Skip to main content
Top
Published in: Virology Journal 1/2020

Open Access 01-12-2020 | Research

Characterization and a RT-RPA assay for rapid detection of Chilli Veinal mottle virus (ChiVMV) in tobacco

Authors: Yubing Jiao, Chuantao Xu, Jialun Li, Yong Gu, Chun Xia, Qiang Xie, Yunbo Xie, Mengnan An, Zihao Xia, Yuanhua Wu

Published in: Virology Journal | Issue 1/2020

Login to get access

Abstract

Background

Chilli veinal mottle virus (ChiVMV), which belongs to the genus Potyvirus of the family Potyviridae, mainly infects solanaceous plants and has caused serious economic losses in Asia and Africa. Tobacco plants infected with ChiVMV suffered from punctate necrosis of leaves, leaf deformation, systemic necrosis of leaves and stems, and eventually plant death. However, ChiVMV infection could not usually be identified given the lack of rapid and efficient detection assays in tobacco plants. Therefore, an isolate of tobacco-infecting ChiVMV (ChiVMV-LZ) was obtained, and a novel isothermal amplification and detection technique, reverse transcription-recombinase polymerase amplification (RT-RPA), was established to detect ChiVMV in tobacco plants.

Methods

In this study, the full-length genome of ChiVMV-LZ was obtained using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) assays. The genome sequence of ChiVMV-LZ was characterized by sequence alignment and phylogenetic analysis. Then, a RT-RPA assay was established for rapid and sensitive detection of ChiVMV-LZ in tobacco. Additionally, the established RT-RPA assay was compared to the RT-PCR assay in aspect of sensitivity and application in field-collected tobacco samples.

Results

ChiVMV-LZ was isolated from diseased tobacco in Luzhou, Sichuan, China. The tobacco plants inoculated with ChiVMV-LZ showed typical symptoms of yellow and round spots on the leaves, and curled and folded leaf margin, similar to those observed on naturally ChiVMV-infected tobacco in the field. The full-length genomic sequence of ChiVMV-LZ was determined to be 9742 nucleotides. Sequence alignment and phylogenetic analysis showed that ChiVMV-LZ was most closely related to ChiVMV-Yp8 isolated from pepper plants in Sichuan province while distantly related to ChiVMV-YN from tobacco in Yunnan province, indicating a possibly geographical differentiation of ChiVMV isolates. Additionally, a RT-RPA assay was established for rapid detection of ChiVMV in tobacco. The RT-RPA has no cross-reaction with other related tobacco viruses and is about 10-fold more sensitive than conventional RT-PCR method.

Conclusion

The characterization of ChiVMV-LZ infecting tobacco was determined, and the established RT-RPA assay provides a reliable and effective method for rapid detection of ChiVMV in tobacco.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berger PH, Adams MJ, Barnett OW, Brunt AA, Hammond J, Hill JH, Jordan RL, Kashiwazaki S, Rybicki E, Spence N, Stenger DC, Ohki ST, Uyeda I, van Zaayen A, Valkonen J, Vetten HJ. Family Potyviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball L, editors. Virus taxonomy eighth report of the international committee on taxonomy of virus. San Diego, CA, USA: Elsevier Academic Press Inc; 2005. p. 819–41. Berger PH, Adams MJ, Barnett OW, Brunt AA, Hammond J, Hill JH, Jordan RL, Kashiwazaki S, Rybicki E, Spence N, Stenger DC, Ohki ST, Uyeda I, van Zaayen A, Valkonen J, Vetten HJ. Family Potyviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball L, editors. Virus taxonomy eighth report of the international committee on taxonomy of virus. San Diego, CA, USA: Elsevier Academic Press Inc; 2005. p. 819–41.
2.
go back to reference Anindya R, Joseph J, Gowri TDS, Savithri HS. Complete genomic sequence of pepper vein banding virus (PVBV): a distinct member of the genus Potyvirus. Arch Virol. 2004;149:625–32.PubMedCrossRef Anindya R, Joseph J, Gowri TDS, Savithri HS. Complete genomic sequence of pepper vein banding virus (PVBV): a distinct member of the genus Potyvirus. Arch Virol. 2004;149:625–32.PubMedCrossRef
3.
go back to reference Banerjee A, Roy S, Sharma SK, Dutta SK, Chandra S, Ngachan S. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid diagnosis of Chilli veinal mottle virus. Arch Virol. 2016;161:1957–61.PubMedCrossRef Banerjee A, Roy S, Sharma SK, Dutta SK, Chandra S, Ngachan S. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid diagnosis of Chilli veinal mottle virus. Arch Virol. 2016;161:1957–61.PubMedCrossRef
4.
go back to reference Tsai WS, Huang YC, Zhang DY, Reddy K, Hidayat SH, Srithongchai W, Green SK, Jan FJ. Molecular characterization of the CP gene and 3′ UTR of Chilli veinal mottle virus from south and Southeast Asia. Plant Pathol. 2008;57:408–16.CrossRef Tsai WS, Huang YC, Zhang DY, Reddy K, Hidayat SH, Srithongchai W, Green SK, Jan FJ. Molecular characterization of the CP gene and 3′ UTR of Chilli veinal mottle virus from south and Southeast Asia. Plant Pathol. 2008;57:408–16.CrossRef
5.
go back to reference Zhao FF, Xi DH, Liu J, Deng XG, Lin HH. First report of Chilli veinal mottle virus infecting tomato (Solanum lycopersicum) in China. Plant Dis. 2014;98:1589.PubMedCrossRef Zhao FF, Xi DH, Liu J, Deng XG, Lin HH. First report of Chilli veinal mottle virus infecting tomato (Solanum lycopersicum) in China. Plant Dis. 2014;98:1589.PubMedCrossRef
6.
go back to reference Gao FL, Jin J, Zou WC, Liao FR, Shen JG. Geographically driven adaptation of Chilli veinal mottle virus revealed by genetic diversity analysis of the coat protein gene. Arch Virol. 2016;161:1329–33.PubMedCrossRef Gao FL, Jin J, Zou WC, Liao FR, Shen JG. Geographically driven adaptation of Chilli veinal mottle virus revealed by genetic diversity analysis of the coat protein gene. Arch Virol. 2016;161:1329–33.PubMedCrossRef
7.
go back to reference Ong CA, Varghese G, Poh TW. Aetiological investigation on a veinal mottle virus of chilli (Capsicum annuum L.) newly recorded from Peninsular Malaysia. Malays Agric Res Dev Inst Res Bull. 1979;7:78–88. Ong CA, Varghese G, Poh TW. Aetiological investigation on a veinal mottle virus of chilli (Capsicum annuum L.) newly recorded from Peninsular Malaysia. Malays Agric Res Dev Inst Res Bull. 1979;7:78–88.
8.
go back to reference Agranovsky AA. Virus diseases of pepper (Capsicum annuum L.) in Ethiopia. J Phytopathol. 1993;138:89–97.CrossRef Agranovsky AA. Virus diseases of pepper (Capsicum annuum L.) in Ethiopia. J Phytopathol. 1993;138:89–97.CrossRef
9.
go back to reference Chiemsombat P, Sae-Ung N, Attathom S, Patarapuwadol S, Siriwong P. Molecular taxonomy of a new potyvirus isolated from chilli pepper in Thailand. Arch Virol. 1998;143:1855–63.PubMedCrossRef Chiemsombat P, Sae-Ung N, Attathom S, Patarapuwadol S, Siriwong P. Molecular taxonomy of a new potyvirus isolated from chilli pepper in Thailand. Arch Virol. 1998;143:1855–63.PubMedCrossRef
10.
go back to reference Nono-Womdim R, Swai IS, Chadha ML, Gebre-Selassie K, Marchoux G. Occurrence of chili veinal mottle virus in Solanum aethiopicum in Tanzania. Plant Dis. 2001;85:801.PubMedCrossRef Nono-Womdim R, Swai IS, Chadha ML, Gebre-Selassie K, Marchoux G. Occurrence of chili veinal mottle virus in Solanum aethiopicum in Tanzania. Plant Dis. 2001;85:801.PubMedCrossRef
11.
go back to reference Moury B, Palloix A, Caranta C, Gognalons P. Serological, molecular, and pathotype diversity of Pepper veinal mottle virus and Chili veinal mottle virus. Phytopathology. 2005;95:227–32.PubMedCrossRef Moury B, Palloix A, Caranta C, Gognalons P. Serological, molecular, and pathotype diversity of Pepper veinal mottle virus and Chili veinal mottle virus. Phytopathology. 2005;95:227–32.PubMedCrossRef
12.
go back to reference Wang J, Liu Z, Liu S, Peng M, Wang D, Weng Z, Xiong Z. Natural occurrence of Chilli veinal mottle virus on Capsicum chinense in China. Plant Dis. 2006;90:377.PubMedCrossRef Wang J, Liu Z, Liu S, Peng M, Wang D, Weng Z, Xiong Z. Natural occurrence of Chilli veinal mottle virus on Capsicum chinense in China. Plant Dis. 2006;90:377.PubMedCrossRef
13.
go back to reference Ding M, Yang C, Zhang L, Jiang ZL, Fang Q, Qin XY, Zhang ZK. Occurrence of Chilli veinal mottle virus in Nicotiana tabacum in Yunnan. China Plant Dis. 2011;95:357.PubMed Ding M, Yang C, Zhang L, Jiang ZL, Fang Q, Qin XY, Zhang ZK. Occurrence of Chilli veinal mottle virus in Nicotiana tabacum in Yunnan. China Plant Dis. 2011;95:357.PubMed
14.
go back to reference Yang J, Dong JH, Zhang TJ, Wang R, Zhang ZK. A new isolate of Chilli veinal mottle virus that infects tobacco in China. J Plant Pathol. 2013;95:187–90. Yang J, Dong JH, Zhang TJ, Wang R, Zhang ZK. A new isolate of Chilli veinal mottle virus that infects tobacco in China. J Plant Pathol. 2013;95:187–90.
15.
16.
go back to reference Zhu F, Xi DH, Deng XG, Peng XJ, Tang H, Chen YJ, Jian W, Feng H, Lin HH. The Chilli veinal mottle virus regulates expression of the Tobacco mosaic virus resistance gene N and jasmonic acid/ethylene signaling is essential for systemic resistance against Chilli veinal mottle virus in tobacco. Plant Mol Biol Rep. 2014;32:382–94.CrossRef Zhu F, Xi DH, Deng XG, Peng XJ, Tang H, Chen YJ, Jian W, Feng H, Lin HH. The Chilli veinal mottle virus regulates expression of the Tobacco mosaic virus resistance gene N and jasmonic acid/ethylene signaling is essential for systemic resistance against Chilli veinal mottle virus in tobacco. Plant Mol Biol Rep. 2014;32:382–94.CrossRef
17.
go back to reference Yang T, Xu ZP, Lv R, Zhu LS, Peng QD, Qiu L, Lin HH, Xi DH. N gene enhances resistance to Chilli veinal mottle virus and hypersensitivity to salt stress in Nicotiana tobaccum. J Plant Physiol. 2018;230:92–100.PubMedCrossRef Yang T, Xu ZP, Lv R, Zhu LS, Peng QD, Qiu L, Lin HH, Xi DH. N gene enhances resistance to Chilli veinal mottle virus and hypersensitivity to salt stress in Nicotiana tobaccum. J Plant Physiol. 2018;230:92–100.PubMedCrossRef
18.
go back to reference Yang HB, Liu Y, Li WZ. Symptoms on tobacco cultivars caused by Chilli veinal mottle virus and cultivars disease resistance identification. J Yunnan Agric Univ. 2014;29:22–6. Yang HB, Liu Y, Li WZ. Symptoms on tobacco cultivars caused by Chilli veinal mottle virus and cultivars disease resistance identification. J Yunnan Agric Univ. 2014;29:22–6.
19.
go back to reference Ng JC, Falk BW. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol. 2006;44:183–212.PubMedCrossRef Ng JC, Falk BW. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol. 2006;44:183–212.PubMedCrossRef
20.
go back to reference Ravi KS, Joseph J, Nagaraju N, Prasad SK, Reddy HR, Savithri HS. Characterization of a Pepper vein banding virus from chili pepper in India. Plant Dis. 1997;81:673–6.PubMedCrossRef Ravi KS, Joseph J, Nagaraju N, Prasad SK, Reddy HR, Savithri HS. Characterization of a Pepper vein banding virus from chili pepper in India. Plant Dis. 1997;81:673–6.PubMedCrossRef
21.
go back to reference Shah H, Yasmin T, Fahim M, Hameed S, Haque IU, Muni RM, Khanzada KA. Reaction of exotic and indigenous capsicum genotypes against Pakistani isolates of Chili veinal mottle virus. Pak J Bot. 2011;43:1707–11. Shah H, Yasmin T, Fahim M, Hameed S, Haque IU, Muni RM, Khanzada KA. Reaction of exotic and indigenous capsicum genotypes against Pakistani isolates of Chili veinal mottle virus. Pak J Bot. 2011;43:1707–11.
22.
go back to reference Ratthaphol C, Orawan H, Channarong S, Mallika K, Nuchnard W, Oraprapai G, Elliott CT, Nitsara K. Antibody array in a multiwell plate format for the sensitive and multiplexed detection of important plant pathogens. Anal Chem. 2014;86:7049–56.CrossRef Ratthaphol C, Orawan H, Channarong S, Mallika K, Nuchnard W, Oraprapai G, Elliott CT, Nitsara K. Antibody array in a multiwell plate format for the sensitive and multiplexed detection of important plant pathogens. Anal Chem. 2014;86:7049–56.CrossRef
24.
go back to reference Yonesaki T, Ryo Y, Minagawa T, Takahashi H. Purification and some of the functions of the products of bacteriophage T4 recombination genes, uvsX and Uvs Y. Eur J Biochem. 1985;148:127–34.PubMedCrossRef Yonesaki T, Ryo Y, Minagawa T, Takahashi H. Purification and some of the functions of the products of bacteriophage T4 recombination genes, uvsX and Uvs Y. Eur J Biochem. 1985;148:127–34.PubMedCrossRef
25.
go back to reference Boyle DS, Mcnerney R, Teng LH, Leader BT, Pérez-Osorio AC, Meyer JC, O'Sullivan DM, Brooks DG, Piepenburg O, Forrest MS. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One. 2014;9:e103091.PubMedPubMedCentralCrossRef Boyle DS, Mcnerney R, Teng LH, Leader BT, Pérez-Osorio AC, Meyer JC, O'Sullivan DM, Brooks DG, Piepenburg O, Forrest MS. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One. 2014;9:e103091.PubMedPubMedCentralCrossRef
26.
go back to reference Londoño MA, Harmon CL, Polston JE. Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virol J. 2016;13:48.PubMedPubMedCentralCrossRef Londoño MA, Harmon CL, Polston JE. Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virol J. 2016;13:48.PubMedPubMedCentralCrossRef
27.
go back to reference Dong JL, Li Y, Ding WL, Wang R. First report of broad bean wilt virus 2 and youcai mosaic virus infecting woolly foxglove (Digitalis lanata). J Plant Pathol. 2017;99:799–818. Dong JL, Li Y, Ding WL, Wang R. First report of broad bean wilt virus 2 and youcai mosaic virus infecting woolly foxglove (Digitalis lanata). J Plant Pathol. 2017;99:799–818.
28.
go back to reference Damsteegt VD, Stone AL, Smith OP, McDaniel L, Sherman DJ, Dardick C, Hammond J, Jordan R, Schneider WL. A previously undescribed potyvirus isolated and characterized from arborescent Brugmansia. Arch Virol. 2013;158:1235–44.PubMedCrossRef Damsteegt VD, Stone AL, Smith OP, McDaniel L, Sherman DJ, Dardick C, Hammond J, Jordan R, Schneider WL. A previously undescribed potyvirus isolated and characterized from arborescent Brugmansia. Arch Virol. 2013;158:1235–44.PubMedCrossRef
29.
go back to reference Chen L, Jiao Z, Liu D, Liu X, Xia Z, Deng C, Zhou T, Fan Z. One-step reverse transcription loop-mediated isothermal amplification for the detection of Maize chlorotic mottle virus in maize. J Virol Methods. 2017;240:49–53.PubMedCrossRef Chen L, Jiao Z, Liu D, Liu X, Xia Z, Deng C, Zhou T, Fan Z. One-step reverse transcription loop-mediated isothermal amplification for the detection of Maize chlorotic mottle virus in maize. J Virol Methods. 2017;240:49–53.PubMedCrossRef
30.
31.
go back to reference Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.CrossRefPubMed Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.CrossRefPubMed
32.
go back to reference Tian YP, Liu JL, Zhang CL, Liu YY, Wang B, Li XD, Guo ZK, Valkonen JP. Genetic diversity of Potato virus Y infecting tobacco crops in China. Phytopathology. 2011;101:377–87.PubMedCrossRef Tian YP, Liu JL, Zhang CL, Liu YY, Wang B, Li XD, Guo ZK, Valkonen JP. Genetic diversity of Potato virus Y infecting tobacco crops in China. Phytopathology. 2011;101:377–87.PubMedCrossRef
33.
go back to reference Acosta-Leal R, Duffy S, Xiong Z, Hammond RW, Elena SF. Advances in plant virus evolution: translating evolutionary insights into better disease management. Phytopathology. 2011;101:1136–48.PubMedCrossRef Acosta-Leal R, Duffy S, Xiong Z, Hammond RW, Elena SF. Advances in plant virus evolution: translating evolutionary insights into better disease management. Phytopathology. 2011;101:1136–48.PubMedCrossRef
34.
go back to reference Fei C, Chen L, Yang T, Zou W, Lin H, Xi D. The role of phytochromes in Nicotiana tabacum against Chilli veinal mottle virus. Plant Physiol Bioch. 2019;139:470–7.CrossRef Fei C, Chen L, Yang T, Zou W, Lin H, Xi D. The role of phytochromes in Nicotiana tabacum against Chilli veinal mottle virus. Plant Physiol Bioch. 2019;139:470–7.CrossRef
35.
go back to reference Urcuqui-Inchima S, Haenni AL, Bernardi F. Potyvirus proteins: a wealth of functions. Virus Res. 2001;74:157–5.PubMedCrossRef Urcuqui-Inchima S, Haenni AL, Bernardi F. Potyvirus proteins: a wealth of functions. Virus Res. 2001;74:157–5.PubMedCrossRef
36.
go back to reference Liu J, Zhang DY, Zhang SB, Liu Y. Detection and phylogenetic analysis of Chilli veinal mottle virus on peppers in Hunan and Fujian provinces. Jiangsu Agric Sci. 2016;44:184–5. Liu J, Zhang DY, Zhang SB, Liu Y. Detection and phylogenetic analysis of Chilli veinal mottle virus on peppers in Hunan and Fujian provinces. Jiangsu Agric Sci. 2016;44:184–5.
37.
go back to reference Adams MJ, Antoniw JF, Fauquet CM. Molecular criteria for genus and species discrimination within the family Potyviridae. Arch Virol. 2005;150:459–79.PubMedCrossRef Adams MJ, Antoniw JF, Fauquet CM. Molecular criteria for genus and species discrimination within the family Potyviridae. Arch Virol. 2005;150:459–79.PubMedCrossRef
38.
go back to reference Shen W, Tuo D, Yan P, Li X, Zhou P. Detection of Papaya leaf distortion mosaic virus by reverse-transcription loop-mediated isothermal amplification. J Virol Methods. 2014;195:174–9.PubMedCrossRef Shen W, Tuo D, Yan P, Li X, Zhou P. Detection of Papaya leaf distortion mosaic virus by reverse-transcription loop-mediated isothermal amplification. J Virol Methods. 2014;195:174–9.PubMedCrossRef
39.
go back to reference Wei QW, Yu C, Zhang SY, Yang CY, Miriam K, Zhang WN, Dou DL, Tao XR. One-step detection of Bean pod mottle virus in soybean seeds by the reverse-transcription loop-mediated isothermal amplification. Virol J. 2012;9:187–93.PubMedPubMedCentralCrossRef Wei QW, Yu C, Zhang SY, Yang CY, Miriam K, Zhang WN, Dou DL, Tao XR. One-step detection of Bean pod mottle virus in soybean seeds by the reverse-transcription loop-mediated isothermal amplification. Virol J. 2012;9:187–93.PubMedPubMedCentralCrossRef
40.
go back to reference Jiao Y, Jiang J, Wu Y, Xia Z. Rapid detection of Cucumber green mottle mosaic virus in watermelon through a recombinase polymerase amplification assay. J Virol Methods. 2019;270:146–9.PubMedCrossRef Jiao Y, Jiang J, Wu Y, Xia Z. Rapid detection of Cucumber green mottle mosaic virus in watermelon through a recombinase polymerase amplification assay. J Virol Methods. 2019;270:146–9.PubMedCrossRef
41.
go back to reference Chandu D, Paul S, Parker M, Dudin Y, King-Sitzes J, Perez T, Mittanck DW, Shah M, Glenn KC, Piepenburg O. Development of a rapid point-of-use DNA test for the screening of genuity® roundup ready 2 yield® soybean in seed samples. Biomed Res Int. 2016;2016:1–12.CrossRef Chandu D, Paul S, Parker M, Dudin Y, King-Sitzes J, Perez T, Mittanck DW, Shah M, Glenn KC, Piepenburg O. Development of a rapid point-of-use DNA test for the screening of genuity® roundup ready 2 yield® soybean in seed samples. Biomed Res Int. 2016;2016:1–12.CrossRef
42.
43.
go back to reference Sun K, Xing W, Yu X, Fu W, Wang Y, Zou M, Luo Z, Xu D. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum. Parasit Vector. 2016;9:476.CrossRef Sun K, Xing W, Yu X, Fu W, Wang Y, Zou M, Luo Z, Xu D. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum. Parasit Vector. 2016;9:476.CrossRef
44.
go back to reference Lillis L, Lehman D, Singhal MC, Cantera J, Singleton J, Labarre P, Toyama A, Piepenburg O, Parker M, Wood R, Overbaugh J, Boyle DS. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS One. 2014;9:e108189.PubMedPubMedCentralCrossRef Lillis L, Lehman D, Singhal MC, Cantera J, Singleton J, Labarre P, Toyama A, Piepenburg O, Parker M, Wood R, Overbaugh J, Boyle DS. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS One. 2014;9:e108189.PubMedPubMedCentralCrossRef
45.
go back to reference Abd El Wahed A, Weidmann M, Hufert FT. Diagnostics-in-a-Suitcase: development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol. 2015;69:16–21.PubMedCrossRefPubMedCentral Abd El Wahed A, Weidmann M, Hufert FT. Diagnostics-in-a-Suitcase: development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol. 2015;69:16–21.PubMedCrossRefPubMedCentral
46.
go back to reference Silvaa G, Oyekanmib J, Nkereb CK, Bömera M, Kumarb PL, Seala SE. Rapid detection of potyviruses from crude plant extracts. Anal Biochem. 2018;546:17–22.CrossRef Silvaa G, Oyekanmib J, Nkereb CK, Bömera M, Kumarb PL, Seala SE. Rapid detection of potyviruses from crude plant extracts. Anal Biochem. 2018;546:17–22.CrossRef
Metadata
Title
Characterization and a RT-RPA assay for rapid detection of Chilli Veinal mottle virus (ChiVMV) in tobacco
Authors
Yubing Jiao
Chuantao Xu
Jialun Li
Yong Gu
Chun Xia
Qiang Xie
Yunbo Xie
Mengnan An
Zihao Xia
Yuanhua Wu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2020
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01299-w

Other articles of this Issue 1/2020

Virology Journal 1/2020 Go to the issue