Brandt WE, Swanson JL, McCown JM, Buescher EL. Physical and biological properties of dengue-2 virus and associated antigens. J Virol. 1970;5(4):524–32.PubMedPubMedCentralCrossRef Smith TJ, Brandt WE, Swanson JL, McCown JM, Buescher EL. Physical and biological properties of dengue-2 virus and associated antigens. J Virol. 1970;5(4):524–32.PubMedPubMedCentralCrossRef
22.
go back to reference Brinton MA, Fernandez AV, Dispoto JH. The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology. 1986;153(1):113–21.PubMedCrossRef Brinton MA, Fernandez AV, Dispoto JH. The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology. 1986;153(1):113–21.PubMedCrossRef
23.
go back to reference Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. A 5 RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 2006;20:2238–49.PubMedPubMedCentralCrossRef Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. A 5 RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 2006;20:2238–49.PubMedPubMedCentralCrossRef
28.
go back to reference Hahn CS, Hahn YS, Rice CM, Lee E, Dalgarno L, Strauss EG, et al. Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol. 1987;198(1):33–41.PubMedCrossRef Hahn CS, Hahn YS, Rice CM, Lee E, Dalgarno L, Strauss EG, et al. Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol. 1987;198(1):33–41.PubMedCrossRef
30.
go back to reference Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J, Nix JC, et al. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science (80- ). 2014;344(6181):307–10.CrossRef Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J, Nix JC, et al. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science (80- ). 2014;344(6181):307–10.CrossRef
31.
go back to reference Funk A, Truong K, Nagasaki T, Torres S, Floden N, Balmori Melian E, et al. RNA structures required for production of subgenomic flavivirus RNA. J Virol. 2010;84(21):11407–17.PubMedPubMedCentralCrossRef Funk A, Truong K, Nagasaki T, Torres S, Floden N, Balmori Melian E, et al. RNA structures required for production of subgenomic flavivirus RNA. J Virol. 2010;84(21):11407–17.PubMedPubMedCentralCrossRef
32.
go back to reference Kieft JS, Rabe JL, Chapman EG. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: conservation, folding, and host adaptation. RNA Biol. 2015;12(11):1117–69.CrossRef Kieft JS, Rabe JL, Chapman EG. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: conservation, folding, and host adaptation. RNA Biol. 2015;12(11):1117–69.CrossRef
34.
go back to reference Slonchak A, Khromykh AA. Subgenomic flaviviral RNAs: what do we know after the first decade of research. Antivir Res. 2018;159(August):13–25.PubMedCrossRef Slonchak A, Khromykh AA. Subgenomic flaviviral RNAs: what do we know after the first decade of research. Antivir Res. 2018;159(August):13–25.PubMedCrossRef
37.
go back to reference Pompon J, Manuel M, Ng GK, Wong B, Shan C, Manokaran G, et al. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathog. 2017;13(7):e1006535.PubMedPubMedCentralCrossRef Pompon J, Manuel M, Ng GK, Wong B, Shan C, Manokaran G, et al. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathog. 2017;13(7):e1006535.PubMedPubMedCentralCrossRef
38.
go back to reference Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J, Ong EZ, et al. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science (80- ). 2015;350(6257):217–21.CrossRef Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J, Ong EZ, et al. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science (80- ). 2015;350(6257):217–21.CrossRef
39.
go back to reference Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus receptors: diversity, identity, and Cell entry. Front Immunol. 2018;9(September):2180.PubMedPubMedCentralCrossRef Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus receptors: diversity, identity, and Cell entry. Front Immunol. 2018;9(September):2180.PubMedPubMedCentralCrossRef
40.
go back to reference Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho MARB, Da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev. 2015;39(2):155–70.PubMedCrossRef Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho MARB, Da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev. 2015;39(2):155–70.PubMedCrossRef
41.
go back to reference Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, Lew E, et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe. 2012;12(4):544–57.PubMedPubMedCentralCrossRef Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, Lew E, et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe. 2012;12(4):544–57.PubMedPubMedCentralCrossRef
42.
go back to reference Halstead SB. Antibody-enhanced dengue virus infection in primate leukocytes. Nature. 1977;265:739–41.PubMedCrossRef Halstead SB. Antibody-enhanced dengue virus infection in primate leukocytes. Nature. 1977;265:739–41.PubMedCrossRef
44.
go back to reference van der Schaar HM, Rust MJ, Waarts B-L, van der Ende-Metselaar H, Kuhn RJ, Wilschut J, et al. Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol. 2007;81(21):12019–28.PubMedPubMedCentralCrossRef van der Schaar HM, Rust MJ, Waarts B-L, van der Ende-Metselaar H, Kuhn RJ, Wilschut J, et al. Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol. 2007;81(21):12019–28.PubMedPubMedCentralCrossRef
45.
go back to reference Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog. 2010;6(10):e1001131.PubMedPubMedCentralCrossRef Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog. 2010;6(10):e1001131.PubMedPubMedCentralCrossRef
46.
go back to reference Byk LA, Iglesias NG, De Maio FA, Gebhard LG, Rossi M, Gamarnik AV. Dengue virus genome Uncoating requires Ubiquitination. MBio. 2016;7(3):1–10.CrossRef Byk LA, Iglesias NG, De Maio FA, Gebhard LG, Rossi M, Gamarnik AV. Dengue virus genome Uncoating requires Ubiquitination. MBio. 2016;7(3):1–10.CrossRef
47.
go back to reference Garcia-Blanco MA, Vasudevan SG, Bradrick SS, Nicchitta C. Flavivirus RNA transactions from viral entry to genome replication. Antiviral Res. 2016;134:244–9 Elsevier B.V.PubMedCrossRef Garcia-Blanco MA, Vasudevan SG, Bradrick SS, Nicchitta C. Flavivirus RNA transactions from viral entry to genome replication. Antiviral Res. 2016;134:244–9 Elsevier B.V.PubMedCrossRef
50.
go back to reference Edgil D, Polacek C, Harris E. Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. Society. 2006;80(6):2976–86. Edgil D, Polacek C, Harris E. Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. Society. 2006;80(6):2976–86.
51.
go back to reference Villas-Bôas CSA, Conceição TM, Ramírez J, Santoro ABM, Da Poian AT, Montero-Lomelí M. Dengue virus-induced regulation of the host cell translational machinery. Brazilian J Med Biol Res. 2009;42(11):1020–6.CrossRef Villas-Bôas CSA, Conceição TM, Ramírez J, Santoro ABM, Da Poian AT, Montero-Lomelí M. Dengue virus-induced regulation of the host cell translational machinery. Brazilian J Med Biol Res. 2009;42(11):1020–6.CrossRef
54.
go back to reference Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression and replication. Rev Microbiol. 1990;44:649–88.CrossRef Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression and replication. Rev Microbiol. 1990;44:649–88.CrossRef
57.
go back to reference Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, et al. Biochemistry and molecular biology of Flaviviruses. Chem Rev. 2018;118(8):4448–82.PubMedPubMedCentralCrossRef Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, et al. Biochemistry and molecular biology of Flaviviruses. Chem Rev. 2018;118(8):4448–82.PubMedPubMedCentralCrossRef
59.
go back to reference Stadler K, Allison SL, Schalich J, Heinz FX. Proteolytic activation of tick-borne encephalitis virus by furin. J Virol. 1997;71(11):8475–81 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9343204%0A. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC192310.PubMedPubMedCentralCrossRef Stadler K, Allison SL, Schalich J, Heinz FX. Proteolytic activation of tick-borne encephalitis virus by furin. J Virol. 1997;71(11):8475–81 Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​9343204%0A. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC192310.PubMedPubMedCentralCrossRef
60.
go back to reference Wengler G, Wengler G. Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol. 1989;63(6):2521–6.PubMedPubMedCentralCrossRef Wengler G, Wengler G. Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol. 1989;63(6):2521–6.PubMedPubMedCentralCrossRef
62.
go back to reference Stockley PG, Twarock R, Bakker SE, Barker AM, Borodavka A, Dykeman E, et al. Packaging signals in single-stranded RNA viruses: Nature’s alternative to a purely electrostatic assembly mechanism. J Biol Phys. 2013;39(2):277–87.PubMedPubMedCentralCrossRef Stockley PG, Twarock R, Bakker SE, Barker AM, Borodavka A, Dykeman E, et al. Packaging signals in single-stranded RNA viruses: Nature’s alternative to a purely electrostatic assembly mechanism. J Biol Phys. 2013;39(2):277–87.PubMedPubMedCentralCrossRef
65.
go back to reference Samsa MM, Mondotte JA, Caramelo JJ, Gamarnik AV. Uncoupling cis-acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid Protein in virus particle formation. J Virol. 2012;86(2):1046–58.PubMedPubMedCentralCrossRef Samsa MM, Mondotte JA, Caramelo JJ, Gamarnik AV. Uncoupling cis-acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid Protein in virus particle formation. J Virol. 2012;86(2):1046–58.PubMedPubMedCentralCrossRef
66.
go back to reference Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol. 2003;10(11):907–12.PubMedPubMedCentralCrossRef Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol. 2003;10(11):907–12.PubMedPubMedCentralCrossRef
67.
go back to reference Zhang Y, Kostyuchenko VA, Rossmann MG. Structural analysis of viral nucleocapsids by subtraction of partial projections. J Struct Biol. 2007;157(2):356–64.PubMedCrossRef Zhang Y, Kostyuchenko VA, Rossmann MG. Structural analysis of viral nucleocapsids by subtraction of partial projections. J Struct Biol. 2007;157(2):356–64.PubMedCrossRef
68.
go back to reference Khromykh AA, Varnavski AN, Sedlak PL, Westaway EG. Coupling between replication and packaging of Flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol. 2001;75(10):4633–40.PubMedPubMedCentralCrossRef Khromykh AA, Varnavski AN, Sedlak PL, Westaway EG. Coupling between replication and packaging of Flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol. 2001;75(10):4633–40.PubMedPubMedCentralCrossRef
70.
go back to reference Li M, Johnson JR, Truong B, Kim G, Weinbren N, Dittmar M, et al. Identification of antiviral roles for the exon–junction complex and nonsense-mediated decay in flaviviral infection. Nat Microbiol. 2019;4(6):985–95.PubMedPubMedCentralCrossRef Li M, Johnson JR, Truong B, Kim G, Weinbren N, Dittmar M, et al. Identification of antiviral roles for the exon–junction complex and nonsense-mediated decay in flaviviral infection. Nat Microbiol. 2019;4(6):985–95.PubMedPubMedCentralCrossRef
71.
go back to reference Katoh H, Okamoto T, Fukuhara T, Kambara H, Morita E, Mori Y, et al. Japanese encephalitis virus Core Protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation. J Virol. 2012;87(1):489–502.PubMedCrossRef Katoh H, Okamoto T, Fukuhara T, Kambara H, Morita E, Mori Y, et al. Japanese encephalitis virus Core Protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation. J Virol. 2012;87(1):489–502.PubMedCrossRef
72.
go back to reference Tsuda Y, Mori Y, Abe T, Yamashita T, Okamoto T, Ichimura T, et al. Nucleolar protein B23 interacts with Japanese encephalitis virus core protein and participates in viral replication. Microbiol Immunol. 2006;50(3):225–34.PubMedCrossRef Tsuda Y, Mori Y, Abe T, Yamashita T, Okamoto T, Ichimura T, et al. Nucleolar protein B23 interacts with Japanese encephalitis virus core protein and participates in viral replication. Microbiol Immunol. 2006;50(3):225–34.PubMedCrossRef
73.
go back to reference Chang CJ, Luh HW, Wang SH, Lin HJ, Lee SC, Hu ST. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol. 2001;20(9):569–77.PubMedCrossRef Chang CJ, Luh HW, Wang SH, Lin HJ, Lee SC, Hu ST. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol. 2001;20(9):569–77.PubMedCrossRef
75.
go back to reference Xu Z, Anderson R, Hobman TC. The capsid-binding Nucleolar helicase DDX56 is important for infectivity of West Nile virus. J Virol. 2011;85(11):5571–80.PubMedPubMedCentralCrossRef Xu Z, Anderson R, Hobman TC. The capsid-binding Nucleolar helicase DDX56 is important for infectivity of West Nile virus. J Virol. 2011;85(11):5571–80.PubMedPubMedCentralCrossRef
78.
go back to reference Balinsky CA, Schmeisser H, Ganesan S, Singh K, Pierson TC, Zoon KC. Nucleolin interacts with the dengue virus capsid Protein and plays a role in formation of infectious virus particles. J Virol. 2013;87(24):13094–106.PubMedPubMedCentralCrossRef Balinsky CA, Schmeisser H, Ganesan S, Singh K, Pierson TC, Zoon KC. Nucleolin interacts with the dengue virus capsid Protein and plays a role in formation of infectious virus particles. J Virol. 2013;87(24):13094–106.PubMedPubMedCentralCrossRef
79.
go back to reference Murray CL, Jones CT, Rice CM. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol. 2008;6(9):699–708.PubMedPubMedCentralCrossRef Murray CL, Jones CT, Rice CM. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol. 2008;6(9):699–708.PubMedPubMedCentralCrossRef
80.
go back to reference Preugschat F, Yao CW, Strauss JH. In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. J Virol. 1990;64(9):4364–74.PubMedPubMedCentralCrossRef Preugschat F, Yao CW, Strauss JH. In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. J Virol. 1990;64(9):4364–74.PubMedPubMedCentralCrossRef
82.
go back to reference Kummerer BM, Rice CM. Mutations in the yellow fever virus nonstructural Protein NS2A selectively block production of infectious particles. J Virol. 2002;76(10):4773–84.PubMedPubMedCentralCrossRef Kummerer BM, Rice CM. Mutations in the yellow fever virus nonstructural Protein NS2A selectively block production of infectious particles. J Virol. 2002;76(10):4773–84.PubMedPubMedCentralCrossRef
83.
go back to reference Voßmann S, Wieseler J, Kerber R, Kümmerer BM. A basic cluster in the N terminus of yellow fever virus NS2A contributes to infectious particle production. J Virol. 2015;89(9):4951–65.PubMedPubMedCentralCrossRef Voßmann S, Wieseler J, Kerber R, Kümmerer BM. A basic cluster in the N terminus of yellow fever virus NS2A contributes to infectious particle production. J Virol. 2015;89(9):4951–65.PubMedPubMedCentralCrossRef
84.
go back to reference Liu WJ, Chen HB, Khromykh AA. Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J Virol. 2003;77(14):7804–13.PubMedPubMedCentralCrossRef Liu WJ, Chen HB, Khromykh AA. Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J Virol. 2003;77(14):7804–13.PubMedPubMedCentralCrossRef
85.
go back to reference Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA. Role of nonstructural Protein NS2A in Flavivirus assembly. J Virol. 2008;82(10):4731–41.PubMedPubMedCentralCrossRef Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA. Role of nonstructural Protein NS2A in Flavivirus assembly. J Virol. 2008;82(10):4731–41.PubMedPubMedCentralCrossRef
86.
go back to reference Xie X, Zou J, Puttikhunt C, Yuan Z, Shi P-Y. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and Virion assembly. J Virol. 2015;89(2):1298–313.PubMedCrossRef Xie X, Zou J, Puttikhunt C, Yuan Z, Shi P-Y. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and Virion assembly. J Virol. 2015;89(2):1298–313.PubMedCrossRef
88.
go back to reference Zhang X, Xie X, Xia H, Zou J, Huang L, Popov VL, et al. Zika virus NS2A-mediated Virion assembly. MBio. 2019;10(5):1–21. Zhang X, Xie X, Xia H, Zou J, Huang L, Popov VL, et al. Zika virus NS2A-mediated Virion assembly. MBio. 2019;10(5):1–21.
89.
go back to reference Shrivastava G, García-Cordero J, León-Juárez M, Oza G, Tapia-Ramírez J, Villegas-Sepulveda N, et al. NS2A comprises a putative viroporin of dengue virus 2. Virulence. 2017;8(7):1450–6.PubMedPubMedCentralCrossRef Shrivastava G, García-Cordero J, León-Juárez M, Oza G, Tapia-Ramírez J, Villegas-Sepulveda N, et al. NS2A comprises a putative viroporin of dengue virus 2. Virulence. 2017;8(7):1450–6.PubMedPubMedCentralCrossRef
91.
go back to reference Chang YS, Liao CL, Tsao CH, Chen MC, Liu CI, Chen LK, et al. Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. J Virol. 1999;73(8):6257–64 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10400716%0A. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC112703.PubMedPubMedCentralCrossRef Chang YS, Liao CL, Tsao CH, Chen MC, Liu CI, Chen LK, et al. Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. J Virol. 1999;73(8):6257–64 Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10400716%0A. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC112703.PubMedPubMedCentralCrossRef
92.
go back to reference Urcuqui-inchima S, Patin C, Dı FJ. Recent developments in understanding dengue virus replication. Adv Virus Res. 2010;77(10):1–39.PubMed Urcuqui-inchima S, Patin C, Dı FJ. Recent developments in understanding dengue virus replication. Adv Virus Res. 2010;77(10):1–39.PubMed
97.
go back to reference Pijlman GP, Kondratieva N, Khromykh AA. Translation of the Flavivirus Kunjin NS3 Gene in cis but not its RNA sequence or secondary Structure is essential for efficient RNA packaging. J Virol. 2006;80(22):11255–64.PubMedPubMedCentralCrossRef Pijlman GP, Kondratieva N, Khromykh AA. Translation of the Flavivirus Kunjin NS3 Gene in cis but not its RNA sequence or secondary Structure is essential for efficient RNA packaging. J Virol. 2006;80(22):11255–64.PubMedPubMedCentralCrossRef
98.
go back to reference Patkar CG, Kuhn RJ. Yellow fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions. J Virol. 2008;82(7):3342–52.PubMedPubMedCentralCrossRef Patkar CG, Kuhn RJ. Yellow fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions. J Virol. 2008;82(7):3342–52.PubMedPubMedCentralCrossRef
99.
go back to reference Swarbrick CMD, Basavannacharya C, Chan KWK, Chan SA, Singh D, Wei N, et al. NS3 helicase from dengue virus specifically recognizes viral RNA sequence to ensure optimal replication. Nucleic Acids Res. 2017;45(22):12904–20.PubMedPubMedCentralCrossRef Swarbrick CMD, Basavannacharya C, Chan KWK, Chan SA, Singh D, Wei N, et al. NS3 helicase from dengue virus specifically recognizes viral RNA sequence to ensure optimal replication. Nucleic Acids Res. 2017;45(22):12904–20.PubMedPubMedCentralCrossRef
100.
go back to reference Le Breton M, Meyniel-Schicklin L, Deloire A, Coutard B, Canard B, De Lamballerie X, et al. Flavivirus NS3 and NS5 proteins interaction network: A high-throughput yeast two-hybrid screen. BMC Microbiol. 2011;11:234.PubMedPubMedCentralCrossRef Le Breton M, Meyniel-Schicklin L, Deloire A, Coutard B, Canard B, De Lamballerie X, et al. Flavivirus NS3 and NS5 proteins interaction network: A high-throughput yeast two-hybrid screen. BMC Microbiol. 2011;11:234.PubMedPubMedCentralCrossRef
102.
go back to reference Thepparit C, Khongwichit S, Ketsuwan K, Libsittikul S, Auewarakul P, Smith DR. Dengue virus requires apoptosis linked gene-2-interacting protein X (ALIX) for viral propagation. Virus Res. 2019;261:65–71.PubMedCrossRef Thepparit C, Khongwichit S, Ketsuwan K, Libsittikul S, Auewarakul P, Smith DR. Dengue virus requires apoptosis linked gene-2-interacting protein X (ALIX) for viral propagation. Virus Res. 2019;261:65–71.PubMedCrossRef
104.
go back to reference Tabata K, Arimoto M, Arakawa M, Nara A, Saito K, Omori H, et al. Unique requirement for ESCRT factors in Flavivirus particle formation on the endoplasmic reticulum. Cell Rep. 2016;16(9):2339–47.PubMedCrossRef Tabata K, Arimoto M, Arakawa M, Nara A, Saito K, Omori H, et al. Unique requirement for ESCRT factors in Flavivirus particle formation on the endoplasmic reticulum. Cell Rep. 2016;16(9):2339–47.PubMedCrossRef
105.
go back to reference Campos RK, Garcia-Blanco MA, Bradrick SS. Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections. In: Tripp R, Tompkins S. (eds) Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Curr Top Microbiol Immunol vol 419. Cham: Springer; 2017. Campos RK, Garcia-Blanco MA, Bradrick SS. Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections. In: Tripp R, Tompkins S. (eds) Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Curr Top Microbiol Immunol vol 419. Cham: Springer; 2017.
107.
go back to reference Paranjape SM, Harris E. Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects. J Biol Chem. 2007;282(42):30497–508.PubMedCrossRef Paranjape SM, Harris E. Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects. J Biol Chem. 2007;282(42):30497–508.PubMedCrossRef
108.
go back to reference Phillips SL, Soderblom EJ, Bradrick SS, Garcia-Blanco MA. Identification of proteins bound to dengue viral RNA in vivo reveals new host proteins important for virus replication. MBio. 2016;7(1):e01865–15.PubMedPubMedCentralCrossRef Phillips SL, Soderblom EJ, Bradrick SS, Garcia-Blanco MA. Identification of proteins bound to dengue viral RNA in vivo reveals new host proteins important for virus replication. MBio. 2016;7(1):e01865–15.PubMedPubMedCentralCrossRef
111.
go back to reference Hsu AYH, Wu SR, Tsai JJ, Chen PL, Chen YP, Chen TY, et al. Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance. Sci Rep. 2015;11:5. Hsu AYH, Wu SR, Tsai JJ, Chen PL, Chen YP, Chen TY, et al. Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance. Sci Rep. 2015;11:5.
112.
go back to reference Vora A, Zhou W, Londono-Renteria B, Woodson M, Sherman MB, Colpitts TM, et al. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):E6604–13.PubMedPubMedCentralCrossRef Vora A, Zhou W, Londono-Renteria B, Woodson M, Sherman MB, Colpitts TM, et al. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):E6604–13.PubMedPubMedCentralCrossRef
113.
go back to reference Martins S d T, Kuczera D, Lötvall J, Bordignon J, Alves LR. Characterization of dendritic cell-derived extracellular vesicles during dengue virus infection. Front Microbiol. 2018;9:1792.PubMedPubMedCentralCrossRef Martins S d T, Kuczera D, Lötvall J, Bordignon J, Alves LR. Characterization of dendritic cell-derived extracellular vesicles during dengue virus infection. Front Microbiol. 2018;9:1792.PubMedPubMedCentralCrossRef
114.
go back to reference Reyes-Ruiz JM, Osuna-Ramos JF, De Jesús-González LA, Hurtado-Monzón AM, Farfan-Morales CN, Cervantes-Salazar M, et al. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res. 2019;266:1–14.PubMedCrossRef Reyes-Ruiz JM, Osuna-Ramos JF, De Jesús-González LA, Hurtado-Monzón AM, Farfan-Morales CN, Cervantes-Salazar M, et al. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res. 2019;266:1–14.PubMedCrossRef
115.
go back to reference Zhou W, Woodson M, Sherman MB, Neelakanta G, Sultana H. Exosomes mediate Zika virus transmission through SMPD3 neutral Sphingomyelinase in cortical neurons. Emerg Microbes Infect. 2019;8(1):307–26.PubMedPubMedCentralCrossRef Zhou W, Woodson M, Sherman MB, Neelakanta G, Sultana H. Exosomes mediate Zika virus transmission through SMPD3 neutral Sphingomyelinase in cortical neurons. Emerg Microbes Infect. 2019;8(1):307–26.PubMedPubMedCentralCrossRef
116.
go back to reference Zhou W, Woodson M, Neupane B, Bai F, Sherman MB, Choi KH, et al. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 2018;14(1):1–36.CrossRef Zhou W, Woodson M, Neupane B, Bai F, Sherman MB, Choi KH, et al. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 2018;14(1):1–36.CrossRef
117.
go back to reference Patton JG, Franklin JL, Weaver AM, Vickers K, Zhang B, Coffey RJ, et al. Biogenesis, delivery, and function of extracellular RNA. J Extracell Vesicles. 2015;4(1):1–9.CrossRef Patton JG, Franklin JL, Weaver AM, Vickers K, Zhang B, Coffey RJ, et al. Biogenesis, delivery, and function of extracellular RNA. J Extracell Vesicles. 2015;4(1):1–9.CrossRef
119.
go back to reference Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. 2017;8(4):1–20.CrossRef Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. 2017;8(4):1–20.CrossRef
120.
go back to reference Ressel S, Rosca A, Gordon K, Buck AH. Extracellular RNA in viral–host interactions: thinking outside the cell. Wiley Interdiscip Rev. 2019;10:e1535 RNA. Blackwell Publishing Ltd.CrossRef Ressel S, Rosca A, Gordon K, Buck AH. Extracellular RNA in viral–host interactions: thinking outside the cell. Wiley Interdiscip Rev. 2019;10:e1535 RNA. Blackwell Publishing Ltd.CrossRef
121.
go back to reference Février B, Raposo G. Exosomes: Endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004;16(4):415–21.PubMedCrossRef Février B, Raposo G. Exosomes: Endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004;16(4):415–21.PubMedCrossRef
122.
go back to reference Khatua AK, Taylor HE, Hildreth JEK, Popik W. Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J Virol. 2009;83(2):512–21.PubMedCrossRef Khatua AK, Taylor HE, Hildreth JEK, Popik W. Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J Virol. 2009;83(2):512–21.PubMedCrossRef
123.
go back to reference Kalamvoki M, Du T, Roizman B. Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A. 2014;111(46):E4991–6.PubMedPubMedCentralCrossRef Kalamvoki M, Du T, Roizman B. Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A. 2014;111(46):E4991–6.PubMedPubMedCentralCrossRef
125.
126.
go back to reference Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics Bioinforma. 2015;13(1):17–24.CrossRef Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics Bioinforma. 2015;13(1):17–24.CrossRef
129.
go back to reference Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.PubMedCrossRef Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.PubMedCrossRef
130.
go back to reference Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol Direct. 2013;8(1):1–8.CrossRef Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol Direct. 2013;8(1):1–8.CrossRef
131.
go back to reference Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012;40(21):10937–49.PubMedPubMedCentralCrossRef Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012;40(21):10937–49.PubMedPubMedCentralCrossRef
132.
go back to reference Shurtleff MJ, Yao J, Qin Y, Nottingham RM, Temoche-Diaz MM, Schekman R, et al. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):E8987–95.PubMedPubMedCentralCrossRef Shurtleff MJ, Yao J, Qin Y, Nottingham RM, Temoche-Diaz MM, Schekman R, et al. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):E8987–95.PubMedPubMedCentralCrossRef
133.
go back to reference Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:1–10.CrossRef Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:1–10.CrossRef
138.
go back to reference Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol. 2007;431(07):61–81.PubMedCrossRef Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol. 2007;431(07):61–81.PubMedCrossRef
140.
go back to reference Statello L, Maugeri M, Garre E, Nawaz M, Wahlgren J, Papadimitriou A, et al. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS One. 2018;13(4):1–30.CrossRef Statello L, Maugeri M, Garre E, Nawaz M, Wahlgren J, Papadimitriou A, et al. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS One. 2018;13(4):1–30.CrossRef
141.
go back to reference Chen YH, Du W, Hagemeijer MC, Takvorian PM, Pau C, Cali A, et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell. 2015;160(4):619–30.PubMedPubMedCentralCrossRef Chen YH, Du W, Hagemeijer MC, Takvorian PM, Pau C, Cali A, et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell. 2015;160(4):619–30.PubMedPubMedCentralCrossRef
142.
go back to reference Altan-Bonnet N, Perales C, Domingo E. Extracellular vesicles: Vehicles of en bloc viral transmission. Virus Res. 2019;265:143–9 Elsevier B.V.PubMedCrossRef Altan-Bonnet N, Perales C, Domingo E. Extracellular vesicles: Vehicles of en bloc viral transmission. Virus Res. 2019;265:143–9 Elsevier B.V.PubMedCrossRef
144.
go back to reference Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, De Ruiter PE, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A. 2013;110(32):13109–13.PubMedPubMedCentralCrossRef Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, De Ruiter PE, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A. 2013;110(32):13109–13.PubMedPubMedCentralCrossRef
145.
go back to reference Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from Hepatitis C Infected Patients Transmit HCV Infection and Contain Replication Competent Viral RNA in Complex with Ago2-miR122-HSP90. PLoS Pathog. 2014;10(10):e1004424.PubMedPubMedCentralCrossRef Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from Hepatitis C Infected Patients Transmit HCV Infection and Contain Replication Competent Viral RNA in Complex with Ago2-miR122-HSP90. PLoS Pathog. 2014;10(10):e1004424.PubMedPubMedCentralCrossRef
146.
go back to reference Longatti A, Boyd B, Chisari FV. Virion-independent transfer of replication-competent Hepatitis C virus RNA between permissive cells. J Virol. 2015;89(5):2956–61.PubMedCrossRef Longatti A, Boyd B, Chisari FV. Virion-independent transfer of replication-competent Hepatitis C virus RNA between permissive cells. J Virol. 2015;89(5):2956–61.PubMedCrossRef
147.
go back to reference Jopling C, Yi M, Lancaster A. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science (80- ). 2005;309(September):1577–81.CrossRef Jopling C, Yi M, Lancaster A. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science (80- ). 2005;309(September):1577–81.CrossRef
151.
go back to reference Emara MM, Brinton M. a. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc Natl Acad Sci U S A. 2007;104(21):9041–6.PubMedPubMedCentralCrossRef Emara MM, Brinton M. a. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc Natl Acad Sci U S A. 2007;104(21):9041–6.PubMedPubMedCentralCrossRef
156.
go back to reference Chang K-S, Jiang J, Cai Z, Luo G. Human Apolipoprotein E is required for infectivity and production of Hepatitis C virus in Cell culture. J Virol. 2007;81(24):13783–93.PubMedPubMedCentralCrossRef Chang K-S, Jiang J, Cai Z, Luo G. Human Apolipoprotein E is required for infectivity and production of Hepatitis C virus in Cell culture. J Virol. 2007;81(24):13783–93.PubMedPubMedCentralCrossRef
161.
Metadata
Title
Role of RNA-binding proteins during the late stages of Flavivirus replication cycle
Authors
Mayra Diosa-Toro
K. Reddisiva Prasanth
Shelton S. Bradrick
Mariano A. Garcia Blanco
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2020
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01329-7

Other articles of this Issue 1/2020

Virology Journal 1/2020 Go to the issue